JPS58117467A - Fault point identification system for dc line - Google Patents

Fault point identification system for dc line

Info

Publication number
JPS58117467A
JPS58117467A JP5782A JP5782A JPS58117467A JP S58117467 A JPS58117467 A JP S58117467A JP 5782 A JP5782 A JP 5782A JP 5782 A JP5782 A JP 5782A JP S58117467 A JPS58117467 A JP S58117467A
Authority
JP
Japan
Prior art keywords
current
circuit
fault
time
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5782A
Other languages
Japanese (ja)
Inventor
Shiyouzou Tominaka
冨中 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP5782A priority Critical patent/JPS58117467A/en
Publication of JPS58117467A publication Critical patent/JPS58117467A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To calculate distance to a fault point based on hourly changes in the value of affected current by automatically memorizing the affected current in a substation or the like when a short-circuit trouble occurs in a DC line such as feeding circuit. CONSTITUTION:A load current i0 flows to the time t0 when a trouble occurs, Following t0, it increases sharply to reach its maximum im at the time tm and then, decreases sharply to be cut off at the time te. When a DC voltage E(V) is applied to a series connection between an inductance L (Henry) and a resistance R (ohm), current i (ampere) flowing is given by the equation. The waveform before the cutting off of the affected current with a breaker is represented by an exponential function. With this as premise, the constant of the circuit is calculated from the waveform to identify the distance to the fault point.

Description

【発明の詳細な説明】 この発明は、直流式電気鉄道瘍こおけるき電回路におい
て、電気車のモーターの空転によるフラッジオーバーあ
るいは電線支持物の絶縁破壊等により短絡故障が生じた
とき、変電所から故障点までの距離を自動的に標定する
ことを目的としたものであり故障電流の時間的変化によ
り標定することを特徴とするものであって、その原理を
図面と共に説明すると次のとおやである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a power supply circuit for a direct current electric railway station, when a short circuit failure occurs due to flooding due to idling of the motor of the electric car or dielectric breakdown of the wire supports. The purpose of this system is to automatically locate the distance from the fault point to the fault point, and is characterized by locating based on temporal changes in the fault current. Oh no.

拗1図は、直流電車線路の短絡故障発生時の電気回路を
示すが図中のE、Loおよび勧は、変電所の内部の各定
数であり、Eは、直流電源の電圧、Loはりアクタンス
、Roは抵抗である。また、LgおよびR#は、電車線
およびレール等電車線路全体の定数でありL−はインダ
クタンス、Rgは抵抗である。
Figure 1 shows an electric circuit when a short-circuit failure occurs on a DC electric railway line. In the figure, E, Lo, and H are constants inside the substation, and E is the voltage of the DC power supply, and Lo is the actance. , Ro is the resistance. Further, Lg and R# are constants of the entire electric line such as electric line and rail, L- is inductance, and Rg is resistance.

図中のr、は、短絡故障点の抵抗であり、この値は、故
障の状況によって興り、短絡電流の値もまたこの値によ
って変化することになる。
r in the figure is the resistance at the short-circuit failure point, and this value varies depending on the failure situation, and the value of the short-circuit current also changes depending on this value.

このように直流電車線路において短絡故障が生じたとき
には電気車あるいは電車線路設備の損傷を防止するため
、変電所に設けた高速度しゃ断器(以下、しゃ断器とい
う。)などにより自動的に短時間内に囲路を開いて故障
電流をしゃ断するが、第2図にその一例を示している。
In this way, when a short-circuit failure occurs on a DC electric railway line, high-speed circuit breakers (hereinafter referred to as circuit breakers) installed at substations are used to automatically shut down the circuit for a short period of time to prevent damage to electric cars or electric railway line equipment. An example of this is shown in Figure 2, which cuts off the fault current by opening an enclosure inside the circuit.

第2図のグラフは、横軸に時間をとり、縦軸に電流値を
とっている。図中の太い実線は、故障発生前後の電流を
示しているがらが故障発生の時点を示L1この時点まで
は負荷電流(・が流れていたことを示す。t0以後電流
は急激に増加しているが、−の時点で最大i、の電流が
流れ、その後急激に減少しt、の時点で電流はしゃ断さ
れている。図中の点線は、故障が発生したとき、しゃ断
器を動作させず回路を閉じたままにした場合の故障電流
の波形を推定したものであり、時間の経過とともに増大
し、最大値は1.どなることを示している。
In the graph of FIG. 2, the horizontal axis represents time, and the vertical axis represents current value. The thick solid line in the figure shows the current before and after the occurrence of the fault, but it shows the point at which the fault occurred. However, at time -, a maximum current of i flows, and then it rapidly decreases and is cut off at time t.The dotted line in the figure indicates that the breaker is not activated when a fault occurs. This is an estimated waveform of the fault current when the circuit remains closed, and shows that it increases over time and reaches a maximum value of 1.

一般に、インダクタンスしくヘンリ)と抵抗R(オーム
)が直列に接続されたものをこ直流電圧E(ボルト)を
印加した場合、これに流れる電流i(アンペア)は次の
式で与えられる。ただし、tは、時間(セカンド)であ
る。
Generally, when a DC voltage E (volts) is applied to a device in which an inductance (Henry) and a resistor R (ohms) are connected in series, the current i (amperes) flowing therein is given by the following equation. However, t is time (second).

F式のようなものを一般に指数関数と呼ぶが第2図に示
す点線も1式と同様な指数関数で表わすことができるが
、図中の太線で示した故障電流の点線と慮った部分につ
いては同様を二指数関数で表わすことができる。
Something like Equation F is generally called an exponential function, but the dotted line shown in Figure 2 can also be expressed by an exponential function similar to Equation 1, but regarding the part considered to be the dotted line of fault current shown by the thick line in the figure, can be similarly expressed as a biexponential function.

本発明は、故障電流のしゃ断器でしゃ断される以前の波
形が指数関数で表わされることを前提とし、その波形か
ら回路の定数を算出し故障点までの距離を標定しようと
するものである。
The present invention is based on the premise that the waveform of the fault current before it is cut off by the breaker is expressed by an exponential function, and attempts to calculate the constants of the circuit from the waveform and locate the distance to the fault point.

故障電流の波形から回路の定数を算出する手順を、第2
図により説明する。
The procedure for calculating circuit constants from the fault current waveform is explained in the second section.
This will be explained using figures.

まず、第2図に示すような故障発生前後の電流波形を自
動的に記憶できる装置を使用し、次の値を求める。
First, using a device that can automatically store current waveforms before and after the occurrence of a failure, as shown in FIG. 2, the following values are determined.

io;故障発生以前の電流値 to;故障発生時点 i、:故障電流最大値 t、;故障電流が最大値となった時点 1、;1.−1゜−α(t、−co)となるような時点
αは、0.7〜0.8程度とする。
io; Current value to before the fault occurs; Time point i when the fault occurs; Maximum fault current value t; Time 1 when the fault current reaches its maximum value; 1. The time point α at which −1°−α(t, −co) is approximately 0.7 to 0.8.

ら; 1−1 = 1.−1.となるような時点   
 O i、:t、の時点の電流値 i、;t、の時点の電流値 t!を求める式のαの値(0,7〜0.8)は、図の太
い実線と点線が重っている部分に1tを求めるためのも
のである。
et al; 1-1 = 1. -1. the point in time when
O i, : Current value at time i, ; current value t at time t! The value of α (0.7 to 0.8) in the formula for determining 1t is used to determine 1t in the area where the thick solid line and dotted line overlap in the figure.

次に、計算により各定数を求める。Next, each constant is determined by calculation.

C−=i−i s; = i、 −s。C-=i-i s; = i, -s.

k=iダ/’ s L I に一(i、−町、)/(2−k  ) 1a−IQ+i。k=i da/'s L I Niichi (i, - town,) / (2-k) 1a-IQ+i.

1L=E/Is T =t /(−s、ck−t)) L −凡×T i、、、−L −L。1L=E/Is T = t / (-s, ck-t)) L - ordinary x T i,,,-L -L.

8=L4/j、 Lの計算で求めた各定数は、それぞれ次の値を示す。8=L4/j, Each constant obtained by calculating L shows the following value.

■・;推定短絡電流最大値(短絡故障が生じた場合、し
ゃ断器を動作させず回路を閉じたままとした場合の電流
の最大値)(アンペア)虹;回路の抵抗値(オーム) E;直流電源電圧(ボルト) L;回路全体のインダクタンス(ヘンリ)L、、 ; 
i電所内部のインダクタンス(ヘンリ)in、1線路の
インダクタンス(ヘンリ)j、;電線路巣位長りのイン
ダクタンス(ヘンリ/A11)T=L/、R;時定数(
セカンド) S;変電所から故障点までの距離(h)上の定数のうち
、直流電源電圧E、変電所内部のインダクタンスLo、
および電線路単位風当りのインダクタンスI、の値は既
知であり変化しないものと考えてよい。
■・; Estimated maximum short-circuit current (maximum value of current when a short-circuit failure occurs and the circuit breaker is not activated and the circuit remains closed) (Ampere) Rainbow; Circuit resistance value (Ohm) E; DC power supply voltage (volts) L; Inductance of the entire circuit (Henry) L,, ;
i Inductance inside the power station (Henry) in, inductance of one line (Henry) j,; inductance of the wire line length (Henry/A11) T=L/, R; time constant (
Second) S: Of the constants on the distance (h) from the substation to the fault point, the DC power supply voltage E, the inductance Lo inside the substation,
The values of the inductance I per unit wind of the electric line are known and can be considered to be unchanged.

したがらて、故障電流に関するt。、tl、t8、io
、iIおよびi、の値が与えられれば他の定数は計算に
よって求めることができ、故障点の標定ができることに
なる。
Therefore, t for the fault current. ,tl,t8,io
, iI and i, the other constants can be calculated and the fault point can be located.

これらの計算は、故障電流を自動的に記憶する装置と小
形の電子計算機を組合せれば自動的に処理することは容
易であゆ、計算値を表示する装置を付加し、故障点標定
装置とすることも容易である。
These calculations can be easily processed automatically by combining a device that automatically stores the fault current with a small computer, and a device that displays the calculated values can be added as a fault point locating device. It is also easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、゛本発明応用の対象となる直流電車線路の短
絡故障発生時の状態を示す電気回路図、第2図は、直流
電車線路短絡故障時の電流波形の一例および本発明の原
理説明図であi。
Fig. 1 is an electric circuit diagram showing the state when a short-circuit fault occurs on a DC electric railway line to which the present invention is applied, and Fig. 2 is an example of the current waveform at the time of a short-circuit failure on a DC electric railway line and the principle of the present invention. In the explanatory diagram i.

Claims (1)

【特許請求の範囲】[Claims] 直流式電気鉄道におけるき電回路等の直流電線路におい
て短絡故障が生じた場合、当該電線路に電力を供給する
変電所等において故障電流を自動的に記憶し、その値の
時間的変化の状態から故障点までの距離を算出すること
を特徴とした直流電線路故障点標定方式。
When a short-circuit fault occurs in a DC power line such as a feeding circuit in a DC electric railway, the fault current is automatically stored in the substation that supplies power to the power line, and the current value is checked based on the state of change over time. A DC power line fault location method that calculates the distance to the fault point.
JP5782A 1982-01-05 1982-01-05 Fault point identification system for dc line Pending JPS58117467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5782A JPS58117467A (en) 1982-01-05 1982-01-05 Fault point identification system for dc line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5782A JPS58117467A (en) 1982-01-05 1982-01-05 Fault point identification system for dc line

Publications (1)

Publication Number Publication Date
JPS58117467A true JPS58117467A (en) 1983-07-13

Family

ID=11463582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5782A Pending JPS58117467A (en) 1982-01-05 1982-01-05 Fault point identification system for dc line

Country Status (1)

Country Link
JP (1) JPS58117467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177276A (en) * 1984-02-22 1985-09-11 Japanese National Railways<Jnr> Locating method of fault point of direct-current traction feeding circuit
JPS61196712A (en) * 1985-02-23 1986-08-30 永楽電気株式会社 Fault-point location for electric railway feeding circuit
JP2017215293A (en) * 2016-06-02 2017-12-07 西日本旅客鉄道株式会社 Feeding circuit failure point standardization system for electric railroad and feeding circuit failure point standardization method for electric railroad
US10214390B2 (en) 2015-11-17 2019-02-26 Mitsubishi Electric Corporation Passenger conveyor
CN113625108A (en) * 2021-08-02 2021-11-09 四川轻化工大学 Flexible direct current power distribution network fault identification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177276A (en) * 1984-02-22 1985-09-11 Japanese National Railways<Jnr> Locating method of fault point of direct-current traction feeding circuit
JPH073450B2 (en) * 1984-02-22 1995-01-18 財団法人鉄道総合技術研究所 Fault location method for DC electric railway feeder circuit
JPS61196712A (en) * 1985-02-23 1986-08-30 永楽電気株式会社 Fault-point location for electric railway feeding circuit
US10214390B2 (en) 2015-11-17 2019-02-26 Mitsubishi Electric Corporation Passenger conveyor
JP2017215293A (en) * 2016-06-02 2017-12-07 西日本旅客鉄道株式会社 Feeding circuit failure point standardization system for electric railroad and feeding circuit failure point standardization method for electric railroad
CN113625108A (en) * 2021-08-02 2021-11-09 四川轻化工大学 Flexible direct current power distribution network fault identification method

Similar Documents

Publication Publication Date Title
CN109245035B (en) Train power supply system and leakage protection device and method thereof
DE10212493A1 (en) Arrangement for monitoring insulation of equipment of DC system isolated from earth has dual insulation monitoring devices operating alternately
JP6502763B2 (en) Ground fault protection device and ground fault protection system
JPS58117467A (en) Fault point identification system for dc line
KR20060132420A (en) Ground fault protective relaying scheme using distance relay in traction power supply system
CN211236182U (en) Device for searching generator stator bar ground fault point
US3553571A (en) Device including direction responsive switching means for indicating and protecting against short-circuits in a dc voltage network
CN112630686A (en) Method and system for identifying single-phase earth fault line of urban rail medium-voltage system
JPH07266936A (en) Method for making short circuit between electric overhead line and rail
RU2096795C1 (en) Device for detection of distance to single-phase short-circuit to ground in electric power transmission lines for 6-35 kv with insulated or compensated neutral wire
JPH0145803B2 (en)
JPS6243142B2 (en)
EP0652836B1 (en) System sectioning point for electric railway catenaries
US3368109A (en) Generator flashover protection circuit arrangements
JP2948106B2 (en) High-voltage load switch-on alarm
JPH0227888B2 (en)
SU977253A1 (en) Apparatus for monitoring the work of power transformer of railway signal point
JP4150114B2 (en) Arrestor operation start voltage measurement method
US1722419A (en) System for the distribution of electric energy
EP1453174A1 (en) Method and apparatus for detecting short-circuits in branches of the power supply for railway sections
AT409248B (en) Protective device
Gambhir et al. High Voltage Safety Considerations for Indian EVs
JPH0740224Y2 (en) AC superimposed DC voltage application device
SU1192026A1 (en) Device for overvolt age protection of d,c,operative network
JP2001095151A (en) Solidly grounded neutral system capable of preventing trouble current