JPS58122730A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS58122730A
JPS58122730A JP337582A JP337582A JPS58122730A JP S58122730 A JPS58122730 A JP S58122730A JP 337582 A JP337582 A JP 337582A JP 337582 A JP337582 A JP 337582A JP S58122730 A JPS58122730 A JP S58122730A
Authority
JP
Japan
Prior art keywords
etching
discharge
mode
gas
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP337582A
Other languages
Japanese (ja)
Inventor
Haruo Okano
晴雄 岡野
Takashi Yamazaki
隆 山崎
Yasuhiro Horiike
靖浩 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP337582A priority Critical patent/JPS58122730A/en
Publication of JPS58122730A publication Critical patent/JPS58122730A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To catch an inter-mode transition sign independently of the etching progress thereby to effect an anisotropic etching with a high reliability, by monitoring by the use of the spectrum of an inert gas. CONSTITUTION:In the discharge by a magnetron in which a magnetic field is formed on the surface of a cathode: a mode (a) in which the excitation light is strong and a discharge area is produced near a discharge path 17 right above the gap between N and S poles, appears more easily as the high-frequency power is larger and as the pressure is lower, and in this case, a vertical anisotropic etching is effected; or a mode (b) appears in which the excitation light is weak and discharge areas 18, 19 are produced in the vicinity of the discharge path 17, and in this case, a completely isotropic etching is effected. When a P- added poly Si is etched by Cl2 solely, the etching speed is maximum at the transition point between the modes (a) and (b). When about 1% Ar is introduced into Cl2 and the Ar spectrum is observed, an eaves part is produced under the state where the relative intensity reduces to about half. According to this method, Si, Al and other high-melting metals can be anisotropically etched with high reliability and high speed selecting proper reaction gases, respectively, in addition to doped poly Si.

Description

【発明の詳細な説明】 本発明は、シリコン、不添物添加多結晶シリコン1アル
i 二t%.h 、高融点金属及びそれらのメタルシリ
サイドの高速、かつ、異方性エツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides silicon, impurity-doped polycrystalline silicon, 1 Al, 2 t%. h. Concerning a high-speed and anisotropic etching method for refractory metals and their metal silicides.

従来技術とその問題点 近年、集積回路は、微細化の一途を九どシ鍛近では、最
小寸法が1〜2μmOL8Iも試作されるに産りている
.この微細加工には、通常平行平板電極を有する反応容
器に、CF4などの反応性ガスを導入し、試料載置の電
極に高周波電力(例えば、1336MHz)を印加する
ことによシブロー放電を生じせしめプラズマ中の正イオ
ンを陰極(高周波電力印加の電極)面に生じる陰極降下
電圧(以下woeと称す)によりて加速し、試料にイオ
ンを―直に入射させてこれをエッチンFグするもので反
応性イオンエツチング(React ive Ion 
Itching; RIE)と呼ばれている.しかし、
この平行平板電極によるRIMでは、例えばCF4 +
 Hlガスを用い九sio!Oエノッチング速度は、高
々300〜400λ/min であヤ、1μm厚の8 
io,をエツチングするのに約40分も要し、量゜産性
の点でこの極めて低いエッチ/エツチング速度は約10
001/minで1μm厚の厚さに対して数10分、あ
るいは、りンドープpoly−8tのI’LIgではC
BrF3 (+C1*)ガスを用いてz、チング速度は
5001/minで、40001の厚さに対して8分と
8 ioz IIではないが比較的低く、これらの速い
エッチフグ4同様に望まれている。エツチング速度を向
上させるには、例えばRF力を増加させることKよシ幾
分エツチング速度は向上するが、逆KRP電力の熱への
変換による損失によりフォトレジストの劣化や変質が大
きくなり、を九v、cの増大Kによってデバイスへの損
傷も助長される結果となる。従って、現在これらの問題
点を避ける丸めエツチング速度を犠牲にしてもRF電力
をできるだけ下げて用いられているのが現状である。こ
の本質的な原因は、RFによゐグロー放電においては、
導入ガスのイオン化効率が1%以下という低効率Φ−m
という点に6る。これに対して、本発明者等は、最近R
Fのグロー放電に代シ、RF印加の電極下に永久磁石か
らなる磁場発生手段を設け、kLi’電力による電界と
直交する磁界を形成して電子を(電界)×・(磁界)方
向にドリフト運動させ、かつ、この電子軌道を閉回路と
することによって電子とガス分子との間の衝突解離を促
進して放電効率を向上させたマグネトロン放電を用い九
ド2イエッチング装置について提案を行り九。(例えば
、特願昭55−173821S$ 3回ドライプロセス
シンポジウム、P、69,1981.電気学会等参照)
第1図においてその装置の1例を説明する。同図におい
て、(1)は永久磁石であり、高周波電力(3)が接続
される非磁性材料からなる被エツチング物Ql装置O陰
極(6)の裏側に非接触の状態で配置されている。
Prior Art and Its Problems In recent years, integrated circuits have become increasingly finer, and even OL8I prototypes with minimum dimensions of 1 to 2 μm have been produced. For this microfabrication, a reactive gas such as CF4 is introduced into a reaction vessel that normally has parallel plate electrodes, and a shiburo discharge is generated by applying high frequency power (for example, 1336 MHz) to the electrode on which the sample is placed. Positive ions in the plasma are accelerated by the cathode drop voltage (hereinafter referred to as WOE) generated on the surface of the cathode (electrode to which high-frequency power is applied), and the ions are directly incident on the sample to cause an etching reaction. Reactive ion etching
Itching; RIE). but,
In RIM using parallel plate electrodes, for example, CF4 +
Nine sio! using Hl gas! The etching rate is at most 300-400λ/min, and the
It takes about 40 minutes to etch io, and in terms of productivity, this extremely low etch/etch rate is about 10 minutes.
001/min for several tens of minutes for a thickness of 1 μm, or for I'LIg of phosphorous-doped poly-8t, C
Using BrF3 (+C1*) gas, the etching rate is 5001/min, which is 8 minutes for a thickness of 40001 and 8 Ioz II, but it is relatively low and is desired similarly to these fast etching blowfish 4. . To improve the etching speed, for example, increasing the RF power may improve the etching speed somewhat, but the loss due to the conversion of the reverse KRP power into heat will increase the deterioration and deterioration of the photoresist, resulting in a The increase in K of v and c also results in more damage to the device. Therefore, the current situation is to reduce the RF power as much as possible even at the expense of rounding and etching speed to avoid these problems. The essential cause of this is that in glow discharge caused by RF,
Low efficiency Φ-m where the ionization efficiency of introduced gas is less than 1%
That's the point. In contrast, the present inventors have recently
Instead of F glow discharge, a magnetic field generating means made of a permanent magnet is provided under the RF applied electrode, and a magnetic field orthogonal to the electric field due to kLi' electric power is created to cause electrons to drift in the (electric field) x (magnetic field) direction. We proposed a nine-do-two etching device using magnetron discharge, which improves discharge efficiency by moving electrons and making the electron orbits a closed circuit to promote collisional dissociation between electrons and gas molecules. Nine. (For example, see Japanese Patent Application No. 55-173821 S$ 3rd Dry Process Symposium, P, 69, 1981. Institute of Electrical Engineers of Japan, etc.)
An example of the device will be explained in FIG. In the figure, (1) is a permanent magnet, which is placed in a non-contact manner on the back side of the cathode (6) of the device O to be etched, which is made of a non-magnetic material and is connected to the high frequency power (3).

壕九、永久磁石(1)は、全体として1方向に走査する
丸めのモータ0に連結されており、この走査系が配置さ
れている領域は、拡散ポンプ(4)によシ10→Tor
r 以下の高真空に排気されていて、この領域内での放
電を防止する手段がとられている。
The trench 9, permanent magnet (1) is connected to a round motor 0 that scans in one direction as a whole, and the area where this scanning system is placed is driven by a diffusion pump (4) 10→Tor.
It is evacuated to a high vacuum of less than r, and measures are taken to prevent discharge within this region.

1方、被エツチング分Q・が置れている領域(5)は、
可変コンダクタンスパルプαlを通して、メヵプ畢(1
41により、排気される。この様な装置構成にするとと
Kよって、マツチング回路を介して印加される高周波電
力により発生する陰極(6)上の直流電場INと、前記
永久磁石+1)によ多発生する磁場IBとを直交させる
ことができ、さらにこの直交電磁界の作用によ抄生成す
る非常に高密度のイブネトロン放電領域(8)を被エツ
チング物上で走査することが可能とな〉、従って、試料
を高速に、かつ、均一性良く工、チングすることが可能
となり九0例えば、s io、の場合には、CHF3/
H2混合ガスによシ、エツチング速度〜OB^ψin、
81に対する選択比は〜1G、tた、AIの場合には、
CI!/H2混倉ガスに混抄ガスツチング速度〜IDμ
m 、 8 i02 K対する選択比〉20倍、さらに
、P−s論争結晶シリコンの場合には、CI、ガスによ
〉、エツチング速度〜1.0μn7m1n、 8i0z
に対する選択比〉20惰が得られている。以上説明し九
様に1第1図の装置を用いることにより、高速、かつ、
下地材料に対する選択エツチングが可能となっ九、1方
、マグネトロン放電を応用した場合の異方性エツチング
達成に関しては、次に説明する様な重要な事実が発見さ
れている。すなわち、先述のマグネトロン放電には、r
f電力、圧力等により、第2図に示し九様に21[類や
放電モードが存在する0本発明者等による鋭意研究の結
果、第2図(a)のモード(強い励起光を伴−)大放電
の領域が、第1図におけるN−8間隙直上の放電路α力
の近傍に生じる)は、rf電力が大きい程、圧力が低い
程出現しやすく、また、その時のエツチング形状は、同
図において示し九様に、画直なエツチング鐘をもつ九異
方性エツチングとなるが、伽)のモード(その放電の励
起光は、(a)のモードに比較して弱く、ま、九、放電
領域は、Ql(IIJに見られる様に、放電路117)
の周辺に生じる)においては、完全な等方性エツチング
となることが判明し九、1方、第3図は、C12単体ガ
スで、P−添加多結晶シリコ/(a)とas02(b)
エツチング速度を圧力に対して示したものである。その
結果、8i02のエツチング速度は圧力の増加と共K(
イオンエネルギの減少)単調に減少するが、P−添加多
結晶シリコンのエツチング速度は逆に大きくな9、丁度
前記放電モード(鳳)伽)の遷移点において蛾大値とな
ることがわか−)た。従って、P−龜加多結晶シリコン
/840.選択比をできるだけ大きくする丸めには、そ
のエツチングをモードの4移点付近で行う必要がある。
On the other hand, the area (5) where the portion to be etched Q is placed is:
Through the variable conductance pulp αl,
41, the air is exhausted. With such a device configuration, the DC electric field IN on the cathode (6) generated by the high-frequency power applied via the matching circuit and the magnetic field IB generated by the permanent magnet +1) are orthogonal to each other. Furthermore, it is possible to scan the very high-density inetron discharge region (8) generated by the action of this orthogonal electromagnetic field on the object to be etched. In addition, it becomes possible to process and etch with good uniformity.For example, in the case of sio, CHF3/
With H2 mixed gas, etching speed ~OB^ψin,
The selectivity for 81 is ~1G, t, and in the case of AI,
CI! /H2 mixed warehouse gas mixing speed ~ IDμ
Selectivity to m, 8i02 K>20 times, and in the case of P-s crystalline silicon, etching rate ~1.0μn7m1n,8i0z by CI gas>
A selectivity ratio of >20 was obtained. As explained above, by using the device shown in Figure 1, high speed and
Selective etching of the underlying material has become possible; however, the following important facts have been discovered regarding the achievement of anisotropic etching when magnetron discharge is applied. That is, in the magnetron discharge mentioned above, r
As a result of intensive research by the present inventors, the mode shown in Fig. 2(a) (accompanied by strong excitation light ) The region of large discharge occurs near the discharge path α force directly above the N-8 gap in Fig. 1) is more likely to appear as the RF power is larger and the pressure is lower, and the etching shape at that time is as follows. As shown in the figure, it is an anisotropic etching with a sharp etching bell, but the excitation light of the discharge is weaker than in the mode (a). , the discharge area is Ql (as seen in IIJ, discharge path 117)
It was found that complete isotropic etching was obtained (occurring around the periphery of P-doped polycrystalline silicon/(a) and AS02(b) with C12 simple gas.
This figure shows the etching rate versus pressure. As a result, the etching rate of 8i02 increases with increasing pressure K(
It can be seen that although the ion energy decreases monotonically, the etching rate of P-doped polycrystalline silicon increases 9, reaching a maximum value just at the transition point of the discharge mode. Ta. Therefore, P-Silicone polycrystalline silicon/840. For rounding to maximize the selection ratio, it is necessary to perform the etching near the 4th transition point of the mode.

しかし、実際にこの付近でエツチングを行っていると、
例えば、エツチング中の基板、あるいは、陽陰の温度上
昇(2次電子が、陰極11面上の逆電界により加速され
て陽極へ衝突することによシ生じる)Kよる圧力変動の
九めに1急に、モード間遷移(a−bへ)を生じ、従っ
て、等方性エツチングとなることがあっ九。
However, when actually etching in this area,
For example, pressure fluctuations due to temperature rises in the substrate during etching or in the positive and negative regions (which is caused when secondary electrons are accelerated by the opposite electric field on the surface of the cathode 11 and collide with the anode) An abrupt inter-mode transition (from a to b) may occur, thus resulting in isotropic etching.

発明の目的 本発明は、エツチングの信頼性を高める拳を目的とする
OBJECTS OF THE INVENTION The present invention is directed to a fist that increases the reliability of etching.

発明の概要 本発明はガスとして反応性ガスと不活性ガスを導入し、
不活性ガスによるスペクトル光をモニターしながらエツ
チングするようにしたものである。
Summary of the invention The present invention introduces a reactive gas and an inert gas as gases,
Etching is performed while monitoring the spectrum of light emitted by an inert gas.

、壱明の効果 本発明に依れば、不活性ガスのスペクトル光を用いてモ
ニターしているのでエツチングの進行に左右されずにモ
ード間遷移の兆候を捕える事が出来、従って信親性良く
異方性エツチングを行なう発明の実施例 以下、図面を参照しながら、本発明の詳細な説明する。
According to the present invention, since the spectral light of an inert gas is used for monitoring, it is possible to detect signs of transition between modes without being affected by the progress of etching, and therefore, it is possible to detect differences with high reliability. Embodiments of the Invention Performing Directional Etching The present invention will now be described in detail with reference to the drawings.

第4図は、第1図の真空答器の上向にスリット状の窓(
財)を設け、例えば、光ファイバの先端(ハ)が/領域
からの光を光ファイバを通してモノクロメータに導き、
所定波長光を選択して光電子倍管、信号増幅器、記録針
の職に接続して、放電の状態を測定できる様にしたもの
である。第5図は、実際11C、C12KArを1%導
入した時の、圧力変動に対するAr(75041)の波
長の光を測定したものであシ、放電開始の圧力0.1T
orrから圧力上昇に伴ないArに起因する光強度は急
激に減少し、0.2 To r r付近においてl定値
となる。このスペクトルIII変化は、先述のモード遷
移の観察結果に一致するものであり、図中人における1
定のスペクトル強度は、圧力の比較的高いモード伽)か
らの光もれ蓋に対応する。また、例えば、リン0や添加
多結晶7リコ/1にエツチングし友時のエツチング形状
とAr (7504λ)スペクトル強度の関係を詳細に
調べることにより、Arスペクトルの相対強度が、放電
開始Q(第2図(1)モード)における値の約V2の所
(ロ)で、アングカットを生じることが明らかとなった
。第6図は、ブロック図であり、(至)は、第1図に示
し九様なマグネトロン放電を応用したエツチング装置、
(至)は排気手段、(2)は、第1図a$の様な開口面
積が変化する可変コンダクタンスパルプ、(至)は光7
アイパに連結され大分光器、Oυは記憶装置、勾は整合
回路、(至)は高周波電力である。を九、(至)は真空
容器(至)への導入ガスのマスフローコントローラであ
り、ガス流量は、このマスフローコントローラによシ常
に1定に保たれている。ガス流量Qと排気手段(至)の
実効的な排気速度S1その時の真空容器内の圧力20間
には、Q=SPなる関係が存在する。従って何らかの原
因による圧力変動は実効的な排気速度を変化させるが、
第5図に示し友様に、反応性ガスと同時に添加した不活
性ガス、例えば、Arによる波長7so4Nの光強度ス
ペクトルの相対直が、設定値のJ 1/2になった時点
で、可変コンダクタンスパルプに対して、さらにバルブ
を開く様負の帰還信号が送られれば、真空容器内の圧力
Pt1l定に保たれ、従ってガス圧力の上昇が防止され
異方性エツチングが達成さnる。前記可変コンダクタン
スの命令は、予め、第5図のデータを入力させである記
憶装置よシ発せられる。
Figure 4 shows a slit-shaped window (
For example, the tip of the optical fiber (c) guides the light from the area through the optical fiber to the monochromator,
The state of discharge can be measured by selecting light of a predetermined wavelength and connecting it to a photomultiplier, a signal amplifier, and a recording needle. Figure 5 shows the measurement of light at the wavelength of Ar (75041) with respect to pressure fluctuations when 1% 11C, C12KAr was actually introduced, and the pressure at the start of discharge was 0.1T.
As the pressure increases from orr, the light intensity caused by Ar decreases rapidly and reaches a constant value of l around 0.2 Torr. This spectrum III change is consistent with the observation result of the mode transition mentioned above, and in the figure, 1 in humans.
A constant spectral intensity corresponds to light leakage from a relatively high pressure mode. For example, by etching phosphorus 0 or doped polycrystal 7 li/1 and examining the relationship between the etching shape and the Ar (7504λ) spectrum intensity in detail, the relative intensity of the Ar spectrum can be It has become clear that an angle cut occurs at approximately V2 (b) of the value in Figure 2 (1) mode). FIG. 6 is a block diagram, and (to) the etching device shown in FIG.
(to) is the exhaust means, (2) is the variable conductance pulp whose opening area changes as shown in Fig. 1 a$, and (to) is the light 7.
A large spectroscope is connected to the IPA, Oυ is a storage device, gradient is a matching circuit, and (to) is a high frequency power. 9. (to) is a mass flow controller for the gas introduced into the vacuum container (to), and the gas flow rate is always kept constant by this mass flow controller. A relationship Q=SP exists between the gas flow rate Q, the effective pumping speed S1 of the pumping means (toward), and the pressure 20 in the vacuum vessel at that time. Therefore, pressure fluctuations due to any cause will change the effective pumping speed, but
As shown in Figure 5, when the relative directivity of the light intensity spectrum at wavelength 7so4N due to an inert gas, for example Ar, added at the same time as the reactive gas, the variable conductance If a negative feedback signal is sent to the pulp to further open the valve, the pressure inside the vacuum container Pt11 is kept constant, thus preventing the gas pressure from increasing and achieving anisotropic etching. The variable conductance command is issued in advance from a storage device into which the data shown in FIG. 5 is input.

本発明で被エツチング物のエツチングに直接関与する反
応性のガスに関連した光の波長を追尾しない理由は、反
応性ガスはエツチング反応の進行とともに、その相対強
度も変化するためであり、モパーエッチングに対して影
響を受は難い。この実施例においては、Arの場合につ
いて説明したが、He 、 Ne等他の不活性ガスでも
同様の結果が得られ九。
The reason why the present invention does not track the wavelength of light related to the reactive gas that is directly involved in etching the object to be etched is that the relative intensity of the reactive gas changes as the etching reaction progresses. It is difficult to be affected by this. In this example, the case of Ar was explained, but similar results were obtained with other inert gases such as He and Ne.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マグネトロン放電を用い九高速エッチング装
置の断面図、第2図(a) (b)は、モード遷移を説
明するための図、第3図は、C12によるP −dop
ed −poly−8i 、 8102の圧力とエツチ
ング速度を説を 明するための特性図、第4図は、本発明の詳細な説明す
る為の上面図、第5図は、圧力変動に伴うAr (75
04^)の光強度スペクトルの変化を示す特性図、第6
図は本発明の実施例を説明する為のブロック図である0
図において、(1)・・・永久磁石、(2)・・・水冷
手段、(3)(2)・・・高周波電力、(411141
(至)・・・排気手段、(5)・・・エツチング領域、
(6)・・・陰極、(7)・・・ガス導入口、(8)・
・・マグネトロン放電領域、19)・・グロー放電領域
、OQ・・・被工、チング物、(lυ・・・静電チャッ
ク、(I′IJ・・・テフロン、03・・・モータ、α
!19(2)・・・可変コンダクタンスパルプ、(1e
・・・N−81IIIJ隙上に集中するマグネトロン放
電(モード(1) ) 、C1η・・・放電路、111
(IL・・N−8間隙の周辺に集中するマグネトロン放
電((モードΦ))、1(至)・・・レジスト、Ql)
・・・P−doped −poly −81、■・−3
i02、(ハ)・・・Si、(至)・・・スリット窓、
(ハ)・・・光フアイバ先端、(至)・・・真空容器、
額・・・型合回路、01)・・・記憶装置、(至)・・
・分光S、W・・・マスフローコントローラー代理人 
弁理士 石  1) 長 (d)                (ムタtA3
図 とIz斤力(Tθrト) 第4図 第5図 2 ’JL力(TDPトノ
Fig. 1 is a cross-sectional view of a high-speed etching device using magnetron discharge, Fig. 2 (a) and (b) are diagrams for explaining mode transition, and Fig. 3 is a P-dop etching device using C12.
A characteristic diagram for explaining the pressure and etching rate of ed-poly-8i, 8102, FIG. 4 is a top view for explaining the present invention in detail, and FIG. 75
Characteristic diagram showing changes in the light intensity spectrum of 04^), No. 6
The figure is a block diagram for explaining an embodiment of the present invention.
In the figure, (1)...Permanent magnet, (2)...Water cooling means, (3) (2)...High frequency power, (411141
(To)...Exhaust means, (5)...Etching area,
(6)...Cathode, (7)...Gas inlet, (8)...
... Magnetron discharge area, 19)... Glow discharge area, OQ... Workpiece, Ching object, (lυ... Electrostatic chuck, (I'IJ... Teflon, 03... Motor, α
! 19(2)...Variable conductance pulp, (1e
...Magnetron discharge concentrated on the N-81IIIJ gap (mode (1)), C1η...discharge path, 111
(IL... Magnetron discharge concentrated around the N-8 gap ((mode Φ)), 1 (to)... resist, Ql)
...P-doped -poly -81, ■・-3
i02, (c)...Si, (to)...slit window,
(c)...Optical fiber tip, (to)...vacuum container,
Forehead...Model combination circuit, 01)...Storage device, (to)...
・Spectroscopy S, W...mass flow controller agent
Patent Attorney Ishi 1) Long (d) (MutatA3
Figure and Iz force (Tθr) Figure 4 Figure 5 2 'JL force (TDP force)

Claims (1)

【特許請求の範囲】 陽極、及び高周波電力が印加される陰極を備え友真空容
11にガスを導入し、禎エツチング物が載置される陰極
の裏側に設けられた閉ループ状の磁極間−を有する磁場
尭生手段により陰極表面上に磁場を形成してプラズマを
得、前記被エツチング物をエツチングするに際し、前記
ガスとして反応性ガスと不活性ガスを導入し、不活性ガ
スOスペル クトV光強度をモニターしてガス圧力の上昇を紡出しな
がらエツチングを行なう事を特徴とするドライエツチン
グ方法。
[Scope of Claims] A gas is introduced into a friendly vacuum chamber 11 which is equipped with an anode and a cathode to which high-frequency power is applied, and a closed loop between magnetic poles is provided on the back side of the cathode on which the etching material is placed. When etching the object by forming a magnetic field on the surface of the cathode using a magnetic field generating means and etching the object to be etched, a reactive gas and an inert gas are introduced as the gases. A dry etching method characterized by performing etching while monitoring the increase in gas pressure.
JP337582A 1982-01-14 1982-01-14 Dry etching method Pending JPS58122730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP337582A JPS58122730A (en) 1982-01-14 1982-01-14 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP337582A JPS58122730A (en) 1982-01-14 1982-01-14 Dry etching method

Publications (1)

Publication Number Publication Date
JPS58122730A true JPS58122730A (en) 1983-07-21

Family

ID=11555601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP337582A Pending JPS58122730A (en) 1982-01-14 1982-01-14 Dry etching method

Country Status (1)

Country Link
JP (1) JPS58122730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133156A (en) * 1989-07-20 2000-10-17 Micron Technology, Inc, Anisotropic etch method
WO2014054499A1 (en) * 2012-10-04 2014-04-10 株式会社東芝 Magnetic sheet and display using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133156A (en) * 1989-07-20 2000-10-17 Micron Technology, Inc, Anisotropic etch method
US6461976B1 (en) * 1989-07-20 2002-10-08 Micron Technology, Inc. Anisotropic etch method
US6686295B2 (en) 1989-07-20 2004-02-03 Micron Technology, Inc. Anisotropic etch method
US7375036B2 (en) 1989-07-20 2008-05-20 Micron Technology, Inc Anisotropic etch method
WO2014054499A1 (en) * 2012-10-04 2014-04-10 株式会社東芝 Magnetic sheet and display using same

Similar Documents

Publication Publication Date Title
US8968588B2 (en) Low electron temperature microwave surface-wave plasma (SWP) processing method and apparatus
JP3033104B2 (en) Etching method
US6165377A (en) Plasma etching method and apparatus
US7989364B2 (en) Plasma oxidation processing method
US4521286A (en) Hollow cathode sputter etcher
US20020125207A1 (en) Plasma processing method
TW200941583A (en) Methods and systems for removing a material from a sample
D’Emic et al. Deep trench plasma etching of single crystal silicon using SF6/O2 gas mixtures
JPS61136229A (en) Dry etching device
Tuda et al. Large-diameter microwave plasma source excited by azimuthally symmetric surface waves
JPS58122730A (en) Dry etching method
JP4238050B2 (en) Plasma processing apparatus and processing method
JP4653395B2 (en) Plasma processing equipment
Pu Plasma Etch Equipment
JP4142492B2 (en) Plasma processing method
TWI645440B (en) Plasma processing device, thermal electron generator, plasma ignition device and method
JP3516741B2 (en) Plasma processing method
Kraft et al. Etching 0.35 μm polysilicon gates on a high‐density helicon etcher
JPS60120525A (en) Method for reactive ion etching
JP3418045B2 (en) Dry etching method
JP3898612B2 (en) Plasma processing apparatus and processing method
JPH05144773A (en) Plasma etching apparatus
JPH11312666A (en) Device and method for generating cold electron plasma for etching
JP2000012529A (en) Surface machining apparatus
JPH06181190A (en) Fabrication of semiconductor device