JPS58117445A - Steel pipe detecting method by radiation penetration - Google Patents

Steel pipe detecting method by radiation penetration

Info

Publication number
JPS58117445A
JPS58117445A JP56210645A JP21064581A JPS58117445A JP S58117445 A JPS58117445 A JP S58117445A JP 56210645 A JP56210645 A JP 56210645A JP 21064581 A JP21064581 A JP 21064581A JP S58117445 A JPS58117445 A JP S58117445A
Authority
JP
Japan
Prior art keywords
steel pipe
radiation
cross
detector
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56210645A
Other languages
Japanese (ja)
Inventor
Isamu Taguchi
勇 田口
Kenichi Takimoto
滝本 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56210645A priority Critical patent/JPS58117445A/en
Publication of JPS58117445A publication Critical patent/JPS58117445A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To perform tomography at cross-section within a steel pipe in sequence and enable the non-destructive inspection in detail, by a method wherein a radiation beam is irradiated into the steel pipe at diameter direction from every angle, distribution of radiation intensity obtained by a detector is processed at a central processing processing unit, and images are synthesized and outputted to an image reproducing device. CONSTITUTION:In order to obtain a tomographic image regarding a cross-section 2 of a steel pipe 1, a radiation source 4 and a detector 7 are aligned so that a radiation beam 6 passes through the cross-section 2 of the steel pipe 1, and both the radiation source 4 and the detector 7 are rotated integrally about the steel pipe 1 in direction A. The rotation ranges 180- 360 degrees, and the radiation beam 6 irradiated from the radiation source 4 during the rotation penetrates the steel pipe 1 and is detected by the detector 7 continuously in every angle. The radiation ray irradiated from a slit 5 is detected by another detector (GM counter) 8 in the direction different from that of the steel pipe 1, thereby penetrability (including absorption factor) of the radiation ray is determined. Detection values (a), (b) of the radiation are entered through an amplifier 9 and A-D converter 10 into a buffer memory 11 of a central processing unit (CPU)12. Intensity stored in the memory 11 is processed in the CPU12 so that it is projected reversely to the cross-section 2 and then displayed in a CRT17.

Description

【発明の詳細な説明】 本発明は鋼管に放射線を照射し、鋼管を断層的に非破壊
検査する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cross-sectionally nondestructively inspecting a steel pipe by irradiating the steel pipe with radiation.

最近、油井管用または海底、地下ケーブル用などC−鋼
管の適用分野が広がり、需要も高い。しかし、適用され
る環境は増々厳しい条件になっており、装造した鋼管の
肉厚、偏心、溶接部、表面処理など形状や内部欠陥を厳
密に検査しなければならない。
Recently, the fields of application of C-steel pipes have been expanding, such as for oil country tubular goods, submarine and underground cables, and demand is high. However, the environments in which it is applied are becoming increasingly severe, and the shape and internal defects of the installed steel pipes, such as wall thickness, eccentricity, welds, and surface treatment, must be strictly inspected.

しかも、全数検査をする必要があり、かつ迅速に行なわ
なければならない。鋼管の内部欠陥を検査する手法とし
ては、一般的にX線、超音波、音響などを用いる非破壊
試験法あるいは目視観察法かある。しかし、Xa法は照
射された被検体の全厚みにわたる投影像を撮影するだけ
で、任意の断面の断層像を得ることができなかった。超
音波法は音波の透過能が弱く、鋼管などの内部欠陥を鮮
明に表わすことができなかった。また、音響法は被検体
中の欠陥部の有無を調べるだけで、その場所を明確に表
示することはできなかった。また目視観察法では外観だ
けで、内部情報を得ることはできない。
Moreover, it is necessary to conduct a complete inspection, and it must be done quickly. Methods for inspecting internal defects in steel pipes generally include non-destructive testing methods using X-rays, ultrasonic waves, acoustics, etc., or visual observation methods. However, the Xa method only takes a projection image over the entire thickness of the irradiated object, and cannot obtain a tomographic image of an arbitrary cross section. The ultrasonic method has a weak sound wave transmission ability and cannot clearly reveal internal defects in steel pipes and the like. In addition, the acoustic method only checks for the presence or absence of defective parts in the specimen, but cannot clearly indicate the location. Furthermore, visual observation methods cannot provide internal information only by observing the external appearance.

従って、現在、各分野で使われている方法ではナベて被
検体の各横断面に関する情報を得ることは困難であった
。本発明はX線透過コンビュータル断層撮影法といわれ
ている手法で、とくに、鋼管の断面を非接触非破壊で測
定する方法が特徴である。ここで、上記で述べたX線断
層撮影法について若干説明する。
Therefore, it is difficult to obtain information regarding each cross-section of a subject using the methods currently used in various fields. The present invention is a method called X-ray transmission computational tomography, and is particularly characterized by a non-contact, non-destructive method of measuring the cross section of a steel pipe. Here, the X-ray tomography method described above will be briefly explained.

最近、X線撮影装置とコンピューターとを組み合せて人
体の一部の横断面を撮影する、いわゆる。
Recently, so-called "cross-sectional images" of a part of the human body are taken using a combination of an X-ray imaging device and a computer.

Xa透過コンピューター断層撮影法が開発された。Xa transmission computed tomography has been developed.

この方法は吸収係数分解能が極めて高いため、従来よく
見えなかった内部組織1例えば、頭部、腹部などを鮮明
に撮影、あるいは映像化が可能であり、医学の分野では
国内外の各病院で利用され、急速に普及している。一方
、工学の分野、とくに、金属材料関係では素材および製
品に至る各部門での非破壊検査が必要となってきており
、今までの非破壊検査手法では出来なかった。横断面の
内部状態を知ることができるため、今後医療専用から無
機材料の検査方法に適用可能と思われる。
Since this method has an extremely high resolution of absorption coefficient, it is possible to clearly photograph or visualize internal tissues, such as the head and abdomen, which were previously difficult to see.In the medical field, it can be used at various hospitals in Japan and overseas. and is rapidly becoming popular. On the other hand, in the field of engineering, particularly in the field of metal materials, non-destructive testing has become necessary in all departments, from materials to products, which was not possible with conventional non-destructive testing methods. Since it is possible to know the internal state of a cross section, it is thought that it can be applied in the future from medical use to testing methods for inorganic materials.

本発明は前記x、IJ透過コンピューター断層撮影の手
法を応用し、鋼管の横断面、すなわち、肉厚。
The present invention applies the x, IJ transmission computed tomography technique to measure the cross section of a steel pipe, that is, the wall thickness.

偏心、溶接部などの状態および表面処理面(樹脂ライニ
ング)と鋼管との境界部などを詳細に非破壊検査するこ
とができる放射線透過鋼管検査方法を提供するものであ
る。
The present invention provides a radiographic steel pipe inspection method that allows detailed non-destructive inspection of eccentricity, conditions of welds, and boundaries between surface-treated surfaces (resin linings) and steel pipes.

この発明の方法において、放射線源としてはX線照射装
置CX線)あるいは137(H8(γ線)、O0(γ線
) 、!!12Of(中性子)などのラジオアイソトー
プが用いられ、これに対向して配置される放射線検出器
としては半導体検出器シンチレーション計数管、aM(
ガイガーミュラー)計数管その他通常の検出器が用いら
れる。また、断層画像を演算合成する中央処理装置とし
ては汎用コンピュータが用いられ1画隊再生装置(陰極
線管:CRT)を用いて鋼管の断層撮影を行なう。すな
わち、放射線ビームを鋼管の直径方向に横断照射し、検
出器で透過放射線強度全検出し、記憶機構に記憶させさ
らに、鋼管断面上で、その中心を軸として回転し、各角
度から放射線を照射し、検出器で得られた放射線強度分
布を前記中央処理装置で処理し。
In the method of this invention, an X-ray irradiation device (C The radiation detector placed in the area is a semiconductor detector scintillation counter, aM (
(Geiger Muller) counter tube and other conventional detectors are used. Further, a general-purpose computer is used as a central processing unit for calculating and synthesizing tomographic images, and a tomographic image of a steel pipe is performed using a single-stage reproduction device (cathode ray tube: CRT). In other words, a radiation beam is irradiated across the steel pipe in the diametrical direction, the entire transmitted radiation intensity is detected by a detector, stored in a storage mechanism, and then the beam is rotated around the center of the cross section of the steel pipe to irradiate radiation from each angle. Then, the radiation intensity distribution obtained by the detector is processed by the central processing unit.

画像を演算合成し、その画像信号を画像再生装置に出力
する。
Images are computationally synthesized and the resulting image signal is output to an image reproduction device.

上記のように、本発明は従来の手法では不可能であった
。鋼管内部の横断面の断層撮影を順次行ない詳細に非破
壊検査ができることが特徴である。
As mentioned above, the present invention was not possible using conventional techniques. It is characterized by the ability to perform detailed non-destructive inspections by sequentially taking cross-sectional tomography images of the inside of steel pipes.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

第1図は鋼管lの横断面2を本発明によって検査してい
る状態を示す。鋼管1は放射線照射装置3と検出器7を
結ぶ中心に設定し、矢印方向に水平に移動させ、順次必
要箇所の横断面を測定する。
FIG. 1 shows a cross section 2 of a steel pipe 1 being inspected according to the invention. The steel pipe 1 is set at the center connecting the radiation irradiation device 3 and the detector 7, and is moved horizontally in the direction of the arrow to successively measure the cross section at the required location.

鋼管lの形状は照射部と検出部を大きくとれば大径管(
1000wyrφ)測定も原理的に装置化は可能である
が、実用化を考慮した場合には直径300諸以下肉厚L
og以下が適当である。
The shape of the steel pipe l is large diameter pipe (
1000wyrφ) measurement is also possible in principle, but when considering practical use, the diameter is 300mm or less and the wall thickness L
og or less is appropriate.

放射線照射装置30線源4としてはX線および”co 
(30Ci )を代表とするγ線などが用し)られ、一
般に使用されるX線では、例えば、その管−圧はl O
O〜250 KV、 、管電流100〜150mA  
などの値を用いるのが適当である。
The radiation irradiation device 30 and the radiation source 4 include X-rays and "co
In commonly used X-rays, for example, the tube pressure is 1 O
O~250 KV, Tube current 100~150mA
It is appropriate to use a value such as

スリット5は放射線が必要以上に広がらなし1ようなビ
ーム径6になるように直径10tJl以下(二絞ってり
る。
The slit 5 has a diameter of 10 tJl or less (2 diaphragms) so that the radiation does not spread more than necessary and the beam diameter is 6.

検出器7はスリット5をとおって照射されたビーム6の
放射線源4に対向し、円周上(ユ複数個並べて配置され
ており、線源と検出器の間隔は適意(二出来るが、例え
ば400〜800器などである。
The detector 7 faces the radiation source 4 of the beam 6 irradiated through the slit 5, and a plurality of detectors are arranged in parallel on the circumference. There are 400 to 800 pieces.

この検出器は半導体シンチレーション計数管aM(ガイ
ガー・ミュラー)計数管などが適当であるが、その他の
検出器も用いてよし)。
A semiconductor scintillation counter (aM (Geiger-Muller) counter or the like is suitable for this detector, but other detectors may also be used).

鋼管1の横断面2について断層画像を得る(二は、まず
ビーム6が鋼管1の横断面2を通るよう(二数射線源4
と検出器7を一直線上(二対とし5両者力;一体となっ
て鋼管1を中心にA方向に回転する。
Obtain a tomographic image for the cross section 2 of the steel pipe 1 (2) First, the beam 6 passes through the cross section 2 of the steel pipe 1 (2 ray sources 4
and the detector 7 are placed in a straight line (two pairs 5); both rotate together in the direction A around the steel pipe 1.

回転は180° から360° とし、その間1二放射
線源4から照射した放射線ビーム675;鋼管1を透過
して検出器7で各角度から連続的(二検出する。
The rotation is from 180° to 360°, during which time a radiation beam 675 is emitted from the radiation source 4; it passes through the steel pipe 1 and is continuously detected from each angle by the detector 7.

また、スリット5から照射された放射線は鋼管1方向以
外に別の検出7器(0M計数管)8で検出し、放射線の
透過度(吸収度合)を求める。(第2図番照) 放射線の検出値a、bは第2図ζ二示すよう;二増幅器
9およびアナログ・デジタル変数器1oを経て中央処理
装置(CPU)12のノ(ツ7アメモ1ノーllに入力
される。すなわち、検出値aは鋼管lを透過した放射線
で、同すは照射ビームそのままであり、ある位置でのa
とbとの比として、透過放射線の強度分布がバックアメ
モリ11に記憶される。同メモリ11に記憶された強度
は中央処理装置(CPU)12において、さらに、横断
面2に逆投影されるように演算処理される。すなわち、
第3図(1)に示したように検出された強度工は、ある
位置の横断面2上に強度工に比例して一様に配分される
。配分された値は画像が再生された時の画像の濃淡を表
わすもので1例えば16段階のグレイスケールで0RT
17に表示される。
Further, the radiation irradiated from the slit 5 is detected by another detector 7 (0M counter) 8 in a direction other than the direction of the steel pipe 1, and the transmittance (degree of absorption) of the radiation is determined. (See Figure 2.) The detected radiation values a and b are as shown in Figure 2; In other words, the detected value a is the radiation transmitted through the steel pipe l, and the detected value a is the irradiation beam as it is, and the value a at a certain position is
The intensity distribution of the transmitted radiation is stored in the backup memory 11 as the ratio between b and b. The intensity stored in the memory 11 is further processed in a central processing unit (CPU) 12 so as to be back-projected onto the cross section 2. That is,
As shown in FIG. 3(1), the detected strength is uniformly distributed on the cross section 2 at a certain position in proportion to the strength. The distributed values represent the shading of the image when it is played back.1For example, 0RT with 16 levels of gray scale.
17 is displayed.

上記の−ように、横断面2について1回目の測定が終っ
たのち、放射線照射装置3および線源4と検出器7を対
として、その中間に甲管1を置き、それを中心にして、
上記対を回転させ、放射線ビーム6の方向を変えて、1
回目と同様に測定を行なう。上記操作を繰り返して順次
第3図(1)の(a)、(琺(C)に示すような逆投影
像を得る。これらの逆投影像は中央処理装置(cpty
)12において演算処理により重ね合わされ、主メモリ
13に記憶される。重ね合わされた像は第3図(1)に
示すようにある定点りの位置の最小単位像E(第3図(
2))が生ずる。これらの測定を180°から360°
にわたって、各角度での横断面2の像を求めたのち全体
像を鮮明に映像させる。
As mentioned above, after the first measurement of the cross section 2 is completed, the radiation irradiation device 3, the radiation source 4, and the detector 7 are paired, the upper tube 1 is placed in the middle, and with this as the center,
By rotating the pair and changing the direction of the radiation beam 6, 1
Perform the measurement in the same way as the first time. By repeating the above operations, back projection images as shown in Figure 3 (1) (a) and (C) are obtained in sequence. These back projection images are processed by the central processing unit (cpty).
) 12, they are superimposed by arithmetic processing and stored in the main memory 13. The superimposed images are the minimum unit image E (Fig. 3(1)) at a fixed point as shown in Fig. 3(1).
2)) occurs. These measurements can be made from 180° to 360°
After obtaining images of the cross section 2 at each angle over the entire area, the entire image is clearly imaged.

つぎに、鋼管1を長さ方向に順次移動させて、各位置と
も上記のように放射線を照射し1画像処理を行なう。鋼
管1の横断面2の画像は1例えば512X512の画素
から構成され、それぞれが前記の16段階のグレイスケ
ールで表示される。
Next, the steel pipe 1 is sequentially moved in the length direction, and each position is irradiated with radiation as described above to perform one image processing. The image of the cross section 2 of the steel pipe 1 is composed of, for example, 512×512 pixels, each of which is displayed in the 16 gray scales described above.

主メモ1J13には2次元配置の番地に、それぞれの番
地に対応する画素が記憶される。なお、第3図(2)に
も示したように像Eの周囲には画像のぼけが生じるが、
これは検出された強度をCPU12において、演算によ
りフィルタリング処理を行ない除くことができる。1画
素の大きさは例えはlIIIIXlmである。主メモリ
13に記憶された画像は続出装置14により読出され、
デジタル・アナログ変換器15でアナログ信号に変換さ
れる。同信号は増幅器16を経て、CRTl’l’に入
力され。
The main memo 1J13 stores pixels corresponding to respective addresses in a two-dimensional arrangement. Note that as shown in FIG. 3 (2), image blur occurs around image E;
This can be removed by performing a filtering process on the detected intensity using calculations in the CPU 12. For example, the size of one pixel is lIIIXlm. The image stored in the main memory 13 is read out by the succession device 14,
The signal is converted into an analog signal by a digital-to-analog converter 15. The signal passes through the amplifier 16 and is input to the CRT l'l'.

鋼管lの横断面2の画像が表示される。An image of a cross section 2 of the steel pipe 1 is displayed.

中央処理装置12における演算処理はプログラムストア
18から読み出されたプログラムに従って実行される。
Arithmetic processing in the central processing unit 12 is executed according to a program read from the program store 18.

以上が本発明に関する詳細な説明である。The above is a detailed description of the present invention.

実施例1 第4図は本発明により小径シームレス鋼管を検査した断
層写真を模式的に示したものである。
Example 1 FIG. 4 schematically shows a tomographic photograph of a small-diameter seamless steel pipe inspected according to the present invention.

鋼管の横断面の大きさは外径56mφ、内径50龍φで
、長さ方向の3箇所の断層像を測定した。
The cross-sectional size of the steel pipe was 56 mφ in outer diameter and 50 mm in inner diameter, and tomographic images at three locations in the length direction were measured.

測定条件はつぎのとおりである。The measurement conditions are as follows.

放射線源はX線装置(管電圧150 KVP、管電流1
20 mA )を用い、1箇所の横断面の走査時間は4
.5秒1画像マトリックスは512X512.検出器は
B G o (B1−Ge 0xide )であった。
The radiation source is an X-ray device (tube voltage 150 KVP, tube current 1
20 mA), and the scanning time for one cross section was 4
.. 5 seconds 1 image matrix is 512X512. The detector was BGo (B1-GeOxide).

第4図において、鋼管左端部か6’1oomの最初の測
定箇所では(a)のような形状であり、同500龍の箇
所では(b)、同1000篇の箇所では(C)であった
In Figure 4, the shape is as shown in (a) at the first measurement point at 6'1 oom, which is the left end of the steel pipe, (b) at the 500-meter point, and (C) at the 1000-meter point. .

このようにシームレス鋼管を製造するに当り、その位置
によって横断面の状態が変化している様子を観察できた
。さらに、同測定結果から、内外面の欠陥部、内外径の
寸法、横−断面の濃淡度合による成分偏析なども同時に
検査することができた。
In manufacturing seamless steel pipes, we were able to observe how the cross-sectional condition changed depending on the position. Furthermore, from the same measurement results, it was possible to simultaneously inspect defective parts on the inner and outer surfaces, dimensions of the inner and outer diameters, component segregation due to the degree of density in the cross section, etc.

実施例2 一第5図は本発明により表面に樹脂ライニング処理をし
た中径溶接鋼管を検査した断層写真を模式%式% 第5図では直径3oO1l+の鋼管外表面にポリエチレ
ンを約51+112イニングして、その横断面を観察し
た。(A)は鋼管外表面溶接部とポリエチレンとの境界
部を表わしたものであるが、溶接部の欠陥(ミクロクラ
ック)の発生気泡が残存していることがわかり、(B)
は鋼管外表面とポリエチレン塗覆層とが剥離している状
態を、(C)はポリエチレン層が他に比べて、薄く塗覆
されていることがそれぞれ観察された。
Example 2 - Fig. 5 is a schematic diagram showing a tomographic photograph of a medium-diameter welded steel pipe whose surface has been treated with resin lining according to the present invention. , the cross section was observed. (A) shows the boundary between the outer surface weld of the steel pipe and the polyethylene, and it can be seen that bubbles caused by defects (microcracks) in the weld remain, and (B)
In (C), it was observed that the outer surface of the steel pipe and the polyethylene coating layer were peeled off, and in (C), it was observed that the polyethylene layer was coated thinner than in the other cases.

以上本発明による実施例につ7いて述べたが、被測定物
質によって、線源を選定する必要があり。
Although seven embodiments of the present invention have been described above, it is necessary to select a radiation source depending on the substance to be measured.

例えば、前記のように60 COなどのr線、X線など
があるが、鉄鋼等の材質では前者の線源の方が透過しや
すい。しかし、取扱いの点を考慮すると後者のX線源の
方が簡単であり、本発明のように比較的厚さの小さい鋼
管では十分である。
For example, as mentioned above, there are r-rays such as 60 CO and X-rays, but the former radiation source is easier to penetrate through materials such as steel. However, in terms of handling, the latter X-ray source is simpler, and a relatively thin steel pipe as in the present invention is sufficient.

今後、鋼管に関しては油井管、海底ケーブル用、地中用
などその用途は広がり、需要も高くなってきている折か
ら、製造元での検査は十分性なわれておらず、その方法
も貧弱である。したがって。
In the future, the use of steel pipes will expand to include oil country tubular goods, submarine cables, and underground use, and the demand will increase, so inspections at manufacturers are not being conducted sufficiently and the methods for doing so are also poor. . therefore.

本発明は欠陥部の正確な検出、早期発見により、歩留の
向上、さらに、事後対策の迅速化、適正化がはかられ1
品質のよい製品を供給することができ、その効果は大き
い。
The present invention improves yield through accurate detection and early detection of defective parts, as well as speeding up and optimizing follow-up measures1.
We can supply high-quality products, which has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における放射線の照射と検出を説明する
略図、第2図は本発明の方法を実施する装置のブロック
図、第3図(1)l (2)は像の逆投影法の説明図、
第4図、第5図は本発明の方法によって得られた鋼管の
断層写真の一部を模式的に示したものである。 l・・・鋼管       2・・・横断面3・・・放
射線照射装置  4・・・線源5・・・スリット   
   6・・・ビームス8・・・検出器      9
・・・増幅器10・・・アナログ・デジタ 11・・・
バツファメモリル変換器     12・・・中央処理
装置13・・・主メモリ         (cptr
)14・・・読出装置     15・・・デジタル・
アナ口16・・・増幅器        グ変換器17
・・・ORT       18・・・プログラムスト
ア第 3 団(す (C) 茅 4 国 (θ、)(句          (Cつ281− (す
Fig. 1 is a schematic diagram explaining radiation irradiation and detection in the present invention, Fig. 2 is a block diagram of an apparatus for carrying out the method of the present invention, and Fig. 3 (1) and (2) are diagrams showing the back projection method of images. Explanatory diagram,
FIGS. 4 and 5 schematically show a portion of a tomographic photograph of a steel pipe obtained by the method of the present invention. l...Steel pipe 2...Cross section 3...Radiation irradiation device 4...Radiation source 5...Slit
6... Beams 8... Detector 9
...Amplifier 10...Analog/digital 11...
Buffer memory converter 12...Central processing unit 13...Main memory (cptr
)14...Reading device 15...Digital
Anal port 16...Amplifier converter 17
...ORT 18...Program Store 3rd Group (Su (C) Kaya 4 Country (θ,) (phrase (Ctsu281- (Su)

Claims (1)

【特許請求の範囲】 放射線源と常に直線状に位置するように複数の検出器を
設け、その間に被検査鋼管を位置させ。 該鋼管の直径方向に放射線ビームを横断照射し。 透過放射巌強度を検出器で検出し、記憶機構に記憶させ
、さらに、鋼管をその長手方向に順次移動させ、その径
断面の中心を軸として回転し、各角度から放射線を照射
し、検出器で得られた結果から放射線強度分布を求め、
さらに該分布を画像として表示し、鋼管の断面を順次映
像し、検査することを特徴とする放射線透過鋼管検査方
法。
[Claims] A plurality of detectors are provided so as to be always located in a straight line with the radiation source, and a steel pipe to be inspected is located between them. A radiation beam is irradiated across the diameter of the steel pipe. The transmitted radiation intensity is detected by a detector and stored in a storage mechanism, and then the steel pipe is sequentially moved in its longitudinal direction, rotated around the center of its diametric cross section, irradiated with radiation from each angle, and then Obtain the radiation intensity distribution from the results obtained,
A radiation-transmissive steel pipe inspection method characterized in that the distribution is further displayed as an image, and cross sections of the steel pipe are sequentially imaged and inspected.
JP56210645A 1981-12-30 1981-12-30 Steel pipe detecting method by radiation penetration Pending JPS58117445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210645A JPS58117445A (en) 1981-12-30 1981-12-30 Steel pipe detecting method by radiation penetration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210645A JPS58117445A (en) 1981-12-30 1981-12-30 Steel pipe detecting method by radiation penetration

Publications (1)

Publication Number Publication Date
JPS58117445A true JPS58117445A (en) 1983-07-13

Family

ID=16592733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210645A Pending JPS58117445A (en) 1981-12-30 1981-12-30 Steel pipe detecting method by radiation penetration

Country Status (1)

Country Link
JP (1) JPS58117445A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122239A (en) * 1984-07-10 1986-01-30 Nippon Telegr & Teleph Corp <Ntt> Method for inspecting flaw of pipe
JPS61155844A (en) * 1984-12-28 1986-07-15 Toshiba Corp Ct scanner device
JPS61115508U (en) * 1984-12-28 1986-07-21
EP0216705A2 (en) * 1985-09-23 1987-04-01 Commissariat A L'energie Atomique Monitoring system for moving cylindrical objects by making use of penetrating radiation
US5420427A (en) * 1990-06-22 1995-05-30 Integrated Diagnostic Measurement Corporation Mobile, multi-mode apparatus and method for nondestructively inspecting components of an operating system
US5614720A (en) * 1990-06-22 1997-03-25 Integrated Diagnostic Measurement Corporation Mobile, multi-mode apparatus and method for nondestructively inspecting components of an operating system
US9217720B2 (en) 2009-08-28 2015-12-22 Shawcor Ltd Method and apparatus for external pipeline weld inspection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130891A (en) * 1978-04-03 1979-10-11 Agency Of Ind Science & Technol Tomograph using analogue picture memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130891A (en) * 1978-04-03 1979-10-11 Agency Of Ind Science & Technol Tomograph using analogue picture memory

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122239A (en) * 1984-07-10 1986-01-30 Nippon Telegr & Teleph Corp <Ntt> Method for inspecting flaw of pipe
JPS61155844A (en) * 1984-12-28 1986-07-15 Toshiba Corp Ct scanner device
JPS61115508U (en) * 1984-12-28 1986-07-21
JPH039011Y2 (en) * 1984-12-28 1991-03-06
EP0216705A2 (en) * 1985-09-23 1987-04-01 Commissariat A L'energie Atomique Monitoring system for moving cylindrical objects by making use of penetrating radiation
US5420427A (en) * 1990-06-22 1995-05-30 Integrated Diagnostic Measurement Corporation Mobile, multi-mode apparatus and method for nondestructively inspecting components of an operating system
US5614720A (en) * 1990-06-22 1997-03-25 Integrated Diagnostic Measurement Corporation Mobile, multi-mode apparatus and method for nondestructively inspecting components of an operating system
US9217720B2 (en) 2009-08-28 2015-12-22 Shawcor Ltd Method and apparatus for external pipeline weld inspection

Similar Documents

Publication Publication Date Title
US4415980A (en) Automated radiographic inspection system
Edalati et al. The use of radiography for thickness measurement and corrosion monitoring in pipes
KR102255336B1 (en) Method for determining geometric parameters and/or material conditions of an object under irradiation by radiography
JPS58117445A (en) Steel pipe detecting method by radiation penetration
JP3650063B2 (en) Heat transfer tube inspection device
JPS62277542A (en) Method and apparatus for diagnosing piping by comparing density of x-ray radiographic photograph
JP3199417B2 (en) Standard specimen for non-destructive inspection of piping
Ghandourah et al. Evaluation of Welding Imperfections with X-ray Computed Laminography for NDT Inspection of Carbon Steel Plates
JPS58161853A (en) Testing of radiation transmission for tube
JP2019090740A (en) Radioscopic non-destructive inspection method and radioscopic non-destructive inspection apparatus
JPH03148006A (en) Thickness measuring method of duplex pipe of different materials
Ewert et al. X-ray tomographic in-service inspection of girth welds-The European project TomoWELD
JPS60196654A (en) Inspection of coated welding rod by transmission of radioactive rays
Wiguna et al. 3D micro-radiography imaging for quick assessment on small specimen
Ghandourah et al. Evaluation of Welding Defects with X-ray Digital Laminography for NDT inspection of Carbon Steel Plate
Lima et al. Investigation of weld cracks by microfocus tomography
JPS63168545A (en) Measurement of detect using x-ray ct apparatus
JP2007107959A (en) Rt three-dimensional sizing apparatus
Vengrinovich et al. NEW TECHNIQUES FOR RESOLUTION ENHANCEMENT IN 3D X-RAY TOMOGRAPHIC IMAGING FROM INCOMPLETE DATA
JP3787347B2 (en) Heat transfer tube group inspection device
Redmer et al. Mobile Tomographic X-Ray Inspection
JPS60181640A (en) Radiation tomography for industrial use
JP5614464B2 (en) X-ray CT inspection method for composites containing different materials
JPS60188833A (en) Transmission inspecting method of wire containing flux by radiant ray
JPS60181639A (en) Computer-tomography of industrial sample by radiation