JPS58119919A - Suction device for internal-combustion engine - Google Patents

Suction device for internal-combustion engine

Info

Publication number
JPS58119919A
JPS58119919A JP57002232A JP223282A JPS58119919A JP S58119919 A JPS58119919 A JP S58119919A JP 57002232 A JP57002232 A JP 57002232A JP 223282 A JP223282 A JP 223282A JP S58119919 A JPS58119919 A JP S58119919A
Authority
JP
Japan
Prior art keywords
engine
intake
valve
output torque
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57002232A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
誠 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57002232A priority Critical patent/JPS58119919A/en
Publication of JPS58119919A publication Critical patent/JPS58119919A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To achieve high suction inertia effect across line operating region of an engine. CONSTITUTION:When the rotation N of an engine is lower than the rotation No where the maximum output torque is achieved, an open/close valve 14 is closed while first path 11 is closed. When it is higher than No, first path will open. A solenoid 24 for an electromagnetic exchange valve 23 is connected to a r.p.m. switch 25 corresponding to the rotation of the engine. When the rotation of the engine is lower than the preset r.p.m., a negative pressure chamber 20 is coupled into a surge tank 8 and a diaphragm 19 will move to the right against a spring 21 while the open/close valve 14 will close first suction path 11.

Description

【発明の詳細な説明】 本発明社内@II関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an in-house @II intake device.

内燃機関では吸気慣性効果が出力トルクに大きな影響を
与え、どのような機関の運転状勝、例えば機#i回転数
で吸気慣性効果が最も高くなるかは吸気管の長さおよび
断面積で定まる。従って機関回転数が低いときに最も高
い吸気慣性効果が得られゐように吸気管O長さおよび断
面積を定めると機関a@歌が高いときに出力トルクが低
下し、一方−関−転数が高いと自に最も高い吸気慣性効
果が得られるように吸気管o*”tsおよび断面積を定
めると機関回転数が低いときに出力シルクが低下してし
tう・ところが通常吸気管の長さおよび断面積は一定で
あるので出力トルクが低下してしtうIII闘藺転徴が
存在し、斯くして’II@C)全運転領域に亘りて高い
吸気慣性効果を維持することができないという閤■があ
ゐ。
In an internal combustion engine, the intake inertia effect has a large effect on the output torque, and the length and cross-sectional area of the intake pipe determines the engine operating condition, for example, at engine #i rotation speed, the intake inertia effect is highest. . Therefore, if the length and cross-sectional area of the intake pipe O are determined so that the highest intake inertia effect is obtained when the engine speed is low, the output torque will decrease when the engine speed is high, while the If the intake pipe o*'ts and cross-sectional area are determined so as to obtain the highest intake inertia effect when the engine speed is high, the output silk will decrease when the engine speed is low. Since the height and cross-sectional area are constant, there is a 3rd struggle characteristic in which the output torque decreases, and thus it is possible to maintain a high intake inertia effect over the entire operating range. I'm afraid I can't do it.

本発明は機関O金運転領域に亘りて高い吸気慣性効果を
得られるようにし九内411i41IlloWk気装置
を提供することKToる。
The present invention provides an air system that can obtain a high intake inertia effect over the engine operating range.

以下、添付!gI[Iを参照して本発明の詳細な説明す
る。
Attached below! The present invention will be described in detail with reference to gI[I.

第1図を参照すると、1は機関本体、2はシリンダ、5
は吸気ボーシ、4は吸気弁、5は排気ボート、6は排気
弁、7はシリンダ2内に設けられた点大後、8はサージ
タンク、?は各吸気ボート5とサージタンク8とを連結
する枝管を夫々示す。
Referring to Fig. 1, 1 is the engine body, 2 is the cylinder, and 5 is the engine body.
is the intake boss, 4 is the intake valve, 5 is the exhaust boat, 6 is the exhaust valve, 7 is the large point installed inside the cylinder 2, 8 is the surge tank, ? 1 shows branch pipes connecting each intake boat 5 and the surge tank 8, respectively.

サージタンク8け図示しないヌロッFル弁を介してエア
クリーナに接続される。1111図に示されるように各
枝管9の内部は隔壁10により2分割され、それKより
て各枝管9内にはは埋断面積の等しい一対の吸気通路、
即モ、第111気通路11と11!211気遁路12と
が形成される。11図かられかるようにこれらの第1@
気迩路11並びに第2吸気通路12はは埋閤−〇長さを
有する。各枝管9には夫々燃料噴射弁13が取付けられ
、各燃料噴射弁13から夫々対応する暖気ボート6内に
向けて燃料が噴射される。各枝管9の第1@気通路11
内には夫々開閉弁14が挿入され、各開閉弁140弁軸
15には夫々アーム16が固着される。
Eight surge tanks are connected to the air cleaner via null valves (not shown). As shown in FIG. 1111, the inside of each branch pipe 9 is divided into two parts by a partition wall 10, so that each branch pipe 9 has a pair of intake passages with equal buried cross-sectional areas.
Immediately, the 111th air passage 11 and the 11!211 air passage 12 are formed. As shown in Figure 11, the first of these @
The air passage 11 and the second intake passage 12 have a length of -0. A fuel injection valve 13 is attached to each branch pipe 9, and fuel is injected from each fuel injection valve 13 into the corresponding warm boat 6. First @ air passage 11 of each branch pipe 9
On-off valves 14 are respectively inserted therein, and arms 16 are fixed to the valve shafts 15 of each on-off valve 140, respectively.

これらの各アーム160先端部は連結四ツド17を介し
て負圧ダイアラ2ム装置1Bのダイアフラム19に!i
i!Fされる。負圧ダイアフラム装置18はダイアフラ
ム19によりて大気から1111された負圧室20と、
負圧室20内に設けられ九ダイアフヲム押圧用圧縮ばね
21とを有し、この負圧室20は負圧導管22披びに大
気に連通可能な電磁切換弁23を介してサージタンク8
内に連結され、る。電磁切換弁23のソレノイド24は
例えば機関回転数に応動する回転数スイッチ25に接続
される。機111回転回転子め定められ友設定同転数よ
りも低いときは負圧室20Fiサージタンク8内に連結
される。従ってこのとき負圧室2o内には負圧が導びか
れるためにダイアフラム19が圧縮ばね21に抗して右
方に移動し、その結果第1図に示すように開閉弁14が
$111@気迩路11を閉鎖する。一方、機関回転数が
設定回転数よシも高くなると負圧w20は電磁切換弁2
3の切換作用によって大気に連通せしめられる。その結
果ダイアフラム19は圧縮ばね21に抗して左方に移動
し、斯くして開閉弁14が$11@気迩路11を全開す
るO 第2図から114図は機関出力トルクTと機関回転数N
との関係を示す。第2図から114図において縦軸Tは
出力トルクを示し、横軸Nは機関回転数を示す・嬉2図
を参照すると、曲線ムは第1図の開閉弁14を全閉にし
良状態で機関回転数Nを変化させ九場合の出力トルクT
を示し、曲IIBは第1図の開閉弁14を全開にし良状
態で機関回転数Nを変化させ丸場合の出力トルクTを示
す。第2図から吸気慣性効果が最大となる機関回転II
The tips of each of these arms 160 are connected to the diaphragm 19 of the negative pressure dialing device 1B via the connecting four rods 17! i
i! F is given. The negative pressure diaphragm device 18 includes a negative pressure chamber 20 separated from the atmosphere by a diaphragm 19;
The negative pressure chamber 20 has a nine-diaphragm compression spring 21 provided in the negative pressure chamber 20.
connected within. The solenoid 24 of the electromagnetic switching valve 23 is connected, for example, to a rotation speed switch 25 that responds to the engine rotation speed. When the rotation speed of the machine 111 is lower than the set rotation speed, the negative pressure chamber 20Fi is connected to the surge tank 8. Therefore, at this time, since negative pressure is introduced into the negative pressure chamber 2o, the diaphragm 19 moves to the right against the compression spring 21, and as a result, as shown in FIG. Airway 11 will be closed. On the other hand, when the engine speed is higher than the set speed, the negative pressure w20 is reduced by the solenoid switching valve 2.
It is communicated with the atmosphere by the switching action of No. 3. As a result, the diaphragm 19 moves to the left against the compression spring 21, and the on-off valve 14 fully opens the air flow path 11. Figures 2 to 114 show the engine output torque T and engine rotation. Number N
Indicates the relationship between In Figures 2 to 114, the vertical axis T shows the output torque, and the horizontal axis N shows the engine speed.Referring to Figure 2, the curve M is in good condition with the on-off valve 14 in Figure 1 fully closed. Output torque T when changing engine speed N
, and the song IIB shows the output torque T when the on-off valve 14 in FIG. 1 is fully opened and the engine speed N is varied under good conditions. From Figure 2, engine speed II at which the intake inertia effect is maximum
.

即ち出力トルクTが最大となる機関回転数Ng、 74
には開閉弁14の開閉弁動作によって変化することがわ
かる。即ち、複軸な廖状の吸気通路内における吸気脈動
の振巾および周期と同一0振巾および周期となる断面一
様の円筒状吸気通路を考えてこの円筒状吸気通路を等価
吸気迩路とすゐと、開閉弁14の開閉動作は等価吸気通
路O長さおよび断面積を変えるととに相当する。従りて
第2図は出力トルクTが最大と1にゐ機関回転数Ng、
 %hが等価吸気通路の長さおよび断面積によりて変化
することを表わしているとも云える。第211かられか
るように開閉弁14を閉鎖させてシいえ場合には機関a
転数NがNa よ)も高くなれば出力トルクTが低下し
、一方間閉弁14を開弁させておいえ場合には機関回転
数NがNbよ?j%低く象れば出力トルクTが低下する
。従りて第2図K)いて曲線A、Bの交点、即ち機関回
転数Noにおいて開閉弁14の開閉状態を切換えれけ常
時高い田方トルクが得られることになる。11111図
の実施例では(ロ)転数スイッチ25が切換えられる設
定回転数がこの機関回転数N・となっておシ、従って機
関(ロ)転数Nが設定回転&N・よシも小さなときには
開閉弁14が第1@気通路11を閉鎖し、機関−啄数N
が設定回転数N・よ〉亀大暑なと暑には開閉弁14が第
1Wk気通路11−を開口する。斯くして第3図に示す
ように機関−転数NK拘わらすに常時高い出力トルクT
を得ふむとができる。
That is, the engine rotation speed Ng at which the output torque T is maximum, 74
It can be seen that this changes depending on the on-off valve operation of the on-off valve 14. In other words, considering a cylindrical intake passage with a uniform cross section that has the same zero amplitude and period as the amplitude and period of the intake pulsation in the double-axis, groove-shaped intake passage, this cylindrical intake passage can be considered as an equivalent intake path. The opening/closing operation of the on-off valve 14 corresponds to changing the length and cross-sectional area of the equivalent intake passage O. Therefore, Figure 2 shows that when the output torque T is maximum and 1, the engine speed Ng,
It can also be said that this represents that %h changes depending on the length and cross-sectional area of the equivalent intake passage. If the on-off valve 14 is closed as instructed from No. 211, the engine a
If the rotation speed N increases (Na), the output torque T decreases, and if the closed valve 14 is left open, the engine speed N increases to Nb. If it appears j% lower, the output torque T will decrease. Therefore, if the opening/closing state of the on-off valve 14 is switched at the intersection of curves A and B (K) in FIG. In the embodiment shown in Fig. 11111, (b) the set rotation speed at which the rotation speed switch 25 is switched is the engine rotation speed N. Therefore, when the engine rotation speed N is also small, the set rotation speed &N. The on-off valve 14 closes the first @ air passage 11, and the engine-number N
When the rotation speed is set to N. When it is very hot, the on-off valve 14 opens the first Wk air passage 11-. In this way, as shown in Fig. 3, the output torque T is always high regardless of the engine speed NK.
You can get it.

1114図線第1@気迩路11、第2吸気通路12に加
えて更に$5C)@電通路を設けると共に各吸気通路o
hm積をほぼ等しくシ、嬉!i@気通路内に嬉2ON1
11!弁を設けて機関回転数Nが高くなるにつれて開閉
弁14.1I2DIlI!弁を順次開弁せしめるように
し九場合における出力トルクTと機関回転数Nとの関係
を示している0第3図並びに114図から各気筒に対す
る吸気通路の個数を増大するととによって出力トルク丁
が機関回転数Nに対して一様に高くなることがわかる。
1114 Figure line 1st @ In addition to the air passage 11 and the second intake passage 12, an additional $5C) @ electrical passage is provided and each intake passage o
I'm happy that the hm products are almost equal! i @ happy 2ON1 in the air passage
11! A valve is provided to open and close the valve as the engine speed N increases 14.1I2DIlI! From FIGS. 3 and 114, which show the relationship between the output torque T and the engine speed N in nine cases in which the valves are opened sequentially, the output torque T increases by increasing the number of intake passages for each cylinder. It can be seen that the speed increases uniformly as the engine speed N increases.

第1図に示す実施例では開閉弁140開閉制御tIII
間回に数NKよって行なっている。しかしながらこの開
閉弁14の開閉制御はIII間回転数Nに代えてサージ
タンク8内O貴圧、填いは吸入空気量に応じて制御する
ことができる。また、嬉1図に示す実施例では111吸
気通路11と1112吸気通路12とはほぼ等しい断面
積を有する。これ紘、第2rIk気通路1240111
積tll11[1fia路110断面積に比べて小さく
しすきると第2図ONαが小さくなりすぎる丸めにNo
 IICおける出力)ルクTの落込みが激しくなシ、そ
の@釆迩當頻繁に使用される5W4W転数領域で高出力
FルクTが得られなくなるからでちゃ、一方第1吸気通
絡11の断面積を第2吸気通路12(Dlr面1!11
に比べて小さくしすぎると第2図のNaがNAK近づ暑
すぎるために第2吸気通路12を設けた意味がないから
である。
In the embodiment shown in FIG. 1, the on-off valve 140 on-off control tIII
I do this with a few NKs in between. However, the opening/closing control of the opening/closing valve 14 can be controlled according to the O noble pressure in the surge tank 8 instead of the third rotation speed N, and the filling can be controlled according to the intake air amount. Further, in the embodiment shown in Figure 1, the intake passage 111 and the intake passage 12 1112 have approximately the same cross-sectional area. This is Hiro, 2nd rIk air passage 1240111
If the product tll11[1fia path 110 is made smaller than the cross-sectional area, the ONα in Figure 2 will become too small.No to rounding.
The drop in torque T (output in IIC) is severe, and the high output torque T cannot be obtained in the frequently used 5W4W rotation speed range. The cross-sectional area of the second intake passage 12 (Dlr surface 1!11
This is because if it is made too small compared to , Na in FIG. 2 will approach NAK and it will be too hot, so there is no point in providing the second intake passage 12.

以上述べ九ように本発明によれば機関の全運転領域にh
りて高%/−hWk気慣性効果を得ることができ、斯く
して機関の全運転領域に亘りて高い出力トルクを確保す
ゐことができる。
As described above, according to the present invention, h is applied to the entire operating range of the engine.
As a result, a high %/-hWk air inertia effect can be obtained, thus ensuring a high output torque over the entire operating range of the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社本発明による内燃機y4o一部断一平面図、1
12図乃至84図は機関出力トルクと機闘馴転数O関係
を示す線図であみ。 5・・・暖気ボート、4・・・暖気弁、8・・・ナージ
タンタ、?・・・枝管、11・・・第1吸気通路、12
・・・第2吸気遍路、15・・・燃料噴射弁、14・・
・開閉弁。 特許出願人 ト璽夕自動車工業株式会社 特許出願代理人 弁理士 青 木  朗 弁理士西舘和之 弁理士 中 山 恭 介 弁理士山口昭之 第1図 第2図
Fig. 1 Partially sectioned plan view of internal combustion engine y4o according to the present invention, 1
Figures 12 to 84 are diagrams showing the relationship between engine output torque and flight acclimatization number O. 5...warm boat, 4...warm valve, 8...najitanta,? ... Branch pipe, 11 ... First intake passage, 12
...Second intake pilgrimage, 15...Fuel injection valve, 14...
・Opening/closing valve. Patent applicant Tosei Jidosha Kogyo Co., Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyo Nakayama Patent attorney Akiyuki Yamaguchi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] シリンダヘッド内に形成され九吸気ボートとサージタン
クとをほぼ等しい断ll積を有する少(とも2本の@気
!l路を介して互に連結し、核吸気逓路の少くとも−り
に機関回転数、機関負荷域いは吸入空気量に応動する開
閉弁を設けて該−間回転数、機関負荷、或いは吸入空気
量が吸気慣性効果に基いて予め定められ良一定値を越え
たときに該開閉弁を開弁せしめるようにし九内蟻様闘の
吸気装置。
The nine intake boats and the surge tank are formed in the cylinder head and are connected to each other via two passages having approximately equal cross-sectional areas, and are connected to each other via two passages having approximately the same cross-sectional area. An on-off valve that responds to the engine speed, engine load range, or intake air amount is provided, and when the engine speed, engine load, or intake air amount exceeds a predetermined value based on the intake inertia effect. The intake device has an ant-like fight by opening the on-off valve.
JP57002232A 1982-01-12 1982-01-12 Suction device for internal-combustion engine Pending JPS58119919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002232A JPS58119919A (en) 1982-01-12 1982-01-12 Suction device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002232A JPS58119919A (en) 1982-01-12 1982-01-12 Suction device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58119919A true JPS58119919A (en) 1983-07-16

Family

ID=11523605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002232A Pending JPS58119919A (en) 1982-01-12 1982-01-12 Suction device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58119919A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206822A (en) * 1982-05-26 1983-12-02 Yamaha Motor Co Ltd Methods of driving double suction valve type internal- combustion engine
DE3502699A1 (en) * 1984-01-26 1985-08-14 Mazda Motor Corp., Hiroshima SUCTION DEVICE FOR PISTON INTERNAL COMBUSTION ENGINE
DE3435028A1 (en) * 1984-02-04 1985-08-14 Toyota Jidosha K.K., Toyota, Aichi AIR SUCTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JPS60159333A (en) * 1984-01-30 1985-08-20 Mazda Motor Corp Suction device for engine
JPS60166706A (en) * 1984-02-08 1985-08-30 Mazda Motor Corp Suction device of engine
DE3511382A1 (en) * 1984-03-30 1985-10-10 Nissan Motor Co., Ltd., Yokohama, Kanagawa INTAKE SYSTEM FOR COMBUSTION ENGINES WITH SEVERAL INLET VALVES FOR EVERY COMBUSTION CHAMBER
JPS60201031A (en) * 1984-03-26 1985-10-11 Toyota Motor Corp Apparatus for controlling operation of internal- combustion engine
US4599977A (en) * 1984-01-27 1986-07-15 Ferrari Societa' Per Azioni Esercizio Fabbriche Automobili E Corse Inlet manifold for normal induction or supercharged internal combustion engines featuring indirect fuel injection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206822A (en) * 1982-05-26 1983-12-02 Yamaha Motor Co Ltd Methods of driving double suction valve type internal- combustion engine
DE3502699A1 (en) * 1984-01-26 1985-08-14 Mazda Motor Corp., Hiroshima SUCTION DEVICE FOR PISTON INTERNAL COMBUSTION ENGINE
US4592310A (en) * 1984-01-26 1986-06-03 Mazda Motor Corporation Intake device for internal combustion engine
US4599977A (en) * 1984-01-27 1986-07-15 Ferrari Societa' Per Azioni Esercizio Fabbriche Automobili E Corse Inlet manifold for normal induction or supercharged internal combustion engines featuring indirect fuel injection
JPS60159333A (en) * 1984-01-30 1985-08-20 Mazda Motor Corp Suction device for engine
JPH0578649B2 (en) * 1984-01-30 1993-10-29 Mazda Motor
DE3435028A1 (en) * 1984-02-04 1985-08-14 Toyota Jidosha K.K., Toyota, Aichi AIR SUCTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JPS60166706A (en) * 1984-02-08 1985-08-30 Mazda Motor Corp Suction device of engine
JPS60201031A (en) * 1984-03-26 1985-10-11 Toyota Motor Corp Apparatus for controlling operation of internal- combustion engine
JPH0316490B2 (en) * 1984-03-26 1991-03-05 Toyota Motor Co Ltd
DE3511382A1 (en) * 1984-03-30 1985-10-10 Nissan Motor Co., Ltd., Yokohama, Kanagawa INTAKE SYSTEM FOR COMBUSTION ENGINES WITH SEVERAL INLET VALVES FOR EVERY COMBUSTION CHAMBER

Similar Documents

Publication Publication Date Title
US4702203A (en) Intake means of internal combustion engine
US4771740A (en) Intake system for internal combustion engine
JPS6081459A (en) Intake-air device in internal-combustion engine
JPS58119919A (en) Suction device for internal-combustion engine
JPS6330495B2 (en)
US4726340A (en) Intake system for multi-cylinder engine
US4283356A (en) Carburetor for internal combustion engines
US4408576A (en) Intake system of an internal combustion engine
AU704865B2 (en) Two-stroke engine with improved injection device and associated injection process
US4608948A (en) Air intake device of an internal combustion engine
EP0461087B1 (en) An intake system for multicylinder internal combustion engines for motor vehicles
GB2041078A (en) Controlling the number of operative cylinders in internal combustion engines
US5522362A (en) Idle control arrangement for engine
JPS59168217A (en) Control apparatus for internal-combustion engine with supercharger
US4428337A (en) Variable cylinder operation of internal combustion engine
JPH0428889B2 (en)
CA1108996A (en) Power cruise diverter valve
JPS608117Y2 (en) engine intake system
CA1101747A (en) Internal combustion engine
JPS59170440A (en) Partial driving control type internal-combustion engine
JPS582425A (en) Flow-passage control system in helical type suction port
JPS58220923A (en) Air intake control device of internal-combustion engine
KR850000249Y1 (en) Motor cycle
JPH01171981U (en)
JPS5828530A (en) Flow-passage controller for helical-type intake port