JPS58117862A - Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride - Google Patents

Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride

Info

Publication number
JPS58117862A
JPS58117862A JP71382A JP71382A JPS58117862A JP S58117862 A JPS58117862 A JP S58117862A JP 71382 A JP71382 A JP 71382A JP 71382 A JP71382 A JP 71382A JP S58117862 A JPS58117862 A JP S58117862A
Authority
JP
Japan
Prior art keywords
stainless steel
resistance
stress corrosion
austenitic stainless
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP71382A
Other languages
Japanese (ja)
Other versions
JPH031372B2 (en
Inventor
Makoto Masuo
増尾 誠
Hayao Kurahashi
倉橋 速生
Yuji Sone
雄二 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP71382A priority Critical patent/JPS58117862A/en
Publication of JPS58117862A publication Critical patent/JPS58117862A/en
Publication of JPH031372B2 publication Critical patent/JPH031372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To enhance the resistance of an N-contg. Cr-Ni austenitic stainless steel to crevice corrosion and stress corrosion cracking due to chloride in highly corrosive water such as sea water by adding specified amounts of Cu, Mo and Nb to the steel. CONSTITUTION:0.5-3.5% Cu, 1.5-5.0% Mo and <1.0% Nb are added to an N-contg. Cr-Ni austenitic stainless steel contg. <0.08% C, <1.0% Si, <2.0% Mn, 6-20% Ni, 16-25% Cr and 0.05-0.40% N. By adding Cu, the resistance to stress corrosion cracking due to chloride is improved. By adding said relatively large amount of Mo, the crevice corrosion resistance is enhanced. By adding Nb, the sensitivity to intergranular corrosion is reduced, and an austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride in highly corrosive water contg. sea water is obtd.

Description

【発明の詳細な説明】 本発明は耐塩化物応力腐食割れ性と耐隙間腐食性のすぐ
れ九オーステナイト系ステンレス鋼に係り、特に海浜地
帯などの海水の混入により耐隙間腐食性を著しく要求さ
れる用途に適し死金窒素オーステナイト系ステンレス鋼
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an austenitic stainless steel with excellent resistance to chloride stress corrosion cracking and crevice corrosion, particularly for applications in coastal areas where high crevice corrosion resistance is required due to the contamination of seawater. Suitable for dead gold nitrogen austenitic stainless steel.

JIS  G4305の5US304Ni鋼および5U
8304N2鋼等の含窒素オーステナイト系ステンレス
鋼は高強度材料として最近使われ壽ているが、湿潤環境
での使用あるいは温水機器あるいは温水配管用途に用い
ると5US304鋼と同様に塩化物応力腐食割れおよび
隙間腐食を発生し、この丸め著しく用途が制限されてい
る。
JIS G4305 5US304Ni steel and 5U
Nitrogen-containing austenitic stainless steels such as 8304N2 steel have recently been used as high-strength materials, but when used in humid environments or in hot water equipment or hot water piping applications, they suffer from chloride stress corrosion cracking and crevices similar to 5US304 steel. This rounding causes corrosion and severely limits its use.

この種の通常の水環境における応力腐食割れは塩素イオ
ンの存在により惹起されるもので淡水環境のように数1
0〜数1000 ppmclという微量でも応力腐食を
生じる。また常に応力腐食割れが問題になる海水濃度で
も3.5チNaC/程度の低濃度範囲にある。しかるに
、これまでの応力腐食割れ研究は201 NaCl溶液
あるいは42 sMgc/s溶液が用いられてきた。こ
の理由は低濃度塩化物溶液における応力腐食割れの再現
が難しく、濃厚促進液によj) if価をせざるを得な
い実状にあったからである。しかし、最近この濃厚塩化
物による評価は実環境に多い低濃度塩化物環境における
実績と一致しない点が多いことが指摘されている。
This type of stress corrosion cracking in a normal water environment is caused by the presence of chlorine ions, and as in freshwater environments, stress corrosion cracking is caused by the presence of chlorine ions.
Even a trace amount of 0 to several thousand ppmcl causes stress corrosion. Furthermore, the concentration of seawater, where stress corrosion cracking is always a problem, is in the low concentration range of about 3.5 T NaC/. However, in stress corrosion cracking studies to date, 201 NaCl solution or 42 sMgc/s solution has been used. The reason for this is that it is difficult to reproduce stress corrosion cracking in low-concentration chloride solutions, and it is necessary to use a concentrated accelerator solution to determine the if value. However, it has recently been pointed out that this evaluation based on concentrated chloride often does not match the actual results in low-concentration chloride environments, which are common in real environments.

更に濃厚促進液の相互の評価を比較しても、異っている
ことが判明している。例えば沸騰42チM gct を
水溶液に対してriSiの添加が割れの防止に有効であ
るが、Moの添加は効果がない。一方沸騰20 ’4 
NaCl水溶液においては逆に8iの添カ1は効果がな
(、Moの添加は有効である。このように割れ機構ある
いは合金元素の効果は溶液の種拳と濃度により異る。従
って、応力腐食割れの真の解決のためには、実体に則し
九低濃度塩化物溶液を用いて調査することが必要不可欠
である。
Furthermore, when comparing the mutual evaluations of concentrated accelerating liquids, it has been found that they are different. For example, adding riSi to an aqueous solution of boiling 42 cm M gct is effective in preventing cracking, but adding Mo is ineffective. Meanwhile boil 20'4
In NaCl aqueous solution, on the other hand, addition 1 of 8i is ineffective (addition of Mo is effective. In this way, the cracking mechanism or the effect of alloying elements differs depending on the type and concentration of the solution. Therefore, stress corrosion In order to truly solve the problem, it is essential to conduct an investigation using a 9-low concentration chloride solution in accordance with the actual situation.

本発明の目的ri、上記従来技術の問題点を解決し1通
常の淡水あるいは海水等の低濃度塩化物環境における耐
塩化物応力腐食割れ性と耐隙間腐食性のすぐれたオース
テナイト系ステンレス鋼を提供するにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art and provide an austenitic stainless steel with excellent resistance to chloride stress corrosion cracking and crevice corrosion in low concentration chloride environments such as ordinary freshwater or seawater. It is in.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち、重量比にてC:0.081以下%si:1.
01以下1Mn:10s以下、 Ni : 6.0〜2
0.0幅、Cr : 16.(1−25,0係、Cu:
0.5*t−越え3.5 %以下、 Mo : 1.5
〜5.0 ’4、Nb:l、Q−以下、 N : 0.
05〜0.40 %を含有し、残部はFeおよび不可避
的不純物より成ることを特徴とする耐塩化物応力腐食割
れ性と耐隙間腐食性のすぐれたオーステナイト系ステン
レス鋼である。
That is, the weight ratio of C: 0.081 or less% si: 1.
01 or less 1Mn: 10s or less, Ni: 6.0-2
0.0 width, Cr: 16. (1-25, 0 section, Cu:
More than 0.5*t-3.5% or less, Mo: 1.5
~5.0'4, Nb:l, Q- or less, N: 0.
It is an austenitic stainless steel with excellent chloride stress corrosion cracking resistance and crevice corrosion resistance, and is characterized by containing 0.05 to 0.40%, with the remainder consisting of Fe and unavoidable impurities.

本発明者らはスポット抵抗溶接試験即の長期間の浸漬試
験を繰返し行った結果スポット溶接試験岸の如く隙間と
残留応力のある試験片を用いると100℃以下の低濃度
食塩水においても応力腐食割れが容易に再現が可能であ
り、ま九耐原関腐責性も同時に評価できることがわかっ
た。この方法は溶存酸素を含む食塩水中に自然浸漬して
応力腐食割れを再現するもので多くの水使用の実環境に
近似している。
The present inventors repeatedly performed long-term immersion tests immediately after spot resistance welding tests, and found that when using test pieces with gaps and residual stress like the spot welding tests, stress corrosion occurred even in low-concentration saline solutions at temperatures below 100°C. It was found that cracks can be easily reproduced and that the resistance to corrosion can also be evaluated at the same time. This method reproduces stress corrosion cracking by natural immersion in saline water containing dissolved oxygen, which approximates the actual environment in which water is often used.

すなわちスポット溶接試験片の長期間の浸ff試験を繰
返しCr−Niオーステナイト系ステンレス鋼の耐応力
腐食割れ性と耐隙間腐食性を調査した結果低濃度食塩水
中の耐応力腐食割れ性の改善には濃厚溶液と異なりSi
とMoは効果がないが、Cuの添加が有効であることを
見出し友。この事実を基礎にさらに研究を重ねた結果、
含窒素オーステナイト系ステンレス鋼の応力腐食防止に
も有効であることをつきとめた。しかし耐隙間腐食性は
Cuの添加ではあまり改善されずMoの添加が有効であ
ることも判明した。淡水環境QCおける耐隙間腐食性i
jMoを添加しなくても十分なことが多い。
In other words, we investigated the stress corrosion cracking resistance and crevice corrosion resistance of Cr-Ni austenitic stainless steel by repeating long-term immersion ff tests on spot welded specimens. As a result, we found that the stress corrosion cracking resistance in low concentration saline solution can be improved. Unlike concentrated solutions, Si
He discovered that while Mo had no effect, adding Cu was effective. As a result of further research based on this fact,
It was also found to be effective in preventing stress corrosion of nitrogen-containing austenitic stainless steel. However, it was also found that the crevice corrosion resistance was not significantly improved by the addition of Cu, and that the addition of Mo was effective. Crevice corrosion resistance i in freshwater environment QC
It is often sufficient not to add jMo.

ま九循環水などのように塩素イオンが濃縮する場合は1
.2慢以下の如き少量のMOの添加で隙間腐食を防止で
きる。しかし本発明鋼で対象としている海浜Vこおける
地下水などのように海水の混入するような著しく悪い水
環境に対してはそれに相当してMo含有量の高いすぐれ
九耐隙間腐食性を備えることが必要になる。
If chlorine ions are concentrated, such as in circulating water, 1
.. Crevice corrosion can be prevented by adding a small amount of MO, such as less than 2 hours. However, in extremely bad water environments where seawater is mixed in, such as underground water at seashores, which is the object of the steel of the present invention, it is possible to provide excellent crevice corrosion resistance with a correspondingly high Mo content. It becomes necessary.

本発明者らは含窒素オーステナイト系ステ/レス鋼にC
ut添加して応力腐食割れを防止し、更に多量のMo1
に添加して海浜などの水環境の著しく悪い用途にも適す
るように改良を加えたものである。
The present inventors have discovered that C in nitrogen-containing austenitic stainless steel.
ut is added to prevent stress corrosion cracking, and a large amount of Mo1 is added to prevent stress corrosion cracking.
This product has been improved so that it is suitable for applications where water environments are extremely poor, such as beaches.

本発明鋼は耐応力腐食割れ性についてみても100℃以
下の大気開放条件下における塩化物環境での使用を目的
として、これときわめて近い80℃の3.5優の食塩水
の腐食試験により開発されたものである。従って1本発
明鋼は従来の沸騰42% MgC1*溶液あるいは20
鴫NaC/溶液の試験で開発され九ものと異なる実環境
下試験eこより近い試験によるものである。
In terms of stress corrosion cracking resistance, the steel of the present invention was developed through a corrosion test in 3.5-superior saline water at 80°C, which is very similar to this, with the aim of use in chloride environments under open air conditions at temperatures below 100°C. It is what was done. Therefore, the steel of the present invention can be prepared using conventional boiling 42% MgCl* solution or 20% MgCl* solution.
The NaC/Solution test was developed using nine different real-world tests and is more similar to this test.

応力腐食割れに対するCuの有効性については2oチN
aC1の試験でも応力腐食割れ感受性を低下させる元素
であることが認められている。しかし、201NaC/
の試験ではCuの添加だけで割れを防止できず、Cu、
Siの共存あるいi;tcu 、 Si 。
Regarding the effectiveness of Cu against stress corrosion cracking,
It has also been recognized in the aC1 test that it is an element that reduces stress corrosion cracking susceptibility. However, 201NaC/
In the test, cracking could not be prevented by adding Cu alone;
Coexistence of Si or i; tcu, Si.

Moの共存が必要である。これに反して本発明者らは実
環境に多い低濃度食塩水中における応力腐食割れがCu
の添加のみで効果的、経済的に防止できることを見出し
九ものであり、本発明は従来の認識とは全く異なる新し
い知見に基くことは明らかで、この知見だけでオーステ
ナイト系ステンレス鋼の用途の適性範囲の拡大に著しく
寄与するが、更にMoを添加して耐隙間腐食性の向J:
t−図ることは多様な実環境への対応をより容易にする
と考えられる。
Coexistence of Mo is necessary. On the contrary, the present inventors found that stress corrosion cracking in low-concentration saline, which is common in real environments,
It is clear that the present invention is based on new knowledge that is completely different from the conventional understanding, and this knowledge alone makes it possible to effectively and economically prevent austenitic stainless steel. Although it significantly contributes to expanding the range, it is possible to further improve crevice corrosion resistance by adding Mo:
It is believed that t-planning makes it easier to deal with various real environments.

本発明における成分限定理由は次のとおりである。The reasons for limiting the ingredients in the present invention are as follows.

C: C#′i応力腐食割れ感受性にほとんど影響しないが、
o、ossを越えると溶接部の粒界腐食感受性を著しく
高めるので上限をo、 o 8 %に限定した。
C: C#'i has little effect on stress corrosion cracking susceptibility, but
If the content exceeds o, oss, the susceptibility to intergranular corrosion of the weld zone will be significantly increased, so the upper limit was limited to 8%.

Si : 8iは塩化物応力腐食割れ性の改善に対してはほとんど
効果がなく、製鋼時の脱酸の目的に使用されるが、1.
01を越す添加は必要がな騒ので1.0−以下に限定し
丸。
Si: 8i has almost no effect on improving chloride stress corrosion cracking resistance and is used for the purpose of deoxidation during steel manufacturing, but 1.
It is unnecessary to add more than 0.01, so limit it to less than 1.0.

化物応力腐食割れ感受性には影響がないので、通常の2
OS以下に限定した。
Since it has no effect on chemical stress corrosion cracking susceptibility,
Limited to OS or lower.

Ni  H Niはオーステナイト相を保持し、耐酸性を確保する丸
めに少くとも6. Ots以上を必要とするが20、0
1gを越す添加は経済的見地より効果がないので6.0
〜20.0−の範囲に限定した。
Ni H Ni retains the austenitic phase and has at least 6.5% rounding to ensure acid resistance. Requires Ots or more but 20,0
Addition of more than 1g is not effective from an economic point of view, so 6.0
-20.0-.

Cr : Crはステンレス鋼としての耐食性を付与する主たる元
素であり、少くとも16.oチを必要とするが、25.
01を越すとオーステナイト組織を保持する上から好ま
し←ないので、16.0〜25.0−の範囲に限定した
Cr: Cr is the main element that imparts corrosion resistance to stainless steel, and has at least 16. 25.
If it exceeds 01, it is not preferable in terms of maintaining the austenite structure, so it is limited to a range of 16.0 to 25.0.

Cu: Cuは耐塩化物応力腐食割れ性の向上に著しい効果があ
るが、0.51以下ではその効果がなく。
Cu: Cu has a remarkable effect on improving chloride stress corrosion cracking resistance, but if it is less than 0.51, it has no effect.

3.5チを越えると熱間加工性が劣化し、また経済上か
ら−好ましくないので0.51を越え3.5−以下の範
囲に限定した。
If it exceeds 3.5 inches, the hot workability deteriorates, and it is also unfavorable from an economical point of view, so it is limited to a range of more than 0.51 and less than 3.5 inches.

MO= MOは耐隙間腐食性の改善に効果があるが、海水の混入
するような水環境に対しては少くとも1.5チ以上を必
要とする。すなわち、オーステナイト系ステンレス鋼の
スポット溶接試験片に80℃の3.5チ食塩、水におけ
る2月間の気液界面浸漬試験を実施し、添付図面にその
隙間腐食減量とステンレス鋼中のMo含有量との関係を
図示したが。
MO = MO is effective in improving crevice corrosion resistance, but for water environments where seawater is mixed, at least 1.5 inches or more is required. That is, a spot welded specimen of austenitic stainless steel was subjected to a two-month gas-liquid interface immersion test in 3.5% salt and water at 80°C, and the attached drawing shows the crevice corrosion loss and the Mo content in the stainless steel. I illustrated the relationship between

耐隙間腐食性u M o含有量が1.5チ以上におりて
一着しく向上しているのでMoの下限を1.5チとじ九
。しかし5.01を越す添加は経済性を考慮すると効果
が少ないのでs、 0 * e上限とし1.5〜5.0
−の範囲に限定し九。
Crevice Corrosion Resistance U Since the Mo content has consistently improved over 1.5 inches, the lower limit of Mo has been set at 1.5 inches. However, adding more than 5.01 has little effect when considering economic efficiency, so the upper limit is s, 0 * e and 1.5 to 5.0.
- limited to the range of 9.

Nb: Nbは粒界腐食感受性を低下させると同時に、オーステ
ナイト地の強fを高め、含窒素オーステナイト系ステン
レス鋼としての特徴である高強度特性を付与するのに有
効であるが、1.01を越える添加は溶接性を劣化し、
経済的見地からも不要であるので1.0 S以下に限定
し九。
Nb: Nb is effective in reducing susceptibility to intergranular corrosion and at the same time increasing the strength f of the austenitic base, giving it the high strength characteristics characteristic of nitrogen-containing austenitic stainless steel. Addition in excess of this will deteriorate weldability,
Since it is unnecessary from an economic point of view, it is limited to 1.0 S or less.

N: Nはオーステナイト形成元素であり、tた高価なNiの
節減、高強度の付与、更に耐孔食性の向上等の含窒素鋼
の特性を付与する効果を有しているが、0.05−未満
ではその効果が少なくio、40優を越すと熱間加工性
が低下し製造が困難になるので0,05〜0.401に
限定した。
N: N is an austenite-forming element, and has the effect of reducing the need for expensive Ni, imparting high strength, and imparting the properties of nitrogen-containing steel, such as improving pitting corrosion resistance. If it is less than io, the effect is small, and if it exceeds 40, hot workability decreases and manufacturing becomes difficult, so it was limited to 0.05 to 0.401.

実施例 本発明鋼と本発明鋼成分に近似しCu等の成分が限定範
囲を外れている比較鋼および恢米鋼について1次の試験
方法によって耐応力腐食割れ性と耐隙間腐食性の比較試
験を行った。
Example Comparative test of stress corrosion cracking resistance and crevice corrosion resistance using the first test method for the present invention steel, comparative steel with components such as Cu that are close to the present invention steel components but outside the limited range, and hardened steel. I did it.

すなわち、厚さ1.5〜2.0 m 、幅150XEl
、長さ120mの供試材の一端に厚さ1.5〜’l O
wn 、幅10閣、長さ30mの同一組成の供試材を重
ねスポット抵抗溶接した試験片を80℃のa、51NM
CI水溶液の気液界面に2月間浸漬し九。
That is, thickness 1.5-2.0 m, width 150XEl
, with a thickness of 1.5~'l O at one end of the 120 m long specimen.
wn, a test piece of the same composition with a width of 10 m and a length of 30 m was stacked and spot resistance welded at 80°C a, 51 NM.
Immersed in the gas-liquid interface of CI aqueous solution for 2 months.

各供試材は溶体化処理した板を使用し、浸漬水溶液はN
aC4と純水で調整し大気開放条件で試験し九。応力腐
食割れの発生の判定は試験終了後の試験片表面の割れの
有無と、更に断面組織による割れの有無から判定し九。
Each test material used a solution-treated plate, and the immersion aqueous solution was N
Adjusted with aC4 and pure water and tested under open air conditions. The occurrence of stress corrosion cracking is determined based on the presence or absence of cracks on the surface of the test piece after the test and the presence or absence of cracks in the cross-sectional structure.9.

第1表に試験に使用した本発明鋼と比較鋼の化学組成と
スポット溶接試験中を80℃の訳]NaC/水溶液に2
月間浸漬試験後の応力腐食割れおよび隙間腐食減量の測
定結果を示した。
Table 1 shows the chemical composition of the inventive steel and comparative steel used in the test and the temperature at 80°C during the spot welding test.
The measurement results of stress corrosion cracking and crevice corrosion weight loss after monthly immersion tests are shown.

第1表より明らかな如く、浸漬試験により。As is clear from Table 1, by immersion test.

8US304鋼相当品および8US304Nl鋼相当品
を含む含窒素オーステナイト系ステンレス鋼の比較鋼は
いずれも応力腐食割れを生じているが本発明鋼は全く応
力腐食割れが発生していない。
Comparative nitrogen-containing austenitic stainless steels including 8US304 steel and 8US304Nl steels all suffered stress corrosion cracking, but the steel of the present invention did not show any stress corrosion cracking.

また本発明鋼は隙間腐食減量もMoを含まない比較鋼に
比べると1/4以下に低減していることがわかる。
Furthermore, it can be seen that the crevice corrosion loss of the steel of the present invention is reduced to 1/4 or less compared to the comparative steel that does not contain Mo.

本発明は上記実施例からも明らかな如く、富窒素オース
テナイト系ステンレス鋼に適正量のCuとMoを添加す
ることにより海水が混入するような腐食性の強い水環境
において極めてすぐれた耐塩化物志力腐食割れ性と耐隙
間腐食性を併せ有するオーステナイト系ステンレス鋼を
得ることができた。
As is clear from the above examples, the present invention has extremely excellent chloride resistance in a highly corrosive aqueous environment where seawater is mixed in by adding appropriate amounts of Cu and Mo to nitrogen-rich austenitic stainless steel. We were able to obtain an austenitic stainless steel that has both corrosion cracking resistance and crevice corrosion resistance.

本発明鋼は、しか4従来の嵩濃度塩化物水溶液による試
験を排し、実環境下の低濃度試験により開発されたもの
であるので、実環境下における広い用途に効果を発揮す
ることが可能で温水機器材料、例えば温水タンク、温水
配管およびその継手。
The steel of the present invention has been developed through low-concentration tests under actual environments, eliminating the conventional bulk concentration chloride aqueous solution tests, so it can be effective in a wide range of applications under actual environments. In hot water equipment materials, such as hot water tanks, hot water piping and their fittings.

あるいは熱交換器材料を始めとし、水環境で使用される
機器、構造材料、配管などで塩素イオ/による応力腐食
割れあるいF′i隙間腐食が発止するおそれのある所に
広く適用できる。特に適しているのH100℃以ドの水
道水環境、冷却水環境における使用である。
It can also be widely applied to heat exchanger materials, equipment used in water environments, structural materials, piping, etc. where stress corrosion cracking or F'i crevice corrosion due to chlorine ions is likely to occur. It is particularly suitable for use in a tap water environment or a cooling water environment at a temperature of 100° C. or higher.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面はオーステナイト系ステンレス鋼スポット溶接
試験呼の80℃%3.5慢食塩水中の2月間の気液界面
浸漬試験における含有Mo量と隙間腐食減量との関係を
示す相関図である。 代理人  中 略 武 雄 [ Mo含f4量(◆璽%)
The attached drawing is a correlation diagram showing the relationship between the amount of Mo contained and the crevice corrosion loss in a two-month gas-liquid interface immersion test of austenitic stainless steel spot welding test sample in 80°C% 3.5 brine. Agent omitted Takeo [Mo content F4 amount (◆%)

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にてC:o、osチ以下、Si:1.0憾
以下、Mn:2.0%以下、Ni : 6.0〜20.
Ofb。 Cr : 16.0〜25.094%Cu : 0.5
 %t−越えλ5憾以下、Mo : 1.5〜5.0 
’4%Nb : 1.0 %以下。 N : 0.05〜0.401を含有し、残部はFeお
よび不可避的不純物より成ることを特徴とする耐塩化物
応力腐食割れ性と耐隙間腐食性のすぐれ九オーステナイ
ト系ステンレス鋼。
(1) Weight ratio: C: o, osti or less, Si: 1.0 or less, Mn: 2.0% or less, Ni: 6.0 to 20.
Ofb. Cr: 16.0-25.094% Cu: 0.5
%t-over λ5 or less, Mo: 1.5-5.0
'4%Nb: 1.0% or less. A nine-austenitic stainless steel with excellent chloride stress corrosion cracking resistance and crevice corrosion resistance, containing N: 0.05 to 0.401, with the remainder consisting of Fe and inevitable impurities.
JP71382A 1982-01-05 1982-01-05 Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride Granted JPS58117862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP71382A JPS58117862A (en) 1982-01-05 1982-01-05 Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP71382A JPS58117862A (en) 1982-01-05 1982-01-05 Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride

Publications (2)

Publication Number Publication Date
JPS58117862A true JPS58117862A (en) 1983-07-13
JPH031372B2 JPH031372B2 (en) 1991-01-10

Family

ID=11481398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP71382A Granted JPS58117862A (en) 1982-01-05 1982-01-05 Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride

Country Status (1)

Country Link
JP (1) JPS58117862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199851A (en) * 1986-08-30 1988-08-18 Aichi Steel Works Ltd Stainless steel having excellent corrosion fatigue resistance and seawater corrosion resistance and its production
CN103451555A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Stainless steel material for water pump impeller and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199851A (en) * 1986-08-30 1988-08-18 Aichi Steel Works Ltd Stainless steel having excellent corrosion fatigue resistance and seawater corrosion resistance and its production
CN103451555A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Stainless steel material for water pump impeller and preparation method thereof

Also Published As

Publication number Publication date
JPH031372B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
Tavares et al. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750
CA2165817C (en) Ferritic-austenitic stainless steel and use of the steel
JP2002529599A5 (en)
EP1129230B1 (en) New use of a stainless steel in seawater applications
EP0546549A1 (en) Line pipe having good corrosion-resistance and weldability
JPS59150692A (en) Welding material of ferrite-austenite two-phase stainless steel
JPS58117862A (en) Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride
JPS619550A (en) Apparatus made of austenite cast iron having resistance to stress corrosion cracking
JPS58204145A (en) Anticorrosive nickel base alloy
JPS58117860A (en) Austenitic stainless steel with superior resistance to stress corrosion cracking due to chloride
JPS59127991A (en) Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking
JPS58197260A (en) 2-phase type stainless steel for acidic oil well
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPS58199850A (en) Martensitic stainless steel for acidic oil well
JPS58117861A (en) Austenitic stainless steel with superior resistance to crevice corrosion and stress corrosion cracking due to chloride
JPS60165363A (en) Highly corrosion resistant and high yield strength two- phase stainless steel
Ghosh et al. Effect of chloride and phosphoric acid on the corrosion of alloy C-276, UNS N08028, and UNS N08367
JPS5912737B2 (en) Duplex stainless steel for oil country tubular goods with excellent corrosion resistance
JPH0357181B2 (en)
JPH0774416B2 (en) Duplex stainless steel with excellent pitting corrosion resistance
JPS619557A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking and pitting corrosion
US3285738A (en) Ferrous-base, hardenable, corrosion-resistant, high-strength, high-ductility alloy
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
Caron et al. A Viable Ni-Cr-Mo Alloy for High-Strength Marine Fastener Applications