JPS58117345A - Fuel-air mixture control device of reformed alcohol gas engine - Google Patents

Fuel-air mixture control device of reformed alcohol gas engine

Info

Publication number
JPS58117345A
JPS58117345A JP56210212A JP21021281A JPS58117345A JP S58117345 A JPS58117345 A JP S58117345A JP 56210212 A JP56210212 A JP 56210212A JP 21021281 A JP21021281 A JP 21021281A JP S58117345 A JPS58117345 A JP S58117345A
Authority
JP
Japan
Prior art keywords
gas
fuel
ratio
exhaust
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56210212A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56210212A priority Critical patent/JPS58117345A/en
Publication of JPS58117345A publication Critical patent/JPS58117345A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve thermal efficiency and to enhance fuel consumption improving effect, by the constitution wherein exhaust gas as a surplus gas is returned to intake air in an operating region in which an excess air ratio is one or more, thereby reducing pumping loss to a large extent. CONSTITUTION:Based on the signals of an accelerator pedal operating amount S and engine speed Ne, the load factor L of an engine 1 is computed. A gas/fuel ratio alphago which is computed based on the load factor L and a limit gas/fuel ratio alphaglim which is determined based on a gas supplying pressure are compared. The smaller value is set as a gas/fuel ratio alphag for control. Based on the signal of the ratio alphag, the negative pressure supplied to the pressure actuating chamber of an actuator which drives an EGR valve 34 is controlled, the opening degree of the valve 34 is controlled, and the EGR rate is made large in response to the increase in the ratio alphag.

Description

【発明の詳細な説明】 本発明はアルコール改質ガスエンジンの混合気制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixture control device for an alcohol reformed gas engine.

従来のアルコール改質ガスエンジンとしては1夕噛えば
第1図に示したようなものがある(特開昭52−113
426参照)。
As a conventional alcohol reformed gas engine, there is one like the one shown in Fig.
426).

図において、エンジン1の排気通路2には改質触媒3を
偏えた改質器4を介装し、この改質器4に供される改質
用アルコールはアルコール流量制御用の電磁弁5及び逆
止弁6を備えたアルコール通路7を介して定圧ポンプ8
により、改質器4のアルコール人口9に送給される。改
質器4の改質カス出口10はガス通路IIを介してガス
流量制御用のガスバルブ12に接続される。エンジンの
暖気運転により改質触媒3の温度が設定値(例えば28
0℃)以上になって充分な改質能力を備えるようになる
と、電磁弁5が開いて改質器4へのアルコールが供給さ
れ、改質反応により[12とCQを主体としたガスが分
解生成される。該改質器4で生成された改質ガスはガス
通路11へ供給される。そして前記ガスバルブ12で流
量制御された改質ガスと、エアクリーナ13からエアフ
ロメータ14を経て1次エアバルブ15及び2次エアバ
ルブ16で流量制御された空気とをエンジン1に供給す
るようにしている。ここで、1次エアバルブ15はアク
セルペダルに連動して開度制御され、2次エアバルブ1
6は後述するコントローラからの指令により改質ガス流
量に応じて吸入空気量を調整するように開度制御される
。また、ガスバルブ12上流のガス通路11には改質ガ
ス圧力を検出するガス圧力センサ17を装着し、該セン
サI7と、吸入空気量を検出するエアフロメータ14と
、エンジンの回転速度を検出する回転速度センサ18と
、改質触媒3の温度を検出する温度センサ19と、図示
しないアクセルペダルの踏込操作量を検出するアクセル
操作量センサ20との各出力をコントローラ21に供給
することによりこのコントローラ21の出力でガスバル
ブ12及び2次エアバルブ16の開度を調整するように
している。
In the figure, a reformer 4 in which a reforming catalyst 3 is biased is installed in an exhaust passage 2 of an engine 1, and the reforming alcohol supplied to the reformer 4 is supplied to the reformer 4 through a solenoid valve 5 for controlling the alcohol flow rate. Constant pressure pump 8 via alcohol passage 7 with check valve 6
The alcohol is then fed to the alcohol population 9 of the reformer 4. A reformed waste outlet 10 of the reformer 4 is connected to a gas valve 12 for controlling gas flow rate via a gas passage II. As the engine warms up, the temperature of the reforming catalyst 3 increases to the set value (for example, 28
When the temperature reaches 0°C or higher and sufficient reforming capacity is achieved, the solenoid valve 5 opens and alcohol is supplied to the reformer 4, and the reforming reaction decomposes the gas mainly consisting of [12 and CQ]. generated. The reformed gas generated in the reformer 4 is supplied to the gas passage 11. The reformed gas whose flow rate is controlled by the gas valve 12 and the air whose flow rate is controlled by the primary air valve 15 and the secondary air valve 16 from the air cleaner 13 via the air flow meter 14 are supplied to the engine 1. Here, the opening degree of the primary air valve 15 is controlled in conjunction with the accelerator pedal, and the secondary air valve 1
6, the opening degree is controlled by a command from a controller, which will be described later, so as to adjust the intake air amount according to the reformed gas flow rate. Further, a gas pressure sensor 17 for detecting reformed gas pressure is installed in the gas passage 11 upstream of the gas valve 12, and the sensor I7, an air flow meter 14 for detecting the amount of intake air, and a rotation speed for detecting the engine rotation speed are connected to the gas pressure sensor 17 for detecting the reformed gas pressure. The controller 21 is controlled by supplying the outputs of a speed sensor 18, a temperature sensor 19 that detects the temperature of the reforming catalyst 3, and an accelerator operation amount sensor 20 that detects the amount of depression of an accelerator pedal (not shown) to the controller 21. The opening degrees of the gas valve 12 and the secondary air valve 16 are adjusted by the output.

一方、改質触媒3の温度が設定値より低く改質能力が充
分でない暖機初期運転時及び高出力が要求される高負荷
運転時等にはコントローラ21の指令によって制御され
るアルコールインジェクタ22によって未改質の液状ア
ルコールがエンジンlに供給される。この場合、前記2
次エアバルブ16は閉じられ吸入空気量は1次エアバル
ブ15のみによっ°(制御される。
On the other hand, during initial warm-up operation when the temperature of the reforming catalyst 3 is lower than the set value and the reforming capacity is insufficient, and during high-load operation where high output is required, the alcohol injector 22 is controlled by the commands of the controller 21. Unreformed liquid alcohol is supplied to engine l. In this case, the above 2
The secondary air valve 16 is closed and the amount of intake air is controlled only by the primary air valve 15.

23はコントローラ21の指令によって改質器4に供給
される排気の流量を可変制御する排気バイパス弁、24
は改質器4に供給されるアルコールと改質WS 4から
流出する改質ガスとを熱交換させるガスクーラ、25は
マフラである。排気バイパス弁23は改質触媒3の温度
が設定値(例えば400°C)以上となった時開弁され
改質器4への排気流量を減少させて触媒3温度の過昇を
抑制している。
23 is an exhaust bypass valve that variably controls the flow rate of exhaust gas supplied to the reformer 4 according to commands from the controller 21;
25 is a gas cooler that exchanges heat between the alcohol supplied to the reformer 4 and the reformed gas flowing out from the reformer WS 4; and 25 is a muffler. The exhaust bypass valve 23 is opened when the temperature of the reforming catalyst 3 exceeds a set value (for example, 400°C) to reduce the flow rate of exhaust gas to the reformer 4 and suppress an excessive rise in the temperature of the catalyst 3. There is.

ここで、前記ガスバルブ12及び2次エアバルブ16の
制御は、クランク駆動されるバキュー!、ポンプにより
発生した負圧を各バルブ12.16及び排気バイパス弁
23を駆動するダイアフラムアクチュエータの圧力作動
室に導く負圧供給通路26.27及び28にサーボバル
ブ29.30及び31を介装し、該サーボバルブ29.
30及び31の開弁時間をコントローラ21で指令制御
することにより前記圧力作動室の負圧を制御して行われ
るようになっている。
Here, the gas valve 12 and the secondary air valve 16 are controlled by a crank driven vacuum! , servo valves 29, 30 and 31 are interposed in the negative pressure supply passages 26, 27 and 28 that lead the negative pressure generated by the pump to the pressure operating chamber of the diaphragm actuator that drives each valve 12, 16 and the exhaust bypass valve 23. , the servo valve 29.
The valve opening times of valves 30 and 31 are commanded and controlled by the controller 21, thereby controlling the negative pressure in the pressure operating chamber.

ところでこのものにおいては、改質ガスが希薄燃焼性に
優れることを利用し、低負荷時において空気過剰率(以
下λという)を大きくして希薄燃焼させることにより燃
費の低減と排気の清浄化を図っている。
By the way, this system utilizes the excellent lean burn properties of reformed gas to increase the excess air ratio (hereinafter referred to as λ) and perform lean combustion at low loads, thereby reducing fuel consumption and purifying exhaust gas. I'm trying.

第2図は上記希薄燃焼制御方式の一例として負荷に対す
る燃料流量及び空気流量の制御特性を示す。即ぢ、負荷
がθ〜約2フルロードの運転領域では改質ガスのみを燃
料として使用すると共に、前記改質ガスの特性を活かし
てλ#2として希薄混合気を形成し、これを上回る負荷
領域では全燃料中の改質ガス燃)4割合(ガス燃料/(
ガス燃料+液体燃料);重量比、以下ガス/燃比という
)を減少させつつ、これに伴なってλを減少させ、全負
荷時にはλ#1とする。
FIG. 2 shows control characteristics of fuel flow rate and air flow rate with respect to load as an example of the lean burn control method. Immediately, in the operating range where the load is θ ~ 2 full load, only the reformed gas is used as fuel, and the characteristics of the reformed gas are utilized to form a lean mixture as λ #2, and when the load exceeds this, In the area, the reformed gas fuel in the total fuel)4 ratio (gas fuel/(
(gas fuel + liquid fuel); weight ratio (hereinafter referred to as gas/fuel ratio), λ is decreased accordingly, and λ is set to λ #1 at full load.

このようにすれば希薄燃焼を行う低負荷領域において燃
焼最高温度が低下するため冷却損失が城少し、かつ、燃
焼ガスの比熱比が増大し、ボンピング損失が減少するこ
と等により前記した如く燃費の低減、 tri気の清浄
化が図れるのである。
In this way, the maximum combustion temperature is lowered in the low load region where lean combustion is performed, so the cooling loss is reduced, and the specific heat ratio of the combustion gas is increased, and the pumping loss is reduced, resulting in improved fuel efficiency as described above. It is possible to reduce and purify the air.

しかしながら、かかる希薄燃焼制御方式ではあまり8′
f#化を進めると燃焼が不安定となり却って燃費は悪化
する傾向があり、最良の燃費が得られるλは前記制御例
に示した如く約2.0に制限される。ところが実際には
、この程度の希薄化ではボンピング損失の低減量が小さ
いため、充分な燃費改善効果を挙げることができなかっ
た。
However, in such a lean burn control system, the
If f# is increased, combustion becomes unstable and fuel efficiency tends to worsen, and λ, which provides the best fuel efficiency, is limited to about 2.0 as shown in the control example above. However, in reality, with this level of dilution, the amount of reduction in bombing loss was small, and therefore a sufficient effect of improving fuel efficiency could not be achieved.

本発明は、かかる従来の実情に鑑み為されたものでλを
1以上とする運転領域で余剰ガスとしての排気を吸気中
に遅流する構成とすることにより、ボンピング損失を大
きく低減させて熱効率を向」ニし、もって燃費改善効果
を高めた、アルコール改質ガスエンジンの混合気制御装
置を提供することを目的とする。
The present invention has been developed in view of the conventional situation, and has a configuration in which the exhaust gas as surplus gas flows slowly into the intake air in the operating region where λ is 1 or more, thereby greatly reducing the pumping loss and improving thermal efficiency. An object of the present invention is to provide a mixture control device for an alcohol reformed gas engine, which improves fuel efficiency and improves fuel efficiency.

即ち、アルコール改質ガスは燃焼速度の大きなH2を多
量に含むため、理論空気量以り1の余剰ガスとして不活
性ガスを含ませた混合気においても空気のみで希薄化し
た希薄混合気(以下単に希薄混合気という)と同じく燃
焼し昌い。勿論余剰ガスを増大するにしたがって排気中
のHCは増大し、これに伴なって燃焼性は不安定化する
が、この傾向は、不活性ガスを含む混合気の方が希薄混
合気より小さいことが実験的に確かめられている。
In other words, since alcohol reformed gas contains a large amount of H2, which has a high combustion rate, even if the mixture contains an inert gas as a surplus gas of 1 more than the theoretical air amount, it becomes a lean mixture (hereinafter referred to as "lean mixture") diluted with only air. It burns like a lean mixture (simply called a lean mixture). Of course, as the amount of surplus gas increases, HC in the exhaust increases and combustibility becomes unstable, but this tendency is smaller for mixtures containing inert gas than for lean mixtures. has been experimentally confirmed.

例えば、総排気量2I!の乗用車用アルコール改質ガス
エンジンにおける10モー1゛走行運転の場合、希薄混
合気では前記したλ#2.0程度で燃費は最良となり、
これ以上λを大きくすると却って燃費は悪化するが、不
活性ガスとして排気を混合気に含ませた場合には、排気
熱により吸気が予熱され燃焼温度が高められることもあ
ってλ−3〜4に相当する多量の排気を含ませたもので
も燃焼性は良好に維持される。そしζ、このように排気
の含有量を大きくすることにより混合気の総充填量が増
大するためボンピング損失の低減量が増大し、もって燃
費低減効果を大幅に高めることができるのである。
For example, total displacement 2I! In the case of 10 motor 1 driving operation in a passenger car alcohol reformed gas engine, the best fuel efficiency is achieved with a lean mixture at λ # of about 2.0.
Increasing λ further will actually worsen fuel efficiency, but if the exhaust gas is included in the air-fuel mixture as an inert gas, the exhaust heat will preheat the intake air and raise the combustion temperature, resulting in a reduction of λ-3 to 4. Good combustibility is maintained even when a large amount of exhaust gas is included. By increasing the exhaust gas content in this way, the total amount of air-fuel mixture filling increases, so the amount of reduction in pumping loss increases, thereby making it possible to significantly enhance the fuel efficiency reduction effect.

以下に上記のことを利用した本発明を図示実施例に基づ
いて説明する。
The present invention utilizing the above will be described below based on illustrated embodiments.

一実施例を示す第3図において、第1図の従来例と同一
の構成要素には同一符号を付して説明を簡略化する。図
において、エンジン1の吸気通路32と排気通路2とを
連通して結ぶEGR(排気還流)通路33を設けると共
に、該EGR通路33の下流端部にEGR制御弁34を
設ける。又、コルトローラ35には従来同様各部に取り
付けたヤンサから改質ガス供給圧力、吸入空気量、エン
ジン回転速度、改質触媒温度及びアクセル操作量の信号
が夫々入力される他、排気通路に設けたON。
In FIG. 3 showing one embodiment, the same components as those in the conventional example shown in FIG. 1 are given the same reference numerals to simplify the explanation. In the figure, an EGR (exhaust gas recirculation) passage 33 is provided which communicates and connects an intake passage 32 and an exhaust passage 2 of the engine 1, and an EGR control valve 34 is provided at the downstream end of the EGR passage 33. In addition, signals of reformed gas supply pressure, intake air amount, engine rotation speed, reforming catalyst temperature, and accelerator operation amount are inputted to the Coltrol roller 35 from Yancers attached to various parts, as in the conventional case. TaON.

OFF作動型の02センサ36から02fA度信号が入
力される。
An 02 fA degree signal is input from the 02 sensor 36 of OFF operation type.

そして、これら各入力信号に基づきフン10−ラ(例え
ばマイクロプロセッサ)35によって例えば次のような
制御が行なわれる。アクセル1桑作量Sとエンジン回転
速度Neとの信号に基づい′Cエンジン1の負荷率りを
演算し、該負荷率I、に基づいて算出したガス/燃比α
go(負荷率りが小さい程大きな値をとる)と、ガス供
給圧力信号に基づいて定められる限界ガス/燃比αgl
im(改質ガス圧力Pgが高い程大きな値をとる) と
を比較し、いずれか小さな値を制御すべきガス/燃比α
gとして設定する。この場合、改質ガス供給圧力が充分
高くて負荷率りが小さい時はガス/燃比αgを大きくす
るように設定されることになる。
Based on these input signals, the controller 10-ra (eg, microprocessor) 35 performs the following control, for example. The load factor of engine 1 is calculated based on the signal of accelerator 1 mulberry production amount S and engine rotational speed Ne, and the gas/fuel ratio α is calculated based on the load factor I.
go (the smaller the load factor, the larger the value) and the limit gas/fuel ratio αgl determined based on the gas supply pressure signal.
im (the higher the reformed gas pressure Pg, the larger the value), and the gas/fuel ratio α to be controlled to the smaller value.
Set as g. In this case, when the reformed gas supply pressure is sufficiently high and the load factor is small, the gas/fuel ratio αg is set to be large.

そして、このようにして設定されたαgが大きい運転領
域では従来はλを大きくしていたのであるが、本発明で
は空気供給量は理論空気量とし、即ぢλ−1とする代り
に余剰ガスとして排気を混合気中に含ませる。具体的に
は、αgの信号に基づいて前記EGRパルプ34を駆動
するアクチュエータの圧力作動室に供給する負圧を制御
することにより、該バルブ34の開度を制御し、αgの
増大に応じてEGR率を大きくするのであり、この場合
、EGR量は同一運転条件における従来の希薄混合気の
余剰空気量を大きく一ヒ回る量とすることができる(第
4図参照)。尚、λは通常は前記αgの信号に基づいて
λ−1となるように2次エアバルブ16が開度制御され
るが、02a度センサ36からのフィードバック信号に
より排気中ノ02′JI!度がλ−1における設定範囲
から外れる場合には2次エアバルブ16の開度は補正制
御され可及的にλ−1に維持されるように高精度に制御
される。
Conventionally, λ was increased in the operating range where αg set in this way is large, but in the present invention, the air supply amount is set to the theoretical air amount, and instead of immediately setting it to λ-1, excess gas is used. The exhaust gas is included in the air-fuel mixture. Specifically, the opening degree of the valve 34 is controlled by controlling the negative pressure supplied to the pressure operating chamber of the actuator that drives the EGR pulp 34 based on the signal αg, and the opening degree of the valve 34 is controlled according to the increase in αg. The EGR rate is increased, and in this case, the EGR amount can be set to an amount that is much larger than the amount of excess air in a conventional lean mixture under the same operating conditions (see FIG. 4). The opening of the secondary air valve 16 is normally controlled so that λ becomes λ-1 based on the signal αg, but the opening degree of the secondary air valve 16 is controlled so that λ becomes λ-1 based on the signal αg. If the opening degree is out of the setting range at λ-1, the opening degree of the secondary air valve 16 is corrected and controlled with high accuracy to maintain it at λ-1 as much as possible.

このようにすれば低負荷域で従来の余剰空気量を上回る
閂の排気が吸気に還流されるため、混合気充填量か増大
してボンピング損失を大幅に低減できかつ、IJI気熱
による吸気予熱で燃焼温度を高められること等により安
定した燃焼性を維持しつつ熱効率を高めることかでき、
もっ゛ζ燃費を大幅に改善できるのである。因みに、第
5図は、EGRを行なった場合の熱効率の向上度合を示
したものである。
In this way, in the low load range, the bolt exhaust gas that exceeds the conventional surplus air volume is returned to the intake air, increasing the air-fuel mixture filling volume and significantly reducing the pumping loss, while preheating the intake air using IJI air heat. By increasing the combustion temperature, thermal efficiency can be increased while maintaining stable combustibility.
It is possible to significantly improve fuel efficiency. Incidentally, FIG. 5 shows the degree of improvement in thermal efficiency when EGR is performed.

一方、負荷率りが大きくλ≧1以上の混合気では安定し
た燃焼性が得られなくなる運転領域ではEGRバルブ3
2を閉じてEGRを停止すると共に、上述のようにして
決定したαgの値に応してλ (〈1)の値を設定する
ことにより濃混合気を形成して従来同様の高出力を確保
することができる。
On the other hand, in the operating range where the load factor is large and stable combustibility cannot be obtained with a mixture of λ≧1 or more, the EGR valve 3
2 to stop EGR and set the value of λ (<1) according to the value of αg determined as described above to form a rich air-fuel mixture and secure high output as before. can do.

尚、本実施例ではカス/燃比に基づいてλ及びEGR量
を制御する構成としたが、改質ガスの燃焼安定性の高さ
は燃焼速度の大きなH2に起因するものであるから、改
質ガス中のH2’/I11度を検出するセンサを設け、
H2i1度に基づいてλ及びECRlilを制御するよ
うにしてもよい。
In this example, the configuration is such that λ and the EGR amount are controlled based on the residue/fuel ratio, but since the high combustion stability of the reformed gas is due to H2 having a high combustion speed, A sensor is installed to detect H2'/I11 degrees in the gas,
λ and ECRlil may be controlled based on H2i1 degrees.

又、本実施例はλ≧1で安定した燃焼性が得られる運転
領域でλ−1に保持し、余剰ガスの全てを排気で賄うよ
うにしたか、前記運転領域でλ〉1に設定し、余剰ガス
を排気と空気とで構成するようにしてもよいことは勿論
である。
In addition, in this example, in the operating range where λ≧1 and stable combustibility can be obtained, λ-1 was maintained, and all of the excess gas was covered by exhaust gas, or λ>1 was set in the operating range. Of course, the surplus gas may be composed of exhaust gas and air.

以上説明したように、本発明によればガス/燃比が大き
くλ≧1に設定される低負荷運転領域でEGRを行う構
成としたから、混合気の総充填量を大きくできることに
よりボンピング損失を大幅に低減でき、かつ、吸気予熱
等により熱効率が向上しもって燃費を著しく改善するこ
とができる。
As explained above, according to the present invention, since EGR is performed in the low-load operation region where the gas/fuel ratio is large and set to λ≧1, the total filling amount of the air-fuel mixture can be increased, thereby significantly reducing the pumping loss. In addition, thermal efficiency can be improved by intake air preheating, etc., and fuel efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

(II) 第1図は従来のアルコール改質ガスエンジンの一例を示
す全体構成図、第2図# (A)、  (B)lよ夫々
軸間」二のエンジンにおiJる空気過剰率及び燃料流量
割合の負荷に対する制御特性を示す線図、第3図は本発
明の一実施例を示す構成図、第4図(A)は同」一実施
例における空気流量及び還流排気流量の負荷に対する制
御特性を示す線図、同図(B)は同上実施例における燃
料流量割合の負荷に対する制御特性を示す線図、第5図
は、同」一実施例における熱効率向上の度合を示す線図
である。 1・・・エンジン  2・・・排気通路  12・・・
ガスバルフ  14・・・エアフロメータ  15・・
・1次エアバルブ  16・・・2次エアバルブ17・
・・ガス圧力センサ  18・・・回転速度センサ19
・・・温度センサ  20・・・アクセル11作間セン
ザ  22・・・アルコールインジェクタ32・・・吸
気通路  33・・・EGR通路34・・・EGR制御
弁  35・・・コントローラ36・・・02濃度セン
サ 特許出願人  日産自動車株式会社 代理人  弁理士 笹 島 富二雄 (12)
(II) Figure 1 is an overall configuration diagram showing an example of a conventional alcohol reformed gas engine, and Figure 2 shows the excess air ratio and 3 is a diagram showing the control characteristics of the fuel flow rate with respect to the load, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. Fig. 5 is a diagram showing the control characteristics of the fuel flow rate relative to the load in the above embodiment, and Fig. 5 is a diagram showing the degree of thermal efficiency improvement in the above embodiment. be. 1...Engine 2...Exhaust passage 12...
Gas valve 14... Air flow meter 15...
・Primary air valve 16...Secondary air valve 17・
...Gas pressure sensor 18...Rotation speed sensor 19
...Temperature sensor 20...Accelerator 11 operation sensor 22...Alcohol injector 32...Intake passage 33...EGR passage 34...EGR control valve 35...Controller 36...02 Concentration Sensor patent applicant Fujio Sasashima (12) Representative of Nissan Motor Co., Ltd. Patent attorney

Claims (1)

【特許請求の範囲】[Claims] アルコールを熱分解して得た改質ガスと、未改質の液体
アルコールとを燃料として供給するようにしたアルコー
ル改質ガスエンジンにおいて、エンジンの吸気通路と排
気通路とを連通して結ぶ排気還流通路を設けると共に該
排気流通路に排気還流制御弁を介設し、かつ、エンジン
の各種運転条件の検出信号に基づき空気過剰率を1以上
とする運転領域で前記排気還流制御弁を開弁さ・U、燃
料中の改質ガス供給割合の増大する運転域程排気還流率
を増大するよう排気を吸気中に還流さゼる制御手段を設
けて構成したことを特徴とするアルコール改質ガスエン
ジンの混合気制御装置。
In an alcohol reformed gas engine that supplies reformed gas obtained by thermally decomposing alcohol and unreformed liquid alcohol as fuel, exhaust gas recirculation connects the intake passage and exhaust passage of the engine in communication. A passage is provided and an exhaust recirculation control valve is interposed in the exhaust flow passage, and the exhaust recirculation control valve is opened in an operating range where an excess air ratio is set to 1 or more based on detection signals of various operating conditions of the engine.・U. An alcohol reformed gas engine characterized by being provided with a control means for recirculating exhaust gas into intake air so as to increase the exhaust recirculation rate in an operating range where the reformed gas supply ratio in the fuel increases. mixture control device.
JP56210212A 1981-12-29 1981-12-29 Fuel-air mixture control device of reformed alcohol gas engine Pending JPS58117345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210212A JPS58117345A (en) 1981-12-29 1981-12-29 Fuel-air mixture control device of reformed alcohol gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210212A JPS58117345A (en) 1981-12-29 1981-12-29 Fuel-air mixture control device of reformed alcohol gas engine

Publications (1)

Publication Number Publication Date
JPS58117345A true JPS58117345A (en) 1983-07-12

Family

ID=16585638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210212A Pending JPS58117345A (en) 1981-12-29 1981-12-29 Fuel-air mixture control device of reformed alcohol gas engine

Country Status (1)

Country Link
JP (1) JPS58117345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115790A (en) * 1989-10-31 1992-05-26 Isuzu Motors Limited Re-combustion control means for alcohol engine
JP2007231827A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115790A (en) * 1989-10-31 1992-05-26 Isuzu Motors Limited Re-combustion control means for alcohol engine
JP2007231827A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Internal combustion engine

Similar Documents

Publication Publication Date Title
US6178749B1 (en) Method of reducing turbo lag in diesel engines having exhaust gas recirculation
US7047741B2 (en) Methods for low emission, controlled temperature combustion in engines which utilize late direct cylinder injection of fuel
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4042649B2 (en) Internal combustion engine
US6988365B2 (en) Dual loop exhaust gas recirculation system for diesel engines and method of operation
US20030140629A1 (en) Combustion control of diesel engine
US6625985B2 (en) Control of turbocharger
JP4013290B2 (en) Exhaust gas recirculation control device for direct injection engine with turbocharger
JPH10252584A (en) Method and device for condensing oxygen content in intake of internal combustion engine
KR20190130093A (en) Fuel injection control method of fuel reformer and fuel reforming system
JPS58117345A (en) Fuel-air mixture control device of reformed alcohol gas engine
JP4957343B2 (en) EGR system for internal combustion engine
JP2000130270A (en) Internal combustion engine
JPH0551787B2 (en)
JPS58113545A (en) Mixed-gas controller for alcohol reformed gas engine
JP3741030B2 (en) Internal combustion engine
JPH10288043A (en) Internal combustion engine with turbocharger and exhaust gas recirculation system
JP7484497B2 (en) Engine fuel reforming system
JPS5867938A (en) Abnormal combustion preventing device in alcohol- reformed gas engine
JP3331991B2 (en) Internal combustion engine
JP3758431B2 (en) Engine control device
JPH03145559A (en) Alcohol reforming engine
JP2022022670A (en) Fuel reforming system for engine
JPS58119943A (en) Air-fuel mixture control device for alcohol/reformed gas engine
JPS5867939A (en) Mixture controller in alcohol-reformed gas engine