JPS58121834A - Diversity communication system - Google Patents

Diversity communication system

Info

Publication number
JPS58121834A
JPS58121834A JP561182A JP561182A JPS58121834A JP S58121834 A JPS58121834 A JP S58121834A JP 561182 A JP561182 A JP 561182A JP 561182 A JP561182 A JP 561182A JP S58121834 A JPS58121834 A JP S58121834A
Authority
JP
Japan
Prior art keywords
line
station
signal
speed
earth station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP561182A
Other languages
Japanese (ja)
Other versions
JPS6326931B2 (en
Inventor
Michio Nakanishi
中西 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP561182A priority Critical patent/JPS58121834A/en
Publication of JPS58121834A publication Critical patent/JPS58121834A/en
Publication of JPS6326931B2 publication Critical patent/JPS6326931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To attain a communication system with improved quality of reception signals through the use of remarkable improvement of a reception line margin, by changing lines into those having low communication transmitting speed, when the weather conditions are deteriorated for one earth station and the reception signals are deteriorated with the deteriorated transmission conditions. CONSTITUTION:A quality monitor of a high speed receiver 41 detects the deterioration in quality at first and the state is informed to an earth station 100 through a reverse route from an earth station 101 to the station 100 (using a low speed line) that the deterioration of quality is caused. The station 100 receives information from the station 101, selects data signals for the station 101 (the earth station 100 transmits not only signals for the station 101 but also signals for the other earth stations normally), and since only the signal is switched for a low speed line is switched by switching a low speed line transmitter 50 with a signal switching device 30 (TDM system operation is done in case of Figure), the signal switching device 30 is switched to the transmitter for the time slot corresponded with the corresponding TDM multiplex signal.

Description

【発明の詳細な説明】 この発明は通信衛星を使用した通信回線のダイパシチ通
信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diversity communication system for communication lines using communication satellites.

従来この種の通信方式とし゛C第1図に示すものがあっ
た。第1図は説明簡単化の為、通信の片側リンクを示す
。図に於いて、(1)は送信地球局、12)は送信地球
局+1)に設置される送信装置を示す。(3)は通信衛
星、(4)はグイバシチ地球局の主局、イ5)はダイバ
シチ地球局の副局、(6)は主局(4)に設置される受
信装置、(7)は副局(5)に設置される受信装置を示
す。又(8)は々゛イバシチ地球局の主局(4)と副局
(6)間を結ぶサイトリンクで19)は主局、副局より
送出されてくる受信信号の品質を甑視し品質の良い万の
信号ルートを選択する信号切換え器である。
Conventionally, there has been a communication method of this type as shown in FIG. 1. In order to simplify the explanation, FIG. 1 shows a one-sided communication link. In the figure, (1) indicates a transmitting earth station, and 12) indicates a transmitting device installed at the transmitting earth station +1). (3) is a communication satellite, (4) is the main station of the Guibashichi earth station, A5) is the substation of the Daibasichi earth station, (6) is the receiving device installed in the main station (4), and (7) is the substation. A receiving device installed at station (5) is shown. In addition, (8) is a site link that connects the main station (4) and sub-station (6) of the Ibashichi Earth Station. This is a signal switcher that can select from 10,000 good signal routes.

従来のダイバシチ通信方式は第1図に示すスペースダイ
バシチ方式のほか、地tマイクロ波通信回線や、見通し
外通側回線で用いられる周波数ダイバシチ方式がある。
Conventional diversity communication methods include the space diversity method shown in FIG. 1, as well as the frequency diversity method used in ground-based microwave communication lines and non-line-of-sight lines.

次いで動作について説明する。通常送信地球局11)に
入力された通信信号は送信装置(2)ル経由して地球局
(1)のアンテナより静止軌道(又は移動軌道)に位置
する通信衛星(3)に送出される。衛星(3)で受信さ
れた信号は衛星内部で周波数変換や増幅(方式によつ°
Cは再生処理される)の後地球に向けて再送信する。地
球局(4) 、 +5)はそれぞれ衛星(3)より送出
された信号を同時に受信し、それぞれの局内に没11さ
れCいる受信装fjf (61、(7)により復調受信
信号をlyす出し主局(4)は直接、受信信号切換器+
9)に、又副局(+1)はサイトリンク(8)を経由し
て同じく受信信号切換器(9)に導かれる。受信信号切
換器(9)は両方の受信信号の品質(主として信号対雑
音比)を監視し品質の高い方を選択し通信信号出力とし
°C送出する。
Next, the operation will be explained. Normally, a communication signal input to a transmitting earth station 11) is sent via a transmitting device (2) from an antenna of an earth station (1) to a communication satellite (3) located in a geostationary orbit (or a moving orbit). The signal received by the satellite (3) undergoes frequency conversion and amplification (depending on the method) inside the satellite.
C is regenerated) and then retransmitted to Earth. The earth stations (4) and +5 each simultaneously receive the signals transmitted from the satellite (3), and output the demodulated received signals by receivers fjf (61, (7)) installed in each station. The main station (4) is directly connected to the receive signal switch +
9), and the substation (+1) is also guided to the reception signal switch (9) via the site link (8). The received signal switch (9) monitors the quality of both received signals (mainly the signal-to-noise ratio), selects the one with higher quality, and sends it out as a communication signal output.

以上の方式に°C運用されるグイバシチ通信方式は定常
状態では主局(4)、副局(5)の受信状態はほぼ同等
と設定され°Cいるため受信信号の品質は両者に大きな
差はない。−万衛星(3)より送出された信号の受信品
質はそれぞれの地球局の地域の天候に依存するためいず
れかの受信地球局付近の天候(主とし”C降雨、降雪に
よる)により受信信号品質が変化する。このため受信信
号切換器19)は常時両方の受信信号を常時監視し、−
万の受信信号が気象条件により劣化した場合には品質良
好な方の受信う 信号を選択し常に高品質の信号を出力するよう動作する
In the Guibashichi communication system operated by the above method, the reception conditions of the main station (4) and the sub station (5) are set to be almost the same in steady state, so there is no big difference in the quality of the received signal between the two. do not have. - The reception quality of signals transmitted from 10,000 satellites (3) depends on the weather in the area of each earth station, so the quality of the reception signal may vary depending on the weather (mainly due to rain and snowfall) near any receiving earth station. For this reason, the received signal switch 19) constantly monitors both received signals, and -
In the event that 10,000 received signals deteriorate due to weather conditions, the receiver selects the received signal with better quality and operates to always output a high quality signal.

以上のような衛星を介したスペースダイバシチ通信方式
に於いCは、2つの地球局間の牟離を通常200 &I
l+以、I:111Iせば気象条件の相関が小さくなる
ことより、大体の場合200に11前後の距離をとつC
いる。
In the above-mentioned space diversity communication system via satellite, C usually reduces the distance between two earth stations by 200 &I.
l+, I:111I, the correlation of weather conditions becomes smaller, so in most cases C takes a distance of around 11 to 200.
There is.

従来の衛星を介したグイパシチ通信方式は主としてスペ
ースグイバシチ方式を以上のように構成して用い°Cい
るので、2個の性能の傭だ地球局を設置しなければなら
ず、又この2つの地球局間を別の地1回線でサイトリン
クを設置することが必要で非常に大がかりなシステム構
成となる欠点があった。
Since the conventional communication system using satellites mainly uses the space communication system configured as described above, it is necessary to install two earth stations with high performance, and these two This system had the disadvantage of requiring a site link to be established between two earth stations using a separate earth line, resulting in a very large-scale system configuration.

また、固波敬グイバシチ通信方式は伝搬形態が見通し内
通信であることや、衛星自身が多固波の中継器を塔載し
得ないこともあり実現不可能である。
In addition, the solid wave communication system is not possible because the propagation mode is line-of-sight communication, and the satellite itself cannot mount multiple radio wave repeaters.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので2つの地球鴨を用いず、1つの地球
局で気象条件が悪化し伝搬条件劣化に伴ない受信信号が
劣化した場合、通信伝送速度の低−回線に切換えること
により、受信回線マージンが大きく改鋳できることを利
用し受信信号品質改善が行なえる通信方式を提供するこ
とを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional system as described above, and instead of using two earth stations, it is possible to avoid the use of two earth stations when the received signal deteriorates due to worsening weather conditions and deterioration of propagation conditions at one earth station. It is an object of the present invention to provide a communication system that can improve received signal quality by utilizing the fact that the reception line margin can be widened by switching to a line with a lower communication transmission speed.

以下、この発明の一実施例を図につ0゛C説明する。第
2図は一実施例を示し、説明簡単化のため片側リンクの
みを示し、又、ディジタルデー脅回線への応用例を示す
、第2図においC,+113は地球局に投首される各種
データ毎(データの種類、データ速度毎)に設けられる
通信端末装置、(1)は衛星回線の通信方式に合せ°C
信号を処理、多l化する信号多重化装!(図の場合はT
DM (時分割)多重装置)、(1)は回線切換器で、
衛星回線へ送出するデータ各lチYンネル又は1データ
スロツト毎に信号ルートを選択機能を有する。に)は地
球局(100)に設置される高速度回線用送信機、輪は
同じく地球局(100)に設置される低速度回線用受信
機、+7t1は高速イの衛星回線、−は低速度の衛星回
線、(3)は衛星を示す。−万(101)は受信地球局
、Qυと611はそれぞれ地球局(101)に設置され
る高速If aび低速度回線用受信機、0■は回線切換
器で送信用と同様受信データの各lチVンネル又はlデ
ータスロット毎に受信機の出力ルートを選択する機能を
有する。Ql)は多重化信号(図の場合はTDM多重信
号)を非多重化する装置、Ql)は各種データ毎に設け
られる通信端末装置である。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Figure 2 shows one embodiment, showing only one-sided link to simplify the explanation, and also shows an example of application to a digital threat line. Communication terminal equipment installed for each data type (data type, data speed), (1) according to the communication method of the satellite line °C
A signal multiplexing device that processes and multiplexes signals! (T for the figure
DM (time division multiplexing device), (1) is a line switch,
It has a function to select a signal route for each data channel or data slot to be sent to the satellite line. ) is a high-speed line transmitter installed at the earth station (100), the ring is a low-speed line receiver also installed at the earth station (100), +7t1 is a high-speed satellite line, - is a low-speed line (3) indicates the satellite. - 101 is a receiving earth station, Qυ and 611 are high-speed Ifa and low-speed line receivers installed at the earth station (101), respectively, and 0■ is a line switching device for receiving data as well as transmitting. It has a function to select the output route of the receiver for each channel or data slot. Ql) is a device that demultiplexes a multiplexed signal (TDM multiplexed signal in the case of the figure), and Ql) is a communication terminal device provided for each type of data.

第2図に於い°C1地球局(100)側に入力された通
信信号(データ信号)は端末装置f萌を経゛C多重化装
置゛(7)により他のデータ信号と一諸に多重化され(
図の場合はTDM方式故各タイムスロット毎に配列され
る)、定常時は信号切換器(至)は高速度回線用送信機
叫を選択しCいるように設定されており、高速度回線用
送信機−を通じ゛C衛星(3)へ送出されCいる。−万
受信地球1m(lol)も定常時は高速ツ衛星回線の信
号を受は窩速闇回線用受信#I(2)を経由し°C信号
を受信し、信号切換器C1])を経゛C非多重化装置Q
りに′C各タイムスロット毎のデータを分解し゛C所定
の端末装置Qυに出力され、端末装置aυの出力データ
はそれぞれの衛星よりの受信データ信号とし゛C送田す
る。
In Figure 2, the communication signal (data signal) input to the C1 earth station (100) passes through the terminal device f and is multiplexed with other data signals by the C multiplexer (7). (
(In the case of the figure, because it is a TDM system, it is arranged for each time slot), and during normal operation, the signal switch (to) is set to select the transmitter signal for high-speed lines. It is transmitted to the C satellite (3) through the transmitter. - 10,000 reception earth 1m (lol) also receives high-speed satellite line signals during normal operation, receives °C signals via high-speed dark line reception #I (2), and passes through signal switch C1]).゛C demultiplexer Q
Then, the data for each time slot is decomposed and outputted to a predetermined terminal device Qυ, and the output data from the terminal device aυ is transmitted as a received data signal from each satellite.

以上片(all ’Jシンクつい°C述べたが、地球局
(1G1)から地球局(100)への逆側リンクも同様
にし°C通冨運用される。
As mentioned above, the reverse link from the earth station (1G1) to the earth station (100) is operated in the same way.

次に地球局(101)付近の気象状態が変化し、地球局
(101)に於ける衛星(3)よりの高速回線の受信状
態が態化し、受信信号品質が劣化した場合の動作につい
゛C説明する。
Next, regarding the operation when the weather conditions near the earth station (101) change, the reception status of the high-speed line from the satellite (3) at the earth station (101) changes, and the quality of the received signal deteriorates. explain.

地球局(101)に設置されている各受信信号装置θυ
、 1511それぞれには受信信号品質監視機能を有し
Cおり、これにより常時受信信号の品質を監視しCいる
。まず、高速度受信機(ロ)の品質監視装置が品質劣化
を検出し、その状況を地球局(101)から地球局(1
00)への逆ルート回線を通じ1” (低速回線を用い
る)地球局(100)に高速度回線に品質劣化か生じt
:ことを連絡する。地球局(100)では地球fi (
101)よりの情報を受けとり、ただちに地球JM3(
101)向けのデータ信号を選び出しく通常地球局(1
0G)は単に地球局(101)向けの信号を送出しl 
  Cいるtごはでなく他の地球局の信号も送出し°C
いる)その信号のみを低速回線用送信機■に信号切換器
ωを用いて切換える(図の場合はTDM方式による運用
を行なつ°Cいる故対応するTDRI多重化信号の対応
するタイムスロットの間だけ信号切換器−が送信機員の
方に切換えられることになる)。
Each receiving signal device θυ installed at the earth station (101)
, 1511 each has a received signal quality monitoring function, thereby constantly monitoring the quality of the received signal. First, the quality monitoring device of the high-speed receiver (b) detects quality deterioration, and the situation is reported from the earth station (101) to the earth station (101).
1" (using a low-speed line) through the reverse route line to 00), quality degradation may occur on the high-speed line to earth station (100).
: To inform you of something. At the earth station (100), the earth fi (
101) and immediately sends it to Earth JM3 (
A normal earth station (101) that selects data signals for
0G) simply sends out a signal for the earth station (101).
It also sends out signals from other earth stations, not just from here.°C
) Switch only that signal to the low-speed line transmitter ■ using the signal switch ω (in the case shown, the operation is based on the TDM system, so between the corresponding time slots of the corresponding TDRI multiplexed signal) (only the signal switch will be switched to the transmitter).

以上により地球局(101)向けの送出信号はすべ°C
低速回線に移され、地球局(101)は地球局(Zoo
 )からの信号はすべ゛CC低照度回線経由し°C低速
度回線用受信機団を用い°C受信することができる。
As a result of the above, the transmission signal for the earth station (101) is all °C.
The earth station (101) was moved to a lower speed line, and the earth station (101) became the earth station (Zoo).
) can all be received via the CC low-light line using a receiver group for the °C low-speed line.

この場合低速闇回線用受信機は、高速度回縁用受信様よ
りもデータ伝送速度に対応し゛C受信機の受信帯域が狭
くC良いため、地球局(101)付近の気象条件が変化
し伝播状況が劣化しCも高速度回線の品質劣化よりも劣
化が11自著ではない。(少なくともデータのヒツトレ
ートの比に対応したC/N比だけは回線−断に対するマ
ージンがある)。
In this case, the receiver for the low-speed dark line supports data transmission speeds better than the receiver for the high-speed line.Because the reception band of the C receiver is narrow and the C receiver is good, the weather conditions near the earth station (101) change and the propagation propagates. The situation has deteriorated and the quality of C has deteriorated more than the quality of high-speed lines. (At least the C/N ratio corresponding to the data hit rate ratio has a margin against line disconnection).

なお以上の動作を行なう高速度、低速朋回線の送/受信
データの関係の一例を第8図に、又、衛星中継器(トラ
ンスポンダ)の使用状況を第4図に示す。第8図は真速
回線、低速回線のバースト構成例を示している。
An example of the relationship between the transmission/reception data of the high-speed and low-speed home lines that perform the above operations is shown in FIG. 8, and the usage status of the satellite repeater (transponder) is shown in FIG. FIG. 8 shows an example of a burst configuration for a true speed line and a low speed line.

第8図に於’Cs Tl :基本フレーム長(see)
T2:超フレーム長(sec) T、/2  :群フレーム長(sec)C:基準バース
ト Dl、 D、 、・・・Dk:データバーストP、 、
 P、・・・Pk:基本フレームCR:搬送波再生用信
号 BTR:ビット同期再生用信号 UW:ユニークリード信号 DATA : 1024ビツトのデータ信号AUX :
パリテイチェ2ツク用信号 である。高速、低速回線の違いは基本フレーム内のデー
タバースト数が異なる事にある。
In Figure 8, 'Cs Tl: Basic frame length (see)
T2: Super frame length (sec) T, /2: Group frame length (sec) C: Reference burst Dl, D, ,...Dk: Data burst P, ,
P,...Pk: Basic frame CR: Signal for carrier wave reproduction BTR: Signal for bit synchronized reproduction UW: Unique read signal DATA: 1024-bit data signal AUX:
This is a signal for two parity checks. The difference between high-speed and low-speed lines is that the number of data bursts in a basic frame is different.

それぞれの回線の信号伝送速度(ビットレート)は下式
によつ°C定まる。
The signal transmission speed (bit rate) of each line is determined by the following formula.

T2 /データのビット数(1024ビツト)XDm 
 (b/s)ここでDm:基本フレーム内の最大バース
ト数従つ゛C1高速回線と低速回線のビットレートの差
はそれぞれの回線にアクセスする最大バースト数を変え
て選定することができる。又定常状態の時高速同線は地
球局すべてからの送出されるデータをまかなうだけのバ
ーストスロット数を必要としこの最大バーストスロット
数は次式によって与えられる。
T2/Number of data bits (1024 bits)XDm
(b/s) where Dm: Maximum number of bursts in a basic frame (C1) The difference in bit rate between the high-speed line and the low-speed line can be selected by changing the maximum number of bursts accessing each line. Also, in a steady state, the high-speed parallel line requires a number of burst slots sufficient to cover the data transmitted from all the earth stations, and this maximum number of burst slots is given by the following equation.

Dm X 2Pn ここで Pn: 一群フレームに含まれる基本フレーム
の数 第4図は本発明の実施の具体例としrA−Dの4地球局
が1つの通信衛星(3)を本発明の方式にて運用してい
る状態を示す。図の中の(至)は高速衛星回線、−は低
速衛星回線を示し、又、((イ)は高速回線の衛星トラ
ンスポンダに於けるスペクトラムを、(ロ)は低速回線
のスペクトラムを示す。ピ)と(ロ)は衛星システムに
より別個のトランスポンダになることもありうる。(ハ
)は高速回線の時間軸上の基準バースト信号、に)はデ
ータバースト信号を示す。又(ホ)は低速回線の基準バ
ーストを、(へ)は低速回線のf’ −41バー xト
を示す。τ1は高速回線のデータバースト信号長でτ2
は低速回線のデータバースト信号である。本発明の目的
のためにτ2はTlの約10倍に設定される、 以上、通信衛星のTDMA回線に本発明を適用した例に
ついC述べたが、本方式は単にディジタル回線にとどま
らず、SCPC−FDMA回線にも適用可能で、低速回
線用とし°r SCPC−FDMA回線を用い°Cも良
い。第6図にこの実施例を示す。第6図は低速回線にS
CPC−FDM回線を用いる場合の回線構成例を示しC
おり、A−Dの4地球局構成例を示しCいる。rIlは
高速回線、−〜(SO//りは低速回線のSCPC−F
DMの回線を示す。ダイバシチ用scpc−FDM回線
は衛星トランスポンダにf、〜fnのチャンネルスロッ
トを用意し、回線の要求に応じて空きスロットを用い゛
C低速回線を構成する。
D m Indicates the operating status. In the figure, (to) indicates a high-speed satellite line, - indicates a low-speed satellite line, ((a) indicates the spectrum in the satellite transponder of the high-speed line, and (b) indicates the spectrum of the low-speed line. ) and (b) may be separate transponders depending on the satellite system. (c) shows a reference burst signal on the time axis of a high-speed line, and (b) shows a data burst signal. Also, (e) shows the reference burst of the low-speed line, and (f) shows the f'-41 burst of the low-speed line. τ1 is the data burst signal length of the high-speed line and τ2
is a data burst signal on a low-speed line. For the purpose of the present invention, τ2 is set to approximately 10 times Tl. Above, we have described an example in which the present invention is applied to a TDMA line of a communication satellite, but this method is applicable not only to digital lines but also to SCPC. - It is also applicable to FDMA lines, and is suitable for low-speed lines.°C is also suitable for use with SCPC-FDMA lines. FIG. 6 shows this embodiment. Figure 6 shows S for low-speed lines.
C shows an example of line configuration when using CPC-FDM line.
C shows an example of the configuration of four earth stations A to D. rIl is a high-speed line, -~(SO//ri is a low-speed line SCPC-F
Shows the DM line. For the diversity scpc-FDM line, channel slots f, to fn are prepared in the satellite transponder, and a low-speed line is constructed using empty slots according to the line request.

第6図はSCPC−FDMを低速回線に用いた場合の地
球局の構成例を示す。第6図に於’で(810)は各挿
データ端末装置、(82G)は高速回線用多重化装置、
(880)は回線切換器、(840)は高速回線送信機
、(850)はSCPC−FDM送信装置で必要チャン
ネル ル数が設置される。(86G)は送信地球局、(870
)は高速衛星回線、(sso)は低速SCPC−FDM
回線、(89G )は低速回線接続用接続送信端末装置
である。
FIG. 6 shows an example of the configuration of an earth station when SCPC-FDM is used for a low-speed line. In Fig. 6, (810) is each inserted data terminal device, (82G) is a high-speed line multiplexing device,
(880) is a line switch, (840) is a high-speed line transmitter, and (850) is an SCPC-FDM transmitter, and the necessary number of channels are installed. (86G) is the transmitting earth station, (870
) is high-speed satellite line, (sso) is low-speed SCPC-FDM
The line (89G) is a connection transmitting terminal device for low-speed line connection.

(410)は受信地球局(46りに設置される受信デー
タ端末装置、(420)は高速回線用非多重化装置11
、(480)は受信側信号切換器、(440)は高速回
線用受信機、(450)は低速回線用SCPC−FDM
受信機、(460) lよ受信地°球局、(490)は
低速回線接続用接続受信端末装置である。
(410) is a receiving data terminal device installed at the receiving earth station (46), (420) is a high-speed line demultiplexing device 11
, (480) is a receiving side signal switcher, (440) is a high-speed line receiver, (450) is a low-speed line SCPC-FDM
The receiver (460) and the receiving earth station (490) are connection receiving terminal devices for low-speed line connection.

以上のように、この発明によれば従来2台の地球局を用
いるか、又はダイパーシティ用とし°C別の地上回線網
を用い°Cいたのを、1つの地球局でダイバシチ効果を
持たせた回線を構成したので装置が安価にでき1.構成
も簡単にできる効果がある。
As described above, according to the present invention, instead of conventionally using two earth stations or using separate terrestrial line networks for diversity, a single earth station can have a diversity effect. 1. The equipment can be made inexpensive because the circuit is configured with It also has the advantage of being easy to configure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−は従来の方式を示す説明図、第2図は本発明の一
実施例による装置の説明図、第8図は本発明の一実施例
における衛星回線の信号状況を示す説明図、第4図は本
発明の実施例における装置を説明する説明図、第5図〜
第6図は本発明の応用例を示す説明図である。 図に於て、(3)−・・衛星、(10、Or) 、 C
810) 、 (410)・・・端末装置、(ホ)・・
・信号多重化装置、(2)・・・信号多重化装置、(7
)、6η、 (880)、(480)・・・回線切換器
、−・・・高速回線送信機、帽・・低速度回線用送信機
、111・・・低速度回線用受信機、l+111・・・
低速度回線用受信機、(100)、(860)・・・送
信用地球局、(101)、(460)・・・受信用地球
局、gl 、 (87G)・・・高速衛星回線、輸。 (80’)、(80’)、(80”)、(88G)・・
・低速衛星回線。 代理人  易 野 信 − 第1図 3 湧tS4き5出ノア 第2図 通 僕イきビテ入アブ               
           涌ヂ94暮号:、、7第!3図 第、!図 第5図 第(1図 手続補正書(自発) 4”1.;’l庁長官殿 1、 1Gイ′1の表示     特願昭87−561
1  号2、発明の名称 ダイバシチ通信方式 ;う、抽11をする考 5、補正の対象 明細書の発明の詳細な説明の欄 6、 補正の内容 (1)明細書中、第10ページ第18〜19行目に「τ
2は低速回線のデータバースト信号である。」とあるの
を、「τ2は高速回線τ1に含まれるのと同等のデータ
を含む低速回線のデータバースト信号である。」と訂正
する。 以上
1- is an explanatory diagram showing a conventional system, FIG. 2 is an explanatory diagram of a device according to an embodiment of the present invention, FIG. FIG. 4 is an explanatory diagram for explaining the apparatus in the embodiment of the present invention, and FIGS.
FIG. 6 is an explanatory diagram showing an application example of the present invention. In the figure, (3) - Satellite, (10, Or), C
810), (410)...terminal device, (e)...
・Signal multiplexing device, (2)...Signal multiplexing device, (7
), 6η, (880), (480)... line switch, -... high speed line transmitter, cap... low speed line transmitter, 111... low speed line receiver, l+111.・・・
Low-speed line receiver, (100), (860)...Earth station for transmission, (101), (460)...Earth station for reception, GL, (87G)...High-speed satellite line, export . (80'), (80'), (80"), (88G)...
-Low speed satellite line. Agent Makoto Yoshino - Figure 1 3 Noa's 4th and 5th appearance Noah Figure 2 I'm coming in
Wakuji 94th issue:... 7th! Figure 3,! Figure 5 (Figure 1 Procedural Amendment (Voluntary) 4"1.;'l Director-General 1, 1G I'1 Display Patent Application 1987-561
1 No. 2, Name of the invention Diversity communication system ~Line 19 says “τ
2 is a data burst signal of a low-speed line. '' is corrected to read, ``τ2 is a data burst signal on the low-speed line that contains data equivalent to that contained in the high-speed line τ1.''that's all

Claims (1)

【特許請求の範囲】 +1)通信衛星を介し゛C地球局間の通信を行なう方式
に於“C1同一地球局を用いて定常通信回線及びそれと
は別の通信回線を設置し、信号の伝播状況の変化等によ
りそれらの通信回線を選択的に切換え°C用い得るよう
にした事を特徴とするグイバシチ通信方式。 (2)別の通信回線は、定常通信回線の通信伝送速度よ
り低速度の通信伝送速度を有する通信回線である事を特
徴とする特許請求の範囲第1項に記載のグイバシチ通信
方式。
[Claims] +1) In a method of communicating between the C1 earth stations via a communication satellite, a regular communication line and a separate communication line are installed using the same earth station C1, and the signal propagation situation is The Guibasichi communication method is characterized in that the communication lines can be selectively switched and used due to changes in temperature, etc. (2) Another communication line has a communication speed lower than that of the regular communication line. The communication system according to claim 1, characterized in that the communication line has a transmission speed.
JP561182A 1982-01-14 1982-01-14 Diversity communication system Granted JPS58121834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP561182A JPS58121834A (en) 1982-01-14 1982-01-14 Diversity communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP561182A JPS58121834A (en) 1982-01-14 1982-01-14 Diversity communication system

Publications (2)

Publication Number Publication Date
JPS58121834A true JPS58121834A (en) 1983-07-20
JPS6326931B2 JPS6326931B2 (en) 1988-06-01

Family

ID=11615989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP561182A Granted JPS58121834A (en) 1982-01-14 1982-01-14 Diversity communication system

Country Status (1)

Country Link
JP (1) JPS58121834A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543301A (en) * 1978-09-20 1980-03-27 Hitachi Ltd Method of forming adiabatic box

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543301A (en) * 1978-09-20 1980-03-27 Hitachi Ltd Method of forming adiabatic box

Also Published As

Publication number Publication date
JPS6326931B2 (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US4287598A (en) Cooperating arrangement for diversity stations
US4599734A (en) Space diversity communications system for multi-direction time division multiplex communications
US3829777A (en) Control system for diversity transmission in a terrestrial station of satellite communication
US4667319A (en) Digital repeater with 3-way branching of service channels
US4456988A (en) Satellite repeater
CA2647772C (en) System for extending bi-directional satellite radio communications in tunnels
US4135059A (en) Multiple channel per burst tdma multiple transponder network
EP0324363B1 (en) Demand assignment multiple access control system
AU2018204230B2 (en) Telecommunication system comprising a cache server located on board a high-altitude platform and associated data-transmitting method
EP1411745B1 (en) Packet switching for packet data transmission systems in a multi-channel radio arrangement
US4442518A (en) Channel switching system for use in a digital communication system
US9380645B2 (en) Communication pathway supporting an advanced split microwave backhaul architecture
WO2001045305A9 (en) Digital node for hybrid fiber/coax network
JPH0279542A (en) Subsignal transmission system
JP4345280B2 (en) Wireless communication apparatus and wireless communication system using the same
US7184762B2 (en) Communication satellite facility and satellite communication system providing bidirectional wideband intersatellite communication
JPS58121834A (en) Diversity communication system
JP2003244047A (en) Satellite communication system
US6930990B2 (en) Serial communications link for a base stations
KR100542973B1 (en) Apparatus and method for using time division multiplexing path in satellite digital multimedia broadcastng system a
KR100711169B1 (en) Gap filler system and program signal trasmission method thereof
JPH05206893A (en) Automatic changeover system for optical transmission system
JPS59138133A (en) System for satellite communication eliminating disturbance of sun
JPH07212122A (en) Satellite communication equipment
IL122852A (en) Meshed wireless networks