JPS58116690A - Preparation of d-beta-hydroxyamino acid - Google Patents

Preparation of d-beta-hydroxyamino acid

Info

Publication number
JPS58116690A
JPS58116690A JP56209983A JP20998381A JPS58116690A JP S58116690 A JPS58116690 A JP S58116690A JP 56209983 A JP56209983 A JP 56209983A JP 20998381 A JP20998381 A JP 20998381A JP S58116690 A JPS58116690 A JP S58116690A
Authority
JP
Japan
Prior art keywords
enzyme
threonine
glycine
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56209983A
Other languages
Japanese (ja)
Other versions
JPH022597B2 (en
Inventor
Hideaki Yamada
秀明 山田
Teruzo Miyoshi
照三 三好
Masaaki Kato
正明 加藤
Masahisa Ikemi
昌久 池見
Haruo Gomi
五味 治男
Yoshiaki Ishimatsu
石松 義章
Noriaki Koizumi
小泉 典秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP56209983A priority Critical patent/JPS58116690A/en
Publication of JPS58116690A publication Critical patent/JPS58116690A/en
Publication of JPH022597B2 publication Critical patent/JPH022597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare a D-beta-hydroxyamino acid from an inexpensive raw material, using a novel enzyme, in one step, by reacting glycine with a specific aldehyde compound in the presence of D-threonine aldolase. CONSTITUTION:D-beta-Hydroxyamino acid of formula is prepared by reacting glycine and an aldehyde compound of formula R-CHO (R is H or saturated alkyl) in the presence of D-threonine aldolase. D-Threonine aldolase is an enzyme decomposing D-threonine into glycine and aldehyde, and can be produced by culturing e.g. Alcaligenes faecalis IFO12669, Pseudomonas DK-2 FERM-P No.6200, etc; in a nutrient medium.

Description

【発明の詳細な説明】 キシアミノ酸の製造法に関する。[Detailed description of the invention] This invention relates to a method for producing oxyamino acids.

近年種々のD−アミノ酸が発見されるにしたがって、そ
の生理的意義が解明されつつあり、(1) D−アミノ酸は抗生物質、酵素阻害剤等の各種の医薬、
農薬類、その他各種の生理活性物質の合成原料として有
用なものが多い。そしてこれらD−アミノ酸に一部は合
成法で製造されたDL−アミノ酸を光学分割して製造さ
れているが、多くはL−アミノ酸を−Hラセミ化してか
ら光学分割して製造されている。その場合、D−アミノ
酸は長い工程を経て製造されるために、その手間が大変
であり、また収率も極めて低くなっていた。
As various D-amino acids have been discovered in recent years, their physiological significance is being elucidated. (1) D-amino acids are used in various medicines such as antibiotics and enzyme inhibitors,
Many of them are useful as synthetic raw materials for agricultural chemicals and various other physiologically active substances. Some of these D-amino acids are produced by optically resolving DL-amino acids produced by synthetic methods, but most are produced by optically resolving L-amino acids after -H racemization. In that case, the D-amino acid is manufactured through a long process, which is labor intensive and the yield is extremely low.

本発明者らはD−アミノ酸の特定のものについて、安価
で大量に生産されているクリシンとアルデヒド類から一
挙に製造する新規な技術を開発した。すなわち、新規な
酵素であるD−スレオニンアルドラーゼを用いてグリシ
ンとアルデヒドから一単に対応するD−β−ヒドロキシ
アミノ酸を製造する方法を開発したのである。
The present inventors have developed a new technique for producing specific D-amino acids all at once from chrysin and aldehydes, which are produced at low cost and in large quantities. That is, they developed a method for simply producing the corresponding D-β-hydroxyamino acid from glycine and aldehyde using a new enzyme, D-threonine aldolase.

これまで、L−スレオニンをグリシンとアセトアルデヒ
ドに分解するL−スレオニンアルドラーゼ( K.C.
4.1.2.5 )を用いてグリシンとアル(2) デとド類から対応するL−β−ヒドロキシアミノ酸を製
造しうろことは知られている。しかしながら、D−β−
ヒドロキシアミノ酸についてハ、ソの製造の前提となる
])−スレオニンアルドラーゼの存在自体が全く知られ
ていない。本発明者らは、たまたま特定の微生物がとの
D−スレオニンアルドラーゼを産生じうろことを知多、
更に研究を進めた結果この酵素を用いればグリシンとア
ルデヒド類から対応するD−β−ヒドロキシアミノ酸を
一挙に製造しうろことを見出してこれに基いて本発明を
完成した。
Until now, L-threonine aldolase (K.C.
It is known that the corresponding L-β-hydroxyamino acids can be produced from glycine and al(2) de and do using 4.1.2.5). However, D-β-
Regarding hydroxyamino acids, the existence of threonine aldolase itself is completely unknown. The present inventors happened to discover that a specific microorganism produces D-threonine aldolase in Chita, Japan.
As a result of further research, it was discovered that the corresponding D-β-hydroxyamino acid could be produced from glycine and aldehydes all at once using this enzyme, and based on this finding, the present invention was completed.

すなわち本発明は、グリシンと一般式R−0HO(但し
、Rは水素または飽和アルキル基を表わす。)で示され
るアルデヒド化合物とID−スレオニンアルドラーゼの
存在で反応させることを特徴とする一般式 %式% (但し、Rは水素または飽和アルキル基を表わす。) (3) で示すれるD−β−ヒドロキシアミノ酸の製造法に関す
るものである。
That is, the present invention provides glycine and an aldehyde compound represented by the general formula R-0HO (where R represents hydrogen or a saturated alkyl group) in the presence of ID-threonine aldolase. % (However, R represents hydrogen or a saturated alkyl group.) (3) This relates to a method for producing the D-β-hydroxyamino acid shown below.

D−スレオニンアルドラーゼはD−スレオニンに作用し
てグリシンとアルデヒドに分解する酵素で、例えばアル
カリゲネス・ノ・エカリス(A]、caligenes
 faecalie )工FO12669、シュードモ
ナス(Pseudomonas ) DK −241工
研菌寄第6200号、およびアリスロバクタ=(Art
hrobactar ) DK −19微工研菌寄第6
201号などがこのD−スレオニンアルドラーゼを産生
ずる能力を有する。
D-threonine aldolase is an enzyme that acts on D-threonine and decomposes it into glycine and aldehyde.
faecalie) Art FO12669, Pseudomonas DK-241 Koken Bacteria No. 6200, and Arilobacter
hrobactar) DK-19 Microtechnical Laboratory No. 6
No. 201 and the like have the ability to produce this D-threonine aldolase.

シュードモナスDK−2微工研菌寄第6200号および
アリスロバクターJ)K−19微工研菌寄第6201号
の菌学的性質を次に示す。
The mycological properties of Pseudomonas DK-2 K.K. No. 6200 and Arylobacter J) K-19 K.K. No. 6201 are shown below.

(a)形態 (4) (5) (1))各培地における生育状態 (6) (Q)生理学的性質 (7) (8) (9) 以上の菌学的性質をもとに1パージニーズ・マニュアル
・オプ・デターミネイティブφバクテリオロジー第8版
(1974)Jを参照して分類すると、DK−2菌はダ
ラム陰性の桿菌で極鞭毛を有し、オキシダーゼ陽性、脱
窒反応陽性であるところからシュードモナス属に属する
ものと同定した。一方、DK−19菌はダラム染色性が
弱い桿菌で、多形性及び周毛と有し、糖類を資化できな
いことからアリスロバクター属に属するものと同定した
(a) Morphology (4) (5) (1)) Growth status in each medium (6) (Q) Physiological properties (7) (8) (9) 1 purge needs based on the above mycological properties・When classified with reference to the Manual Op Determinative φ Bacteriology 8th edition (1974) J, DK-2 bacteria is a Durham-negative bacillus, has a polar flagellum, and is oxidase-positive and denitrification reaction-positive. Therefore, it was identified as belonging to the genus Pseudomonas. On the other hand, the DK-19 bacterium was identified as belonging to the genus Arilobacter because it was a bacillus with weak Durham staining, was pleomorphic, had pericytium, and was unable to assimilate sugars.

D−スレオニンアルドラーゼは例えばこnらの微生物を
栄養培地に培養すれば生成させることができる。栄養培
地は細菌を培養する通常のものでよく、炭素源としては
グルコース、キシロース、グリセロール、糖蜜等の糖類
、あるいは酢酸、リンゴ酸等の有機酸など、窒素源とし
ては硫酸アンモニウム、塩化アンモニウム、尿素など、
有機栄養源として酵母エキス、ペプトン、肉エキス、コ
ーンステイープリカーなど、そして無機イオンとしてマ
グネシウム、鉄、マ(10) ンガン、カリウム、リン酸塩などを含むものを用いる。
D-threonine aldolase can be produced, for example, by culturing these microorganisms in a nutrient medium. The nutrient medium may be one commonly used for culturing bacteria, with carbon sources such as sugars such as glucose, xylose, glycerol, and molasses, or organic acids such as acetic acid and malic acid, and nitrogen sources such as ammonium sulfate, ammonium chloride, and urea. ,
Organic nutrients such as yeast extract, peptone, meat extract, and cornstarch liquor are used, and inorganic ions include magnesium, iron, manganese, potassium, and phosphate.

培養方法も細菌を培養する常法に従って行なえばよく、
培地のpHを4〜10として菌を接種後20〜60℃で
1〜3日間好気的に培養すればよい。
The culture method can be carried out according to the conventional method for culturing bacteria.
After inoculating the bacteria, the culture medium may be cultured aerobically at 20 to 60°C for 1 to 3 days with the pH of the medium set to 4 to 10.

このようにして得られるD−スレオニンアルドラーゼは
主に菌体内に生成蓄積される。そこで、培養液からD−
スレオニンアルドラーゼを単離する場合にはまず菌体を
機械的方法、酵素処理する方法、自己溶解法などの公知
の方法の方法によって破壊して粗抽出液を得る。それか
ら、この粗抽出g、ヲ硫安沈澱、アセトン又はエタノー
ルなどによる溶媒沈澱、DKAK−セファロース、DE
AF−セファデックス、リン酸カルシウムゲル等の種々
のイオン交換体や吸着剤分用いたクロマトグラフィーな
どを適宜組合せて精製することによって高純度の酵素標
品を得ることができる。本酵素の活性発現には、補助酵
素としてピリドキサール−5′−リン酸を必(11) 要とするため、反応時には通常10−3〜10−5Mで
存在させる。
The D-threonine aldolase thus obtained is mainly produced and accumulated within the bacterial cells. Therefore, D-
When threonine aldolase is isolated, the bacterial cells are first disrupted by a known method such as a mechanical method, an enzyme treatment method, or an autolytic method to obtain a crude extract. Then, this crude extraction g, ammonium sulfate precipitation, solvent precipitation with acetone or ethanol, DKAK-Sepharose, DE
A highly pure enzyme preparation can be obtained by purification using an appropriate combination of chromatography using various ion exchangers and adsorbents such as AF-Sephadex and calcium phosphate gel. Since pyridoxal-5'-phosphate (11) is required as an auxiliary enzyme for the expression of the activity of this enzyme, it is usually present at 10-3 to 10-5 M during the reaction.

次に、酵素製造例1で得られた酵素標品について理化学
的性質を測定した結果を記す。
Next, the results of measuring the physicochemical properties of the enzyme preparation obtained in Enzyme Production Example 1 will be described.

(リ 作用および基質特異性 本酵素はD−スレオニンおよびD−アロスレオニンを分
解してグリシンとアセトアルデヒドを生成する1う一方
、L−スレオニンおよびL−アロスレオニンには1つた
く・作用しない。
(Reaction and Substrate Specificity) This enzyme decomposes D-threonine and D-allothreonine to produce glycine and acetaldehyde, while it has no effect on L-threonine and L-allothreonine.

■至適pH D−スレオニンを基質として各1)HFこおいて30℃
で10分間反応させ、生成したアルデヒドを定縫したと
ころ、本酵素の至適pHは7〜9Vcあった。同、用い
た緩衝液fJ、pH4〜75まではn、 I M IJ
ン酸緩衝液、pH7〜9までは01Mトリス−HCA緩
衝液及びpH9〜11までは0.1 M炭酸ソーダ緩衝
液である。
■Optimal pH 1) Using D-threonine as a substrate, store in HF at 30°C.
When the reaction was carried out for 10 minutes and the generated aldehyde was fixed, the optimum pH of this enzyme was found to be 7 to 9 Vc. Same, buffer used fJ, n for pH 4 to 75, IMIJ
acid buffer, 01 M Tris-HCA buffer from pH 7 to 9, and 0.1 M sodium carbonate buffer from pH 9 to 11.

■安定pH範囲 酵素溶液を各pHにおいて30℃で1時間加温後、溶液
中の残存活性を4111定したところ、本(12) 二(″奄素の安定pH範囲F′i6〜9にあった。fi
!1、用いた緩衝液はpH4〜z5までl−j 11.
 I M !Jン酸緩衝液、pH7〜9まではrLIM
)リス−HOE緩衝液及びpH9〜11までは0.1 
M炭酸ソーダ緩衝液である。
■ Stable pH range After heating the enzyme solution at 30℃ for 1 hour at each pH, the residual activity in the solution was determined. It was fi.
! 1. The buffer used was l-j from pH 4 to z5. 11.
IM! J acid buffer, rLIM from pH 7 to 9
) 0.1 for Lis-HOE buffer and pH 9-11
M sodium carbonate buffer.

■力価の測定法 酵素含有液[1,1ml l51−100 /j mo
le  のD−スレオニンを含有するpHaOの(LI
M)リス−塩酸緩衝液[′L9艷に加え、50℃で10
分間加温して生成したアセトアルデヒドをFaz法[A
rch、Biochem、Biophys、、 Vol
、  109 、  p54B(1965):]によっ
て定量して求めた。
■Measurement method of titer Enzyme-containing solution [1.1ml l51-100 /j mo
of pHaO containing D-threonine of le (LI
M) Lis-hydrochloric acid buffer
Faz method [A
rch,Biochem,Biophys,, Vol.
, 109, p54B (1965):].

同、1分間に1μmole  のD−スレオニンを分解
する酵素活性を1Uとした。
Similarly, the enzyme activity that decomposes 1 μmole of D-threonine per minute was defined as 1 U.

■作用適温の範囲 D−スレオニンを基質としてpHaoの0.1Mトリス
−塩酸緩衝液を用い、各温度で10分間反応させ、生成
したアセトアルデヒドを測定したところ、本酵素の至適
温度は50〜50℃にあった。
■ Range of suitable temperature for action Using D-threonine as a substrate and pHao's 0.1M Tris-HCl buffer, we reacted for 10 minutes at each temperature and measured the acetaldehyde produced, and found that the optimum temperature for this enzyme was 50-50 It was at ℃.

(13) (6)熱安定性 pHaoのfl、 I M ) !Jスス−酸緩衝液に
溶解した酵素溶液を各温度で1時間加熱後、溶液中の残
存活性を測定したところ、本酵素の安定温度は40℃以
下であった。
(13) (6) Thermostable pHao fl, I M )! After heating an enzyme solution dissolved in J-sulfuric acid buffer for 1 hour at each temperature, residual activity in the solution was measured, and the stable temperature of this enzyme was 40°C or lower.

■pH1温度などによる失活の条件 本酵素はpH5以下、pH11以上、および温度70℃
以上では1時間に失活する。
■ Conditions for inactivation due to pH 1 temperature, etc. This enzyme is used at pH 5 or lower, pH 11 or higher, and temperature 70°C.
In this case, the activity will be deactivated in 1 hour.

■阻害、活性化および安定化 本酵素はメルカプトエタノール、亜硫酸ナトリウム、即
値酸水素ナトリウム、ジテオスレイトール、Mn2+、
Co” 、  Fe2+、Mg2+)’mよって活性化
され安定化される。一方、Ag1+、Cu”、Hg2 
+、Zn2+、P(12+、 ヒドロキシルアミン、p
−クロルマーキュリ−安息香酸によって阻害される。
■Inhibition, activation and stabilization This enzyme contains mercaptoethanol, sodium sulfite, immediate sodium hydrogen oxide, diteothreitol, Mn2+,
Co", Fe2+, Mg2+)'m is activated and stabilized. On the other hand, Ag1+, Cu", Hg2
+, Zn2+, P(12+, hydroxylamine, p
- Chlormercury - Inhibited by benzoic acid.

■補酵素 本酵素の補酵素はピリドキサール−5′−リン酸である
(2) Coenzyme The coenzyme of this enzyme is pyridoxal-5'-phosphate.

酵素製造例1で得られた酵素は以上のような(14) 秒化学的性質を有しているが、従来知られているスレオ
ニンアルドラーゼはすべてL−スレオニンを分解するも
のであってD−スレオニンを分解するものは全く知られ
ていないところから、この酵素は全く新しい作用を有す
る新規酵素である。
The enzyme obtained in Enzyme Production Example 1 has the chemical properties (14) as described above, but all conventionally known threonine aldolases decompose L-threonine and D-threonine. This enzyme is a novel enzyme with a completely new action, as there is no known enzyme that degrades it.

グリシンとアルデヒド化合物の反応に用いる酵素は、要
はD−スレオニンを分解してグリシンとアセトアルデヒ
ドを生成しうるものであればよい。また、この酵素は酵
素活性を発揮しうる形態であれはたり、単離された形に
限定されるものではない。従って、半精製品でもよく、
粗抽出液、さらには培養物、生菌体、凍結乾燥菌体、ア
セトン乾燥菌体、あるいはこれらの菌体の暦砕物等でめ
ってもよい。さらに、酵素自体あるいは菌体のまま公知
の手段で固定化して用いてもよい。D−スレオニンアル
ドラーゼは前述のような微生物由来のものに限定されず
、他の動植物由来のものであってもよい。
The enzyme used for the reaction of glycine and an aldehyde compound may be any enzyme as long as it can decompose D-threonine to generate glycine and acetaldehyde. Furthermore, this enzyme is not limited to a form capable of exhibiting enzymatic activity and is not limited to an isolated form. Therefore, semi-refined products may be used,
Crude extracts, cultures, live microbial cells, freeze-dried microbial cells, acetone-dried microbial cells, or crushed products of these microbial cells may be used. Furthermore, the enzyme itself or the bacterial cells may be immobilized by known means and used. D-threonine aldolase is not limited to those derived from microorganisms as mentioned above, but may be derived from other animals or plants.

アルデヒド化合物は一般式:R−CHOのうちR(15
) が水素または飽和アルキル基のものである。炭素数は2
0以下のものが好ましく、例えばホルムアルデヒド、ア
セトアルデヒド、プロピオンアルデヒド、ブチルアルデ
ヒド、ラウリルアルテヒドなどが好適である。
The aldehyde compound has the general formula: R(15
) is hydrogen or a saturated alkyl group. Number of carbons is 2
It is preferably 0 or less, such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, lauryl altehyde, and the like.

反応は、要V′iD−スレオニンアルドラーゼとグリシ
ンとアルデヒド化合物とを混合すればよく、添加の順序
は問わない。アルデヒド化合物は酵素活性を著しく阻害
しない程度であればよいが、Oo5〜02モル/b程度
が好ましい。
The reaction can be carried out by mixing the required V'iD-threonine aldolase, glycine, and an aldehyde compound, and the order of addition does not matter. The aldehyde compound may be used as long as it does not significantly inhibit the enzyme activity, but it is preferably Oo 5 to 02 mol/b.

グリシンはアルデヒド化合物と等モル程度でよいが、グ
リシンの反応収率を高めるためにはアルデヒド化合物よ
り少なくするのがよい。反応温度は10〜70℃位でよ
いが10〜40℃程度が好適である。反応時のpHは6
〜95程度好ましくは、7〜8に維持するのがよい。補
酵素として、ピリドキサール−5′−リン酸を反応系に
添加すると酵素活性を高めて反応を促進させることがで
きる。反応はバッチ方式で行なってもよく、連続方式で
行なってもよい。かくしく16) 反応終了後に、必要により遠心分離、涙過等で懸濁物?
除去してから、イオン交換樹脂処理、晶析等で精製し、
活性炭等で脱色してこの脱色液を濃縮することによって
D−β−ヒドロキシアミノ酸を単離することができる。
The amount of glycine may be about equimolar to that of the aldehyde compound, but in order to increase the reaction yield of glycine, it is preferable to use less than the amount of the aldehyde compound. The reaction temperature may be about 10 to 70°C, but preferably about 10 to 40°C. The pH during the reaction is 6
It is good to maintain it at about 95, preferably 7 to 8. When pyridoxal-5'-phosphate is added to the reaction system as a coenzyme, the enzyme activity can be increased and the reaction can be accelerated. The reaction may be carried out batchwise or continuously. 16) After the reaction is complete, if necessary, centrifuge, filtrate, etc. to remove the suspension.
After removing it, it is purified by ion exchange resin treatment, crystallization, etc.
The D-β-hydroxyamino acid can be isolated by decolorizing with activated carbon or the like and concentrating the decolorizing solution.

次に、酵素製造例を示す。なお、チは全て重量%である
Next, an example of enzyme production will be shown. In addition, all values are weight %.

酵素製造例1 ポリペプトン05%、酵母エキス0.5チ、KH2PO
4n、 1%、MgSO411,05%、L−グルタミ
ン酸01%、およびD−スレオニン01%からなるpH
7,5の培地を調製し、5j容の培養槽踵その6bを投
入して120℃で15分間加熱殺菌した。この培地にア
リスロバクターDK−19微工研菌寄第6201号を接
種し、pnz5に保ちなから5Q’Cで20時間通気お
よび攪拌をしつつ培壓した。
Enzyme production example 1 Polypeptone 05%, yeast extract 0.5t, KH2PO
pH consisting of 4n, 1%, MgSO4 11,05%, L-glutamic acid 01%, and D-threonine 01%
A culture medium of No. 7 and No. 5 was prepared, and 5j volumes of culture tank heel No. 6b were put into the culture tank and heat sterilized at 120° C. for 15 minutes. This medium was inoculated with Arylobacter DK-19 Microtechnical Research Institute No. 6201 and cultured at 5Q'C for 20 hours with aeration and stirring while maintaining the pnz 5.

培養終了後、培養液1jから菌体を遠心分離し、生理食
塩水で1回洗滌後、この湿菌体を(17) mMメルカプトエタノールを含むpaz5のn、IM)
リスー塩酸緩@液10〇−中に餐濁した。この菌体懸濁
液を20 KH2で10分間超音波処理して菌体を破壊
してから遠心しで傾個し105−の粗酵素抽出液を得た
After the completion of the culture, the bacterial cells were centrifuged from the culture solution 1j, washed once with physiological saline, and the wet bacterial cells were mixed with (17) paz5n containing mM mercaptoethanol, IM).
It was suspended in a 100% solution of Lissu hydrochloric acid. This cell suspension was sonicated with 20 KH2 for 10 minutes to destroy the cells, and then centrifuged and decanted to obtain a crude enzyme extract of 105-.

世られた粗酵素抽出液に硫安?加えて0.3〜05飽和
区分を分取し、この区分を上記緩衝液に対して1晩透析
した。DgAEセファデックスA−50100m1を充
填し、前記の緩衝液で予め平衡化しておいたカラムに透
析残数を通液して酵素を吸着させた後、塩化ナトリウム
溶液f:01〜0.4 Mまで濃度を変えてカラムに通
液し、溶出液の各フラクションのうちD−スレオニンア
ルドラーゼ活性区分を集めた。この活性区分は塩化ナト
リウムの濃度が0.3 Mの付近にあった。集めた活性
区分をセファテックスG−200200m/4Q光増し
たカラムに通液してゲル濾過を行ない、D−スレオニン
アルドラーゼ活性[7分を集め、メムブラムフィルター
で(18) 中のタンパク含量ij、 2.4η/lでD−スレオニ
ンに対する比活性は1.24U/■であり、D−アロス
レオニンに対する比活性は135U/m9であった。一
方、L−スレオニンおよびL−アロスレオニンに対して
は全く活性を示さなかった。
Ammonium sulfate in the crude enzyme extract? In addition, a 0.3-05 saturated fraction was collected and this fraction was dialyzed overnight against the above buffer. After passing the dialysis residue through a column filled with 100 ml of DgAE Sephadex A-50 and equilibrated with the above buffer to adsorb the enzyme, add a sodium chloride solution f: 01 to 0.4 M. The solution was passed through the column at different concentrations, and the fraction with D-threonine aldolase activity was collected from each fraction of the eluate. This activity zone was around a sodium chloride concentration of 0.3M. The collected active fraction was passed through a Sephatex G-200200m/4Q light-enhanced column and subjected to gel filtration, and the D-threonine aldolase activity [7 minutes was collected and filtered with a Membram filter (18). At 2.4η/l, the specific activity for D-threonine was 1.24 U/■, and the specific activity for D-allothreonine was 135 U/m9. On the other hand, it showed no activity against L-threonine and L-allothreonine.

酵素製造例2 シュードモナスDK−2微工研菌寄第6201号および
アルカリゲネス・ノ・エカリスIFO12669を用い
、いずれも酵素製造例1と同じ培地に同様に培養し、培
養液から酵素を分離したところシュードモナスDK−2
菌の場合にはタンパク質濃度23■/rn1.の酵素液
12m1が、そしてアルカリゲネス・ノ1エカリス菌の
場合には、タンパク質濃度21η/rnlの酵素液11
−が得られた。この酵素活性を測定したところ、前者は
D−スレオニンに対する比活性が1.01u/mgでf
zD、D−アロスレオニンに対する比活性が2.96U
/■であった。一方、後者のそ(19) i′1 −・九はD−スレオニンに対する比活性が1.86U/
wiであり、D−アロスレオニンに対する比活性が2.
95U/■であった。そして、いずれもL−スレオニン
およびL−アロスレオニンニ対しては全く活性を示さな
かった。
Enzyme Production Example 2 Using Pseudomonas DK-2 Microtechnical Research Institute No. 6201 and Alcaligenes no. DK-2
In the case of bacteria, the protein concentration is 23μ/rn1. and in the case of Alcaligenes no.
- was obtained. When this enzyme activity was measured, the specific activity of the former against D-threonine was 1.01 u/mg, and f
Specific activity for zD, D-allothreonine is 2.96U
It was /■. On the other hand, the latter, So(19) i'1-9, has a specific activity of 1.86 U/9 for D-threonine.
wi, and the specific activity for D-allothreonine is 2.
It was 95 U/■. In addition, none of them showed any activity against L-threonine and L-allothreonine.

以下、実施例を示す。なお、生成物の定量およびスレオ
体/アロ体比は、t−ブタノール:メチルエチルケトン
:25俤アンモニア水比が4:3:1の混合物を展開溶
媒としてペーパークロマトグラフィーを行ない、ニンヒ
ドリンで発色させてスポットを切りとり、硝酸銅を0.
005係含むメタノールで抽出し、比色定置して求めた
Examples are shown below. In addition, the quantitative determination of the product and the threo isomer/allo isomer ratio were carried out by paper chromatography using a mixture of t-butanol: methyl ethyl ketone: 25 m ammonia water in the ratio of 4:3:1 as a developing solvent, and spotting was carried out by color development with ninhydrin. Cut off and add 0.0% copper nitrate.
It was determined by extraction with methanol containing 0.005 and fixed colorimetry.

実施例1 酵素製造例1および2と同様に培養して得られたアルカ
リゲネスハエ力リスIFO12669、シュードモナス
DK−2微工研菌寄第6200号、およびアリスロパク
タ−DK−19微工研菌寄第6201号の培養液各1−
を遠心分離して菌体を集め、いずれもα9%食塩水を加
えて(20) 各洗滌菌体にグリシン200μmole 、  アセト
アルデヒド200 p mo’le、 およびpH8,
0の0.1 M ) IJスス−酸緩衝液1−よりなる
基質溶液を加え30℃で20時間反応させた。
Example 1 Alcaligenes flylis IFO 12669, Pseudomonas DK-2 Phytochemistry No. 6200, and Alithropacta DK-19 Phytochemistry No. 6201 obtained by culturing in the same manner as in Enzyme Production Examples 1 and 2. No. 1 culture solution each
The cells were collected by centrifugation, and α9% saline was added (20) to each washed cell, 200 μmole of glycine, 200 pmol of acetaldehyde, and pH 8,
A substrate solution consisting of 0.1M) IJ soot-acid buffer 1- was added and reacted at 30°C for 20 hours.

反応終了後、溶液中のD−スレオニンおよびD−アロス
レオニンを定量したところ下表に示す如き結果が得られ
た。
After the reaction was completed, D-threonine and D-allothreonine in the solution were quantified, and the results shown in the table below were obtained.

アルカリゲネスノ1エリカス     7.2    
 1.1シユードモナス I)K−222,81,5ア
リスロバクタ−DK−195r15     1.6生
成スレオニンがD一体であったことは各画とも1jスケ
ールで反応させて確認した。すなわち、反応液を■1型
のDowex 50 WX 8 500−を充填したカ
ラムに通液し、水洗後12Nアンモニアで溶離してスレ
オニン区分とグリシン区分に分離した。スレオニン区分
を濃縮後活性(21) °)綬で脱色し、脱色液にエタノールを添加して結晶を
得た。この結晶についてNMR、赤外線吸収スペクトル
、元素分析、および比論光#&′を測定して、この結晶
がD−スレオニンであることを確認した。
Alkaline Genesno 1 Ericas 7.2
1.1 Pseudomonas I) K-222,81,5 Arylobacter-DK-195r15 1.6 It was confirmed that the generated threonine was D-integrated by reacting each image on a 1j scale. That is, the reaction solution was passed through a column packed with Type 1 Dowex 50 WX 8 500-, washed with water, and then eluted with 12N ammonia to separate the threonine fraction and the glycine fraction. After concentrating the threonine fraction, it was decolorized with an active (21°) ribbon, and ethanol was added to the decolorization solution to obtain crystals. This crystal was measured by NMR, infrared absorption spectrum, elemental analysis, and spectrophotometry #&', and it was confirmed that this crystal was D-threonine.

一方、各反応液についてストレブ)−コツカス・ハエ力
すスエF03181 i用いたバイオアッセイ法で測定
し、反応液に1dL一体が全く含まれてい碌いことを確
認した。、 実施例2 アリスロバクタ−DK−19微工研菌寄第6201号の
実施例1と同じ培養液を用い、菌体を遠心分離して洗浄
後凍結乾燥した。
On the other hand, each reaction solution was measured by a bioassay method using Streb-Cotchus flies F03181 i, and it was confirmed that the reaction solution contained 1 dL at all. , Example 2 Using the same culture solution as in Example 1 of Arylobacter DK-19 Microtechnical Research Institute No. 6201, the bacterial cells were centrifuged, washed, and freeze-dried.

下表に示す各アルデヒド50 mmo1θ、グリシン5
0 m mole 、およびpHa Oの[′11Mト
リスー塩酸緩衝液500−よりなる基′η浴溶液上記の
乾燥菌体を2f宛投入し、それぞれ30℃で40時間反
応させた。
Each aldehyde shown in the table below 50 mmol 1θ, glycine 5
2 f of the above dried bacterial cells were added to a bath solution consisting of 11M Tris-HCl buffer with pH: 0 mmole and pH: 0, and allowed to react at 30° C. for 40 hours.

反応終了後、溶液中のD−β−ヒドロキシアミノ酸を定
量した結果を下表に示す。なお、ス(22) レオ体/アロ体の比は各溶液とも約1.6であった。− 特許出願人   電気化学工業株式会社代理人 中 本
  宏 井  上     昭 (25) 第1頁の続き ・77発 明 者 小泉典秋 茨城県新治郡桜村千現2−11− 8篠内ハイッ102号
After the reaction was completed, the amount of D-β-hydroxyamino acid in the solution was determined and the results are shown in the table below. The ratio of s(22) rheo isomer to allo isomer was approximately 1.6 in each solution. - Patent applicant Denki Kagaku Kogyo Co., Ltd. Agent Hiroi Nakamoto Kamiaki (25) Continued from page 1 77 Inventor Noriaki Koizumi 2-11-8 Sengen, Sakuramura, Niiharu-gun, Ibaraki Prefecture Shinouchi High 102

Claims (1)

【特許請求の範囲】 グリシンと一般式R−cno (但し、Rは水素または
飽和アルキル基を表わす。)で示されるアルデヒド化合
物とID−スレオニンアルドラーゼの存在下で反応させ
ることを特徴とする一般式 %式% (但し、Rは水素または飽和アルキル基を表わす。) で示されるD−β−ヒドロキシアミノ酸の製造法。
[Claims] A general formula characterized by reacting glycine with an aldehyde compound represented by the general formula R-cno (where R represents hydrogen or a saturated alkyl group) in the presence of ID-threonine aldolase. A method for producing D-β-hydroxyamino acid represented by the formula % (wherein R represents hydrogen or a saturated alkyl group).
JP56209983A 1981-12-28 1981-12-28 Preparation of d-beta-hydroxyamino acid Granted JPS58116690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209983A JPS58116690A (en) 1981-12-28 1981-12-28 Preparation of d-beta-hydroxyamino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209983A JPS58116690A (en) 1981-12-28 1981-12-28 Preparation of d-beta-hydroxyamino acid

Publications (2)

Publication Number Publication Date
JPS58116690A true JPS58116690A (en) 1983-07-11
JPH022597B2 JPH022597B2 (en) 1990-01-18

Family

ID=16581910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209983A Granted JPS58116690A (en) 1981-12-28 1981-12-28 Preparation of d-beta-hydroxyamino acid

Country Status (1)

Country Link
JP (1) JPS58116690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207793A (en) * 1989-02-08 1990-08-17 Denki Kagaku Kogyo Kk Production of d-beta-hydroxyamino acid
US5266468A (en) * 1990-06-04 1993-11-30 University Of Notre Dame Du Lac Process for preparing β-hydroxy-α amino acids
WO2006041143A1 (en) * 2004-10-13 2006-04-20 Mitsui Chemicals, Inc. Dna encoding novel enzyme having d-serine synthase activity, method of producing the enzyme and method of producing d-serine by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501441C1 (en) * 1995-01-19 1996-04-04 Seepex Seeberger Gmbh & Co Multi=flow eccentric screw pump

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207793A (en) * 1989-02-08 1990-08-17 Denki Kagaku Kogyo Kk Production of d-beta-hydroxyamino acid
US5266468A (en) * 1990-06-04 1993-11-30 University Of Notre Dame Du Lac Process for preparing β-hydroxy-α amino acids
WO2006041143A1 (en) * 2004-10-13 2006-04-20 Mitsui Chemicals, Inc. Dna encoding novel enzyme having d-serine synthase activity, method of producing the enzyme and method of producing d-serine by using the same
KR100980541B1 (en) * 2004-10-13 2010-09-06 미쓰이 가가쿠 가부시키가이샤 Dna encoding novel enzyme having d-serine synthase activity, method of producing the enzyme and method of producing d-serine by using the same
EP2295566A1 (en) * 2004-10-13 2011-03-16 Mitsui Chemicals, Inc. Method of producing D-serine by using a microbial D-serine synthase.
US7919285B2 (en) 2004-10-13 2011-04-05 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
EP2602320A1 (en) 2004-10-13 2013-06-12 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
EP2602319A1 (en) 2004-10-13 2013-06-12 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
US9212376B2 (en) 2004-10-13 2015-12-15 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
US9695452B2 (en) 2004-10-13 2017-07-04 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same
US10221435B2 (en) 2004-10-13 2019-03-05 Mitsui Chemicals, Inc. DNA encoding novel enzyme having D-serine synthase activity, method of producing the enzyme and method of producing D-serine by using the same

Also Published As

Publication number Publication date
JPH022597B2 (en) 1990-01-18

Similar Documents

Publication Publication Date Title
JPH0693839B2 (en) Method for producing L-2-amino-4- (hydroxymethylphosphinyl) butyric acid
JPS6156086A (en) Microbial preparation of alpha-hydroxyacid and its salt
JPS58116690A (en) Preparation of d-beta-hydroxyamino acid
US4492757A (en) Process for preparing L-threonine
SU469266A3 (en) The method of obtaining 7-amino-deacetoxycephalosporanic acid
JPS58201985A (en) Production of glucose dehydrogenase
JPH022589B2 (en)
JP3006615B2 (en) Method for producing D-β-hydroxy amino acid
EP0187525B1 (en) Process for producing l-serine
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
US5723321A (en) Process for preparing D-lysine
JP2728465B2 (en) Method for producing L-homophenylalanine
JP2840723B2 (en) Method for producing 4-halo-3-hydroxybutyronitrile
JP2614460B2 (en) Process for producing di-D-fructosylfuranose 2,6 ': 6,2' dianhydride
JPS63219389A (en) Production of di-d-fructosylfuranose 1,2':2,3' dianhydride
JPH0591895A (en) Production of d-serine
JPH072116B2 (en) Method for producing difructose and dianhydride III
JPH0588118B2 (en)
JPS58129975A (en) Method for suppressing activity of serine decomposition enzyme in bacterial cell
JPS609494A (en) Preparation of l-threonine
JPS63283591A (en) Production of l-alpha-amino-epsilon-caprolactam
JPS62118882A (en) L-arginine oxidase and its production
JPH0346115B2 (en)
JPS6043393A (en) Preparation of l-phenylalanine
JPH07250694A (en) Production of l-2-amino-4-(hydroxymethylphosphinyl)-butyric acid