JPS58123345A - Flywheel generator - Google Patents

Flywheel generator

Info

Publication number
JPS58123345A
JPS58123345A JP57003589A JP358982A JPS58123345A JP S58123345 A JPS58123345 A JP S58123345A JP 57003589 A JP57003589 A JP 57003589A JP 358982 A JP358982 A JP 358982A JP S58123345 A JPS58123345 A JP S58123345A
Authority
JP
Japan
Prior art keywords
yoke
flywheel
magnetic bearing
bearing
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57003589A
Other languages
Japanese (ja)
Inventor
Masahiro Kataoka
正博 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57003589A priority Critical patent/JPS58123345A/en
Publication of JPS58123345A publication Critical patent/JPS58123345A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To reduce the number of bearings in a flywheel generator by forming the prescribed grooves (teeth) on the outer peripheral side of a yoke of a magnetic bearing which rotates in vacuum and providing a stator of an inductor type synchronous machine on the outer periphery, thereby integrating the yoke and a rotary electric machine. CONSTITUTION:A flywheel 1 and a magnetic bearing yoke 15 provided on the rotational shaft 2 of the flywheel 1 are accommodated in a container 5 which is connected to an exhaust pump 6 and is maintained therein in vacuum, the shaft 2 is supported via a radial bearing 3 and a thrust bearing 4, and is supported by a magnetic bearing provided to the yoke 15. Grooves which have the prescribed depth and width are formed on the outer peripheral side of the yoke 15, and an armature core 16 which has an armature coil 17 and an exciting coil 12a is mounted oppositely through the grooves and the prescribed air gap length. The core 16 is provided via a can 18 under the atmopspheric pressure.

Description

【発明の詳細な説明】 この兜・明は電力系統における余剰電力をフライホイー
ルによる惰械エネルギー蓄権装置に蓄積し、ビーク負葡
時にこのエネルギーを発″llE機で電気エネルギーに
変換し、周波数変換装置を介して富力Amに送り込み、
そのバックアップを行なうためのフライホイール発電機
に関するものである。
[Detailed Description of the Invention] This Kabuto Akira stores surplus power in the power system in an inertial energy storage device using a flywheel, converts this energy into electrical energy with a generator when peak load is generated, and Send it to Tomiki Am via the conversion device,
This invention relates to a flywheel generator for backup.

従来この棚の装置として一般に知られているものを第1
図に示す。第1図において(1)はフライホイール、(
2)は回転軸、(8)はこの回転軸を支承するラジアル
軸受、(41はスラスト軸受である。(514t 7ラ
イホイールを収容する耐圧容器であり、内部の真空を維
持するために排気ポンプ(6)、および排気管(7)を
備えると共に、前記容器(5)の内部と外部の気圧差に
よって、前記容器(5)と、前記回転軸(2′との間の
隙m)を通じて、外部の空気が前記容器(5)の内部に
侵入することを防ぐ目的で、軸シール(8)を伽えてい
る。また、前記フライホイール(1)の全自重が前記ス
ラスト軸受(4)に印加されることを避けるために、前
記フライホイール(1)の上部に硝気軸受(9)を備え
ている。そして前記回転軸(2)には、軸継手α0)を
介し、固定脚01)によって支承される四則電動発電機
(以後MGと記す) (12)か直結されている。
The first is what is generally known as this shelf device.
As shown in the figure. In Figure 1, (1) is the flywheel, (
2) is a rotating shaft, (8) is a radial bearing that supports this rotating shaft, (41 is a thrust bearing. (514t) It is a pressure-resistant container that accommodates 7 dry wheels, and an exhaust pump is used to maintain the internal vacuum. (6) and an exhaust pipe (7), and due to the pressure difference between the inside and outside of the container (5), through the gap m between the container (5) and the rotating shaft (2'), In order to prevent outside air from entering the inside of the container (5), the shaft seal (8) is maintained.Furthermore, the entire weight of the flywheel (1) is applied to the thrust bearing (4). In order to avoid this, a nitric bearing (9) is provided on the upper part of the flywheel (1).The rotary shaft (2) is connected to the rotary shaft (2) by a fixed leg 01) It is directly connected to a supported four-pronged motor generator (hereinafter referred to as MG) (12).

上記(2)から(1υまでの各要素が、第2図における
フライホイール電動光1[ff1((2)を構成してい
る。第2図において(12a )は、前記電動発iIE
機(ロ)の励磁巻線、(12b)は励i !It II
装置、に)は交流電力系絖、0句はこの電力系統と前記
警動発市機(ロ)の間で電力の兎°換を行なう周波数変
換器置である。
Each element from (2) to (1υ) above constitutes the flywheel electric light 1 [ff1 ((2)) in FIG. 2. In FIG.
The excitation winding (12b) of the machine (b) is the excitation i! It II
The device (2) is an AC power system, and the device (2) is a frequency converter device for converting power between this power system and the alarm generator (B).

以下に動作について設明する。第8図にMGの動作特性
曲線膏示す。図中横軸に回転数、縦軸に′ili機子電
電圧電機子電流、トルク、出力を示している。また第4
図には、MGの運転スフジュールを示す。こねから明ら
かなように、MGを電動連転するときには、2つの異な
った運転モードが利用される。1つは起動時、したかつ
て回転数が零からN+ rpl!lまでの範囲内にある
ときで、この領域でMGは定トルク運転を行なう。俟言
すると、出力、111機子電圧が周波数に比例して増加
する一方、tlE機子電子電流Gの端子力率は周波数に
無関係に、それぞわの定格値を一定に保2ような制御を
受けなから加速される。もう1つの運転モードは、エネ
ルギー査檀時、したがって(ロ)転数がN+ rpmか
らは定出力運転を行なう。?#言すると、電機子電圧、
電機子電流は周波数の平方根に、それぞれ比例および反
比例し、トルクは周波数に反比例する一方、出力と端子
力率は周波数に無関係に、そねぞねの定格値を一定に保
つように制御を受ける。特に、後者のような制御を行な
うことは、MGを周波数変換器から見ると、転流リアク
タンスか一定になるという意味をもっている。
The operation is explained below. FIG. 8 shows the operating characteristic curve of the MG. In the figure, the horizontal axis shows the rotation speed, and the vertical axis shows the armature electric voltage, armature current, torque, and output. Also the fourth
The figure shows the operating schedule of the MG. As is clear from the above, two different operation modes are used when the MG is electrically operated. One is when starting up, the rotation speed goes from zero to N+ rpl! In this range, the MG performs constant torque operation. In short, while the output and the 111 armature voltage increase in proportion to the frequency, the terminal power factor of the tlE armature electronic current G is kept constant at its respective rated value regardless of the frequency. It is accelerated because it does not receive. Another operation mode is constant power operation at the time of energy inspection, and therefore from (b) rotation speed N+ rpm. ? # In other words, armature voltage,
The armature current is proportional and inversely proportional to the square root of the frequency, respectively, and the torque is inversely proportional to the frequency, while the output and terminal power factor are controlled to keep the rated value of the wire constant regardless of frequency. . In particular, performing the latter type of control means that the commutation reactance of the MG becomes constant when viewed from the frequency converter.

こねに対して、MGを発電運転する場合には、動作モー
ドは1梗類、即ち定出力運転のみか利用される。これを
第4図の運転スフジュールに則して訓明すると以下のよ
うになる。
When the MG is operated to generate electricity for kneading, only the first type of operation mode, that is, constant output operation is used. If this is explained in accordance with the driving schedule shown in Figure 4, it will be as follows.

起動時にはMGを定トルクi!E動運転を行ない、フラ
イホイールを回転数が零からN、 rpmに達するまで
、したがって時刻T+に達するまで加述する。
At startup, the MG is set to constant torque i! E-dynamic operation is performed, and the flywheel is rotated from zero until the number of rotations reaches N, rpm, and therefore until time T+ is reached.

回転数がN+ rpH1に達すると制御モードは切り押
えられて、MGは定トルク運転な行ない、フライホイー
ルに対する機械エネルギーの蓄積を開始する。時刻T1
において[g1転数がN* rpfflに達すると周波
数変換器を介したMGへの電力系統からの給電は停止さ
れ、フライホイールは慣性により空転する。その後、時
刻Tmになって電力系統が、ビーり負荷時を迎えると、
MGに励磁が与えられ発電機動作を開始する。この際フ
ライホイールか機械エネルギーを放出するにしたがって
、回転数は低下して行くため発電機の端子電圧および周
波数G1それに応じて減少して行く。したがって周波数
変換器では、この回転数と共に変動する交流を整流し、
直流に変換した後、逆変換動作を行なし1定周波定電圧
の交流に変換して、電力系統への給電を行なうOこうし
て時刻T4になって、回転数がN+ rpmまで低下す
ると、電力系統への給電は停止され、フライホイールは
電力系統の余剰電力が利用できる時刻T、になるまで空
転を続ける。このようにしてスケジュール1行程を終了
する。
When the rotational speed reaches N+ rpH1, the control mode is turned off, the MG performs constant torque operation, and starts storing mechanical energy in the flywheel. Time T1
When the g1 rotation number reaches N*rpffl, the power supply from the power system to the MG via the frequency converter is stopped, and the flywheel idles due to inertia. Then, at time Tm, when the power system reaches the peak load period,
Excitation is applied to the MG and the generator starts operating. At this time, as the flywheel releases mechanical energy, the number of rotations decreases, so the terminal voltage and frequency G1 of the generator decrease accordingly. Therefore, the frequency converter rectifies the alternating current that fluctuates with the rotation speed,
After converting to DC, the inverse conversion operation is not performed. 1 It is converted to AC with constant frequency and constant voltage, and power is supplied to the power grid. At time T4, when the rotational speed decreases to N+ rpm, the power is supplied to the power grid. The power supply to the vehicle is stopped, and the flywheel continues to idle until time T, when surplus power from the power grid becomes available. In this way, one schedule step is completed.

このようなMGでは、真空容器中に収容されているのは
フライホイールだけなので、空転時にMGの回転子か発
生する風損か大きし1ことと、使用する軸受の個数が多
いため、それによる軸受損失が大きいことなどのために
、エネルギー蓄積装置としての変換効率が小さくなる欠
点に加えて、全体の軸長が長くなるため、軸系の危険速
度力i低くなり、動作回転数範囲内番こそね力$入り込
む可能性が大きいという欠点もある。
In such an MG, only the flywheel is housed in the vacuum container, so the windage damage generated by the MG rotor during idling is 1, and the number of bearings used is large. In addition to the drawback that the conversion efficiency as an energy storage device is reduced due to large bearing losses, the overall shaft length is increased, which lowers the critical speed force i of the shaft system, which increases the speed within the operating speed range. There is also a drawback that there is a large possibility that $1000 will be used.

本発明は上述の欠点を解消することを目的としてなされ
たもので、強磁性体である磁気軸受のヨークの外周部側
面に所定の深さと間隔とをもった溝を切り、磁気軸受自
体を誘導子形発亀機の回転子として利用し、且つその外
周部に檀層鉄1[、%と電機子巻線及び界磁巻線を装備
することによって磁気軸受とMGとを一体化したことを
特徴とするものである。
The present invention was made with the aim of eliminating the above-mentioned drawbacks, and the present invention is made by cutting grooves with a predetermined depth and spacing on the outer peripheral side surface of the yoke of a magnetic bearing, which is a ferromagnetic material, to guide the magnetic bearing itself. The magnetic bearing and the MG are integrated by using it as the rotor of a child-shaped starter machine and equipping the outer periphery with a layer of iron 1[,%], an armature winding, and a field winding. This is a characteristic feature.

以下この発明の一実施例を図につし・て汐明する。An embodiment of the present invention will be explained below with reference to the drawings.

第6図において、o均は強磁性体力)らなり、外周部側
面に所定の深さと幅とピッチをもった溝を有する磁気軸
受ヨーク、06)は真空容益(4−に固定された積層鉄
心からなる電機子鉄心−で、その内径各1前記磁気軸受
ヨーク(ロ)の外径に対して所定の空1lft長をもつ
ように配重さねている。そして前記鉄、1.(lQ各こ
Lt界磁巻i11 (121L )と電機子巻線Qηと
が装備されている。前記空隙部分にはキャンに)が挿入
されていて、電機子鉄心に)、電機予巻fjl(17)
及び界磁巻線(12a)か大気圧下におかれるようにな
ぎねている。なお第6図及び第7図は磁気軸受ヨーク(
ロ)の外周部の溝を示す平面図及び断面図である。
In Fig. 6, 06) is a magnetic bearing yoke having grooves with a predetermined depth, width, and pitch on the side surface of the outer circumference, and 06) is a laminated layer fixed to vacuum capacity (4-). An armature iron core consisting of an iron core is weighted so that each of its inner diameters has a predetermined empty length of 1ft with respect to the outer diameter of the magnetic bearing yoke (b). Each coil is equipped with an Lt field winding i11 (121L) and an armature winding Qη.A can) is inserted into the gap, a motor prewinding fjl (17) is inserted into the armature core, and an electric prewinding fjl (17) is inserted into the armature core.
And the field winding (12a) is twisted so as to be placed under atmospheric pressure. Figures 6 and 7 show the magnetic bearing yoke (
FIG. 4 is a plan view and a cross-sectional view showing the grooves on the outer periphery of (b).

このMGの回転子構造及び励磁の原理については誘導十
形同期機と同一のものであり、その他の構成は第1図の
ものと同様であるから説明を省略する。
The rotor structure and excitation principle of this MG are the same as those of the induction ten-type synchronous machine, and the other configurations are the same as those in FIG. 1, so a description thereof will be omitted.

上述のように、MGの回転子は真空中で回転することに
なるため、空転時の風損は大幅に減少するとともに、軸
受の個数、したがって軸受損失も減少し、更に軸長が短
くて済むために危険速度も上昇するので、性能を向上さ
せることができる。
As mentioned above, since the MG rotor rotates in a vacuum, the windage loss during idling is significantly reduced, the number of bearings and therefore the bearing loss are also reduced, and the shaft length can be shortened. Therefore, the critical speed also increases, so performance can be improved.

又、界磁巻線が固定子側に備えられているため、回転子
に発生する損失は溝の表面isで生じる渦電流損失だけ
であるため、熱伝導゛に”°より軸端へ取り出すことも
可能である。
In addition, since the field winding is provided on the stator side, the only loss that occurs in the rotor is eddy current loss that occurs on the surface of the groove. is also possible.

また、固定子は前記キャンによって真空部分から絶縁さ
ねているため、冷却に関しては強制空冷等の従来の冷却
法で十分である。
Further, since the stator is insulated from the vacuum portion by the can, conventional cooling methods such as forced air cooling are sufficient for cooling.

なお、もしMGの導体の断面積か十分に大きく、中空導
体形式による直接冷却法が採用できるなら、上記実施例
に於けるようなキャンは不必要となる。
Incidentally, if the cross-sectional area of the MG conductor is sufficiently large and a direct cooling method using a hollow conductor type can be adopted, the can as in the above embodiment is unnecessary.

上述の方式により、風損、軸受損を小さくできると共に
、危険速度も上昇し、重量、寸法共に4・さくできると
いう極めて有利なフライホイールエネルギー蓄積装置を
得ることができる。
By the above-described method, it is possible to obtain an extremely advantageous flywheel energy storage device that can reduce windage loss and bearing loss, increase critical speed, and reduce both weight and size by 4 mm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の7ライホイ一ル発電機を示す縦断面図、
第2図はフライホイールMGの結線を示す単線図、第8
図はフライホイールMGの動作特性曲線、第4図はフラ
イホイール発iisの運転スケジュール、第5図はこの
尭明の一実施例を示す縦断面図、第6図及び第7図は磁
気軸受ヨークの詳細1示7平面図′&U IN、、、面
図ri、b・図中、(1)は7ライホ慴−ル、(2)は
回転軸、(,93Gニラシアル軸受、(4)はスラスト
軸受、(6)は耐圧容益、(6)は排気ポンプ、(7)
は排気管、(8)は軸シール、(9)は砂気軸受、(ロ
)は磁気軸受ヨーク、(ロ)瘉ま積層鉄IC?、(ロ)
は電機子巻線、(12m)は励磁巻線である。 なお図中同一符号は同一また&;相当する部分を示す。 代理人  葛 野 信 − 第2図 第3図 ヰm 第4図 第6図 /σ 275−
Figure 1 is a vertical cross-sectional view showing a conventional 7-life wheel generator;
Figure 2 is a single line diagram showing the connection of the flywheel MG, Figure 8
The figure shows the operating characteristic curve of the flywheel MG, FIG. 4 shows the operating schedule of the flywheel IIS, FIG. 5 is a vertical cross-sectional view showing one embodiment of this Yamei, and FIGS. Details 1 shows 7 plan view'& U IN,,, top view ri, b.In the figure, (1) is the 7 life wheel, (2) is the rotating shaft, (, 93G Niradial bearing, (4) is the thrust Bearing, (6) is pressure resistance, (6) is exhaust pump, (7)
is the exhaust pipe, (8) is the shaft seal, (9) is the sand bearing, (b) is the magnetic bearing yoke, (b) is the laminated iron IC? ,(B)
is the armature winding, and (12m) is the excitation winding. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 2 Figure 3 Figure 4 Figure 6/σ 275-

Claims (1)

【特許請求の範囲】[Claims] フライホイール、このフライホイールの(ロ)転軸、こ
の(ロ)転軸に設けられた磁気軸受ヨーク、上記フライ
ホイール及び磁気軸受ヨークを収容し、排気管を介して
排気ポンプに接続された耐圧容器、この耐圧容器内にお
いて上記ヨークと対向し上記回転軸を支承する硝気軸受
を備えたものにおいて、上記磁気軸受ヨークの外周部に
溝を設けると共に、上記砂気軸受ヨークの外崗部側面に
対して向い合った上記容器の内周部に種層鉄心を設け、
この槓増鉄心中に1M機子巻線と励磁巻線とを装備し磁
気軸受ヨークと回転電機とを一体化したことを特徴とす
るフライホイール発%E枦。
A flywheel, a (b) rotating shaft of this flywheel, a magnetic bearing yoke provided on this (b) rotating shaft, and a pressure-resistant device that accommodates the flywheel and magnetic bearing yoke and is connected to an exhaust pump via an exhaust pipe. The container is equipped with a nitrogen gas bearing that faces the yoke and supports the rotating shaft in the pressure container, in which a groove is provided on the outer periphery of the magnetic bearing yoke, and a groove is provided on the outer periphery of the sand gas bearing yoke. A seed layer iron core is provided on the inner periphery of the container facing the
This flywheel-based %E motor is characterized by being equipped with a 1M machine winding and an excitation winding in this reinforced iron core, and integrating a magnetic bearing yoke and a rotating electric machine.
JP57003589A 1982-01-12 1982-01-12 Flywheel generator Pending JPS58123345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003589A JPS58123345A (en) 1982-01-12 1982-01-12 Flywheel generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003589A JPS58123345A (en) 1982-01-12 1982-01-12 Flywheel generator

Publications (1)

Publication Number Publication Date
JPS58123345A true JPS58123345A (en) 1983-07-22

Family

ID=11561646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003589A Pending JPS58123345A (en) 1982-01-12 1982-01-12 Flywheel generator

Country Status (1)

Country Link
JP (1) JPS58123345A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309779A (en) * 1987-06-09 1988-12-16 ザ ボーイング カンパニー Variable inertial energy storage device
US4928218A (en) * 1989-03-06 1990-05-22 Ncr Corporation Switch mode power supply start-up circuit
WO2010102477A1 (en) * 2009-03-09 2010-09-16 Wang Runxiang Air powered flywheel
CN112398269A (en) * 2020-11-30 2021-02-23 华中科技大学 Stator hybrid excitation flywheel energy storage motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309779A (en) * 1987-06-09 1988-12-16 ザ ボーイング カンパニー Variable inertial energy storage device
US4928218A (en) * 1989-03-06 1990-05-22 Ncr Corporation Switch mode power supply start-up circuit
WO2010102477A1 (en) * 2009-03-09 2010-09-16 Wang Runxiang Air powered flywheel
CN112398269A (en) * 2020-11-30 2021-02-23 华中科技大学 Stator hybrid excitation flywheel energy storage motor
CN112398269B (en) * 2020-11-30 2021-08-31 华中科技大学 Stator hybrid excitation flywheel energy storage motor

Similar Documents

Publication Publication Date Title
CN100517922C (en) Starter generator for vehicle
JP2768162B2 (en) Inductor type alternator
US20030011272A1 (en) Motor
JP2007185021A (en) Dynamo-electric machine with speed change mechanism, and drive unit using it
CN102064654A (en) Exterior rotor permanent magnet brushless direct current (DC) fan motor for air-conditioning system for ship
RU2384931C1 (en) Synchronous machine of inductor type
CN104505961B (en) A kind of outer rotor dynamotor
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
RU2302692C1 (en) Electromechanical converter
JPS58123345A (en) Flywheel generator
CN210111816U (en) Novel permanent magnet excitation type generator with variable air gap magnetic flux density
CN104506010B (en) A kind of Automobile flywheel formula electrical excitation starter-generator
CN207766040U (en) A kind of generator
CN105703588B (en) Flywheel-type motor used for diesel engine
CN103775196B (en) A kind of turbocharging power generation device
CN109639035B (en) Motor and double-deck energy storage flywheel based on double-deck rotor structure
JPS58123346A (en) Flywheel generator
CN112865355A (en) Brushless direct-excited motor and assembling method thereof
CN217135299U (en) Permanent magnet composite system for starting and charging internal combustion engine
JP7255822B1 (en) Power generator and power generation system
CN219227303U (en) High-speed permanent magnet motor
JP3011994U (en) Brushless self-excited generator
JPS6084955A (en) Emergency diesel engine generator
JPS644303Y2 (en)
JPS5851762A (en) Brushless charging generator