JPS58115792A - Heater electrode of lanthanum chromite series - Google Patents

Heater electrode of lanthanum chromite series

Info

Publication number
JPS58115792A
JPS58115792A JP21585781A JP21585781A JPS58115792A JP S58115792 A JPS58115792 A JP S58115792A JP 21585781 A JP21585781 A JP 21585781A JP 21585781 A JP21585781 A JP 21585781A JP S58115792 A JPS58115792 A JP S58115792A
Authority
JP
Japan
Prior art keywords
heating element
resistant
lanthanum chromite
heat
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21585781A
Other languages
Japanese (ja)
Other versions
JPS649713B2 (en
Inventor
稔 竹内
前田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAGAKU TOUGIYOU KK
NIPPON KAGAKU TOGYO KK
Original Assignee
NIHON KAGAKU TOUGIYOU KK
NIPPON KAGAKU TOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAGAKU TOUGIYOU KK, NIPPON KAGAKU TOGYO KK filed Critical NIHON KAGAKU TOUGIYOU KK
Priority to JP21585781A priority Critical patent/JPS58115792A/en
Publication of JPS58115792A publication Critical patent/JPS58115792A/en
Publication of JPS649713B2 publication Critical patent/JPS649713B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高温において高導電性を有するランタンクロ
マイト系焼結体を発熱体として使用する場合の電極構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode structure when a lanthanum chromite-based sintered body having high conductivity at high temperatures is used as a heating element.

従来から一般に用いられている金属発熱体や、高温域に
おける炭素、炭化珪素等の非金属発熱体は,電気抵抗の
温度係数が「正Jの特性を有し、使用時に於いて発熱体
端子部に接続する電極部の温度上昇が小さいため、その
電極構造は簡単であシ、特別な工夫を要しない。
Metal heating elements that have been commonly used and non-metal heating elements such as carbon and silicon carbide in high temperature ranges have a temperature coefficient of electrical resistance of "positive J", and when used, the terminals of the heating element Since the temperature rise in the electrode portion connected to the electrode is small, the electrode structure is simple and does not require any special efforts.

しかしながら、高温に於いて酸化性雰囲気で高い安定性
を持つ導電性酸化物は、一般には第6図に示す様に、電
気抵抗の温度係数が[釦である特性を有する。従って、
この導電性酸化物を柄付型発熱体、即ち同一比抵抗の素
材にて発熱部及び柄部(即ち端子部)の電気抵抗を各々
の断面積の大きさにより調節して使用する場合、発熱部
の温度上昇に伴いその電気抵抗が小さくなるため、断面
積を大きくした端子部と発熱部との電気抵抗の差が小さ
くなる。そのため端子部の温度上昇が太きくなシ、最終
的には端子部も発熱する状態となシ、端子部に接続する
電極部もかなシ高温になる欠点がある。
However, conductive oxides that are highly stable in oxidizing atmospheres at high temperatures generally have the characteristic that the temperature coefficient of electrical resistance is [button], as shown in FIG. Therefore,
When this conductive oxide is used as a handle-type heating element, that is, a material with the same specific resistance, and the electrical resistance of the heating part and handle part (i.e., terminal part) is adjusted according to the size of the cross-sectional area of each, the heat generation As the temperature of the terminal section increases, its electrical resistance decreases, so the difference in electrical resistance between the terminal section, which has a larger cross-sectional area, and the heat generating section becomes smaller. Therefore, there is a disadvantage that the temperature rise in the terminal portion is not large, and eventually the terminal portion also generates heat, and the electrode portion connected to the terminal portion also becomes high in temperature.

それ故、電気抵抗の温度係数が「正」の特性を有する発
熱体と同様な電極構造を導電性酸化物の発熱体の場合に
使用すると、その電極金属の劣化腐蝕が著しくなると同
時に、導電性酸化物本来の熱衝撃抵抗性が劣るため発熱
体の端子部を炉外に出して電極を取り付けて使用したと
きに、発熱体の端子部とその周辺温度との差(温度匂配
)によシ発生する熱応力により、発熱体の端子部の破壊
が起か,という欠点を有する。
Therefore, if an electrode structure similar to that of a heating element with a positive temperature coefficient of electrical resistance is used for a conductive oxide heating element, deterioration and corrosion of the electrode metal will be significant, and at the same time the conductive Due to the inherent poor thermal shock resistance of oxides, when the terminals of the heating element are taken outside the furnace and electrodes are attached, the temperature difference (temperature distribution) between the terminals of the heating element and the surrounding area may cause damage. This has the disadvantage that the generated thermal stress may cause the terminal portion of the heating element to break.

本発明の目的は、電気抵抗の温度係数が「釦の特性を有
する導電性酸化物タイプの発熱体であるランタンクロマ
イト系発熱体に於いて、上記の如き欠卑を解消し、電気
的接触抵抗が著しく低い発熱体電極構造を提供すること
にある。
The purpose of the present invention is to solve the above-mentioned deficiencies in a lanthanum chromite heating element, which is a conductive oxide type heating element with a temperature coefficient of electrical resistance having the characteristics of a button, and to provide electrical contact resistance. The object of the present invention is to provide a heating element electrode structure with extremely low heat generation temperature.

以下、図面に基づいて本発明の電極構造について説明す
る。尚、両端子部分は同一なので、一方の端子部分につ
いてのみ説明する。
Hereinafter, the electrode structure of the present invention will be explained based on the drawings. Note that since both terminal portions are the same, only one terminal portion will be described.

第1図又は第2図に於いて、ランタンクロマイト系発熱
体端子部(8)の周辺の表面に複数の螺旋溝構造(1)
又は互いに平行な円周溝構造(4)、及びランタンクロ
マイト系発熱体中心部側の螺旋溝構造(1)終端から、
又は該発熱体の中心部に最も近い円周溝から各円周溝と
互いに交差して延びる縦溝構造(2)が設けられている
。骸発熱体端子部は、該発熱体が炉に組み入れられたと
きに炉の内部より放熱される熱の影響を避け得る状態、
即ち電極効果を保持(導電性を持続)するに充分な長さ
を炉外に露出することを要する。この長さは、炉の構造
、使用温度、昇温速度、発熱体の本数によシ決定される
が約25〜40mlである。その長さのうち例えば約1
5鱈の部分に複数回、通常4〜5周溝切シするのである
が、その幅及び深さは巻き付けられる金属導線の直径に
よって決定される。
In Fig. 1 or Fig. 2, a plurality of spiral groove structures (1) are formed on the surface around the lanthanum chromite heating element terminal portion (8).
Or from the mutually parallel circumferential groove structure (4) and the end of the spiral groove structure (1) on the center side of the lanthanum chromite heating element,
Alternatively, a longitudinal groove structure (2) is provided that extends from the circumferential groove closest to the center of the heating element to intersect with each circumferential groove. The terminal portion of the shell heating element is in a state where it can avoid the influence of heat radiated from the inside of the furnace when the heating element is assembled in the furnace,
That is, it is necessary to expose a sufficient length outside the furnace to maintain the electrode effect (maintain conductivity). This length is determined by the furnace structure, operating temperature, heating rate, and number of heating elements, but is approximately 25 to 40 ml. For example, about 1 of that length
5. Grooves are cut multiple times, usually 4 to 5 times around the cod, and the width and depth of the grooves are determined by the diameter of the metal conductor wire to be wound.

第3図に於いて、上記の様にして溝構造が施された発熱
体端子部(3)の表面全体に高温での耐酸化性を有する
耐熱金属被膜(5)を強固に焼付ける。この焼付け用金
属被膜としては市販の導電ペースト(銀、金、白金、銅
又はこれらの合金のペースト)を用い、充分な焼付け強
度を生ずる温度(材質に応じて変化するが500〜15
00℃程度)で且つ酸化性雰凹気下で焼付け形成する。
In FIG. 3, a heat-resistant metal coating (5) having oxidation resistance at high temperatures is firmly baked onto the entire surface of the heating element terminal portion (3) provided with the groove structure as described above. A commercially available conductive paste (paste of silver, gold, platinum, copper, or an alloy thereof) is used as the metal coating for baking, and a temperature of 500 to 15
00°C) and in an oxidizing atmosphere.

第4図及び第5図に於いて、耐熱、耐酸化性金属被膜を
形成した溝構造部の溝幅及び溝深さに適合する耐熱、耐
酸化性金属導線(6)を埋没する様に巻き肘け、該導線
のゆるみを防止するため2本撚線(7)とし、先端に圧
着端子(8)を接続する。圧着端子としては、市販のも
のを広く使用でき、例えばアルミニウム製のものを使用
する。
In Figures 4 and 5, a heat-resistant, oxidation-resistant metal conductive wire (6) that matches the groove width and groove depth of the groove structure on which a heat-resistant, oxidation-resistant metal coating is formed is wound so as to be buried therein. To prevent the conductor from loosening, two twisted wires (7) are used, and a crimp terminal (8) is connected to the tip. As the crimp terminal, a wide variety of commercially available crimp terminals can be used, for example, those made of aluminum are used.

この際、接触不良による電気抵抗増加を防止する九め、
゛予め導電ペーストを塗布し、巻き付ける導線めなじみ
を良くする。巻き付けた後、導線と隣との間隙をなくす
るため実に導電ペーストにて上塗りし、表面を平滑にし
て二体化構造の電極とする。
At this time, the ninth step is to prevent an increase in electrical resistance due to poor contact.
゛Apply conductive paste in advance to improve the fit of the conductor wires. After winding, the conductive wire is overcoated with conductive paste to eliminate gaps between the wire and its neighbor, and the surface is smoothed to create a two-piece electrode.

用いられる導線として燻高温耐熱、耐酸化性金[製のも
のが好ましく、貴金属製のものが特に好ましい。その様
な金属としては、例えば銀、一合金、白金゛、金等が挙
−げ゛られる。また、この導線は発熱休′からの熱伝導
による加熱にょシ導電性が損なわれる温度にまで上昇す
′ることのな一放熱容量を゛持つ・太゛さであれ゛ば良
゛<、用いた材質によって適宜決定される。゛ 以下、実施例を挙げ゛て本発明を更に詳しく説明する。
The conductive wire used is preferably made of smoked, high-temperature, heat-resistant and oxidation-resistant gold, and is particularly preferably made of noble metal. Examples of such metals include silver, monoalloy, platinum, and gold. In addition, this conductor should have a heat dissipation capacity and a thickness that will not allow the temperature to rise to a point where the conductivity is lost due to heating due to heat conduction from heat generation and rest. Determined appropriately depending on the material used. The present invention will be explained in more detail below with reference to Examples.

実施例1−′゛1 A型及びB型の2種の発熱体を用いて以下の条゜件によ
り本発一明の電極構造の評価を行々った≧(1)AfI
1発熱体 ■゛発゛熱体′の組成゛ 酸化ランタン(Lia20B)と−酸化第二クロム(O
r20g)を同量とし、その゛う゛ち酸化ランタンのL
aイオン5〜1−0・′チをOaイオンで置換固溶・さ
′ぜ・九ランタング1口゛マ゛−゛イト複合酸化物(L
a1=zC&pTOB,x:0.05〜0.10’)で
ある。
Example 1-'゛1 The electrode structure of the present invention was evaluated using two types of heating elements, type A and type B, under the following conditions≧(1) AfI
1 Heating element ■ Composition of the heating element lanthanum oxide (Lia20B) and -chromic oxide (O
R20g) in the same amount, and then L of lanthanum oxide.
Replace a ion 5~1-0/' with Oa ion Solid solution/sadze/9 lanthanum 1 unit mite composite oxide (L
a1=zC&pTOB, x: 0.05-0.10').

■発熱体の形状゛″ 外径1。BmX内径6m+1X全長゛430闘のうち中
央部の120顛を外径14′同に細゛<シ、発熱部とな
ムその両端20’ffを温度匂配の緩和を計・るたts
ト14M″′つのテー′パーを付け、他・を端子部(柄
・部)とした形状で、内径穴両端を約10fl同一素材
”にて栓をする。
■ Shape of the heating element: Outer diameter: 1. Bm x inner diameter: 6 m + 1 x total length: Out of the 430 cm, the central 120 pieces are the same as the outer diameter of 14', and the heat generating part is the same. Rutats plans to ease the restrictions.
It has a shape with a 14M'' taper and the other is a terminal part (handle/part), and both ends of the inner diameter hole are plugged with about 10ml of the same material.

■電極構造及び取り付け 発熱体の生品(未焼゛震・′品)時点で、焼・成後に所
定の寸法になる様に、両端子部15ffの長さ内に幅約
1.2M深さ約1.2all2)螺旋簿構造4周,及び
発熱体中心部側の螺旋溝終端がち発熱体端部に延びる縦
溝構造を円周上に切削加工する。
■Electrode structure and attachment When the heating element is a raw product (unfired product), a width of about 1.2M deep is placed within the length of both terminal parts 15ff so that it will have the specified dimensions after firing. Approximately 1.2all2) Cut four circumferences of the helical book structure and a vertical groove structure that ends at the end of the spiral groove on the side of the center of the heating element and extends to the end of the heating element on the circumference.

所定温度に焼成、焼結後、発熱体素体の電極部とする長
さ25flの両端子部の表面全体に市販銀ペーストを塗
布する。
After firing and sintering to a predetermined temperature, a commercially available silver paste is applied to the entire surface of both terminal portions having a length of 25 fl, which are to be used as electrode portions of the heating element element.

この際、螺旋溝の内部まで充分銀ペーストが行きとどく
ようにペーストの粘性を調整する。
At this time, the viscosity of the paste is adjusted so that the silver paste reaches the inside of the spiral groove sufficiently.

銀ペーストを塗布された発熱体をペースト中の溶剤乾燥
後、電気炉にて850〜90.0″Cで焼成し、銀被膜
と発熱体の接着を強固に形成する。溝に銀ペーストを塗
布した後、銀線(直径ltm)を溝にしつかシ巻き付け
溝の最終部で銀線のゆるみ防止のため、2本撚をかけそ
の約150鱈を導線とし、端末にアルミニウム圧着端子
を接続する。
After drying the solvent in the paste, the heating element coated with silver paste is fired at 850 to 90.0"C in an electric furnace to form a strong bond between the silver coating and the heating element. Apply silver paste to the grooves. After that, a silver wire (diameter ltm) is wrapped around the groove, and at the final part of the groove, to prevent the silver wire from loosening, two wires are twisted, about 150 wires are used as a conductor, and an aluminum crimp terminal is connected to the end.

更に発熱体と鎖線の接触不良をなくするため巻いた銀線
と溝との間隙に銀ペーストを上塗りし、発熱体とする。
Furthermore, in order to eliminate poor contact between the heating element and the chain line, the gap between the wound silver wire and the groove is overcoated with silver paste to form the heating element.

■昇温 電極保謹のため、発熱体を炉に組入れる場合電極は炉外
に出す。
■Temperature rising electrode To protect the temperature, take the electrode out of the furnace when installing a heating element in the furnace.

発熱体電極よシ出され九導線の圧着端子部を炉の電極板
にネジ止めし、電圧をかけ室温より,1時間当#)25
0″Cの昇温速度で、発熱部表面温度約1800℃まで
昇温し、約40時間保持した後500゜Cまで、昇温時
と同速度で降温する操作を繰シ返す。この操作はフニラ
イト単結晶の育成法の一つであるプリッジマン法と言わ
れるものでおる, (2)B型発熱体 ■発熱体の組成 β型発熱体はA型発熱体とは組成を異にし、2種類の固
有抵抗を有する組成よりなる。
Screw the crimp terminal of the 9-conductor wire that comes out from the heating element electrode to the electrode plate of the furnace, and apply voltage for 1 hour from room temperature.
At a heating rate of 0''C, the temperature is raised to the surface temperature of the heat generating part to approximately 1800°C, held for approximately 40 hours, and then the temperature is lowered to 500°C at the same rate as when the temperature was raised.This operation is repeated. This is called the Pridgeman method, which is one of the methods for growing funilite single crystals. The composition has a specific resistance of .

主成分はA型と・同じで、酸化ランタン(La20B)
と酸化埠ニクロム(or2o,)とは一量である。
The main component is the same as type A, lanthanum oxide (La20B)
and dichrome oxide (or2o,) are one amount.

組成−1二酸化ランタンのLaイオン1〜5一をOaイ
オンで置換固溶させた ランタンクロマイト複合酸化物 (Lal=z二CazOrOg.x:0.01〜0.0
5)である。
Composition-1 Lanthanum chromite composite oxide in which La ions 1 to 5 of lanthanum dioxide are replaced with Oa ions as a solid solution (Lal=z2CazOrOg.x: 0.01 to 0.0
5).

組成−2:LaOrO@組成のうちLaイオン5〜10
9!七〇aイオンで置換固溶 させたランタンクロマイト複合酸 化物(La1−go&zoro@,x:o.05〜0、
10)である。
Composition-2: LaOrO @ 5 to 10 La ions in the composition
9! Lanthanum chromite composite oxide substituted with 70a ion (La1-go&zoro@, x: o.05-0,
10).

■発熱体の形状 外径16flX内径8WX全長550m+1のうち中央
部180mlKは抵抗の大きい組成−1を使用し、両端
部250個Kは抵抗の小さい組成一2を使用する●発熱
部と端子部の中間に発熱体の温度匂配を緩和するため2
0mの組成−1、2を混合したなじみ層を゛形成した所
謂棒型発熱体である。
■ Shape of heating element Outer diameter 16 fl x inner diameter 8 W x total length 550 m + 1, the central part 180 ml K uses composition -1 with high resistance, and the both ends 250 k use composition -2 with low resistance. In order to reduce the temperature gradient of the heating element in the middle 2
It is a so-called rod-shaped heating element in which a conforming layer is formed by mixing compositions 1 and 2 of 0m.

このBll発熱体は、前述のごとく端子部と発熱部の抵
抗比を組成によシ変化させたもので、第6図に示す様に
▲董発熱体κ比してその発熱部の固有抵抗は大きい。
As mentioned above, this Bll heating element has the resistance ratio between the terminal part and the heating part changed depending on the composition, and as shown in Figure 6, the specific resistance of the heating part is big.

■電極構造及び取り付け (1)一〇と同様。■Electrode structure and installation (1) Same as 10.

■昇温 《1》一■と同様。■Temperature rise Same as 《1》1■.

《3》評価 本実施例に於ける発熱体電極表面の温度は、600〜9
00”Cであシ、炉の構造及び操作から考えて、極めて
苛酷な使用条件である。かかる条件下に於いても、本発
明電極榊造では導線が溝内部に強く固着されているため
、操り返し使用しても、十の電極部には何ら異状の発生
はなく、A型及びB型のいずれの発熱体の場合にも、極
めて有効に用いられることが判った。
<<3>> Evaluation The temperature of the heating element electrode surface in this example was 600 to 9
00"C, which is an extremely harsh operating condition considering the structure and operation of the furnace.Even under such conditions, the electrode Sakaki structure of the present invention has a conductor wire firmly fixed inside the groove, so Even after repeated use, no abnormality occurred in the electrode portion of the test tube, and it was found that it can be used extremely effectively with both A-type and B-type heating elements.

実施例2 実施例10▲型発熱体を用一て従来璽の電極簿造と本発
明の電極構造とを比較した。
Example 2 Example 10 Using a ▲ type heating element, the conventional electrode structure and the electrode structure of the present invention were compared.

(1)使用発熱体 実施例1の(1)一■及び■に示す発熱体の同一ロット
のものを使用した。ただし、下記構造−1の場合は発熱
体未端の栓はしないう抵抗値=23〜25Ω(30”C
”) (2)電極構造 11造−1:従来型のステンレスターミナル使用のもの
を用いた。即ち、第7図において発熱体端子部(3)に
金属被膜(この場合銀メタリコン)(5)を施シ、ステ
ンレスターミナルαOを取り付けて、接着面に銀ペース
ト(9)を塗布する。次に第8図に示す様にステンレス
ターミナルQCJにアルミニウム編組線(ロ)を巻き付
けクランプ@で固定する。
(1) Heating elements used The heating elements shown in (1) 1 and 2 of Example 1 were used from the same lot. However, in the case of structure 1 below, the plug at the end of the heating element is not connected.Resistance value = 23 to 25Ω (30"C
(2) Electrode structure 11-1: A conventional stainless steel terminal was used. In other words, in Fig. 7, a metal coating (in this case silver metallicon) (5) was applied to the heating element terminal (3). Then, attach the stainless steel terminal αO and apply silver paste (9) to the adhesive surface. Next, as shown in Fig. 8, wrap the aluminum braided wire (b) around the stainless steel terminal QCJ and fix it with a clamp @.

構造−2:実施例1の(1)一■に示す通シである。Structure-2: This is the structure shown in (1)-1 of Example 1.

尚、電極構成後の抵抗値は発熱体素体のみの抵抗値と同
値であった。
Note that the resistance value after the electrode configuration was the same as the resistance value of the heating element alone.

(3)発熱体の配線 上記の電極構造を施した発熱体を縦弐8本掛管状炉に入
れ、第9図に示す様に配線する。即ち、構造−1の発熱
体(自)4本を並列に、及び構造−2の発熱体044本
を並列に結ぎ、それを直列に結ぐ。
(3) Wiring of the heating element The heating element having the above-mentioned electrode structure is placed in a tube furnace with 8 vertical pipes, and wired as shown in FIG. 9. That is, four heating elements of structure-1 (self) are connected in parallel, 044 heating elements of structure-2 are connected in parallel, and then they are connected in series.

配線後の全体合成抵抗は12Ω(30゜C)であったO (4)試験方法及び結果 室温より1時間当シ約250℃の昇温速度で、7時間後
に発熱体表面温度約1800℃まで昇温し、48時間保
持した後、17時間かけて室温まで降温する。このスケ
ジュールに従って、72時間の繰り返し操作を行なった
。6回操作後の電極部を含む発熱体の抵抗値を第1表に
示す。また、操作回数(使用回数)による各発熱体電極
部の劣化状態を第2表に示す。
The overall combined resistance after wiring was 12Ω (30°C) (4) Test method and results At a temperature increase rate of about 250°C per hour from room temperature, the heating element surface temperature reached about 1800°C after 7 hours. After raising the temperature and maintaining it for 48 hours, the temperature is lowered to room temperature over 17 hours. According to this schedule, repeated operations were performed for 72 hours. Table 1 shows the resistance value of the heating element including the electrode portion after six operations. Further, Table 2 shows the state of deterioration of each heating element electrode portion depending on the number of operations (number of uses).

(5)評価 第1表に於いて構造−2の発熱体4本の抵抗値がいずれ
も若干低下しているが、これはランタンクロマイト系発
熱体の焼結度の進展と酸化作用による吃ので、ランタン
クロマイト系発熱体の特性によるものである。それに対
して構造−1の発熱体4本の抵抗値がいずれも著しく増
加しているのは、ステンレスターミナルの酸化腐蝕によ
るスケール(鉄の酸化物)発生による電気的接触不良の
ためである。このことは、ステンレスターミナルを取り
除いた発熱体自体の抵抗値が構造−2の発熱体とほぼ同
じ値を示したことから判る。
(5) In Table 1 of the evaluation, the resistance values of the four heating elements of structure-2 have all decreased slightly, but this is due to the progress of sintering of the lanthanum chromite heating element and stuttering due to oxidation. This is due to the characteristics of the lanthanum chromite heating element. On the other hand, the reason why the resistance values of the four heating elements of Structure-1 are all significantly increased is due to poor electrical contact due to the generation of scale (iron oxide) due to oxidative corrosion of the stainless steel terminal. This can be seen from the fact that the resistance value of the heating element itself from which the stainless steel terminal was removed showed almost the same value as that of the heating element of Structure-2.

第2表から明らかな様に、構造−1の発熱体は低操作回
数にて、スケールが発生し、抵抗の増大が著しく使用不
能となる。それに対して、構造−2の発熱体では、電極
の一部が侵されても、その導電性を損うことなく長時間
使用可能であることが判る。
As is clear from Table 2, the heating element of Structure-1 develops scale at a low number of operations, and the resistance increases significantly, making it unusable. On the other hand, it can be seen that the heating element of Structure-2 can be used for a long time without losing its conductivity even if a part of the electrode is corroded.

両者の寿命を比較すると、本発明の電極は従来のものに
比して、5倍以上の寿命を持つことが判る0 実施例3 電極の溝構造において、螺旋溝構造を4周切削加工する
代わシに、互いに平行な円周溝構造を5周切削加工した
以外は、すべて実施例1及び2と同様にして、それぞれ
の実施例と同様の結果を得た0
Comparing the lifespans of the two, it can be seen that the electrode of the present invention has a lifespan more than five times that of the conventional one.Example 3 In the groove structure of the electrode, instead of cutting the spiral groove structure four times, The same results as in each example were obtained by performing the same procedure as in Examples 1 and 2, except that the circumferential groove structure parallel to each other was cut five times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は発熱体端子部の溝構造、第3図は発
熱体端子部に金属被膜を施した状叉−の部分断面図、並
びに第4図及び第5図は発熱体端子部に含属導線を巻き
つけ、それを2本撚線にし、先端K圧着端子を接続した
様子を示す。第6図は本発明に用いた発熱体の抵抗温度
特性を示す。第7図は従来型電極構造の断面図を示し、
第8図は従来型電極のステンレスターξナルに金属導線
を固定した状態を示す。第9図は実施例2における発熱
体の配線を示す。 (1)・・・螺旋溝構造、(2)・・・縦@1111造
、(3)・・・ランタンクロマイト系発熱体端子部、(
4)・・・円周溝構造、(5)・・・金属被膜、(6)
・・・金属導線、(7)・・・撚線、(8)・・・圧着
端子、(9)・・・銀ペースト,01・・・ステンレス
ターミナル、 (ロ)・・・アルミニウム編組線、@・・・クラング、
Q3・・・構造−1(従来型)の発熱体、Q4)・・・
構台−2(本発明)の発熱体。 (以上) 433一
Figures 1 and 2 show the groove structure of the heating element terminal, Figure 3 is a partial cross-sectional view of the shape of the metal coating on the heating element terminal, and Figures 4 and 5 show the heating element terminal. The figure shows how a conductive wire is wound around the part, twisted into two wires, and a K-tipped crimp terminal is connected. FIG. 6 shows the resistance temperature characteristics of the heating element used in the present invention. FIG. 7 shows a cross-sectional view of a conventional electrode structure,
FIG. 8 shows a state in which a metal conducting wire is fixed to the stainless steel terminal of a conventional electrode. FIG. 9 shows the wiring of the heating element in the second embodiment. (1)...Spiral groove structure, (2)...Vertical @1111 structure, (3)...Lanthanum chromite heating element terminal part, (
4)...Circumferential groove structure, (5)...Metal coating, (6)
... Metal conductor wire, (7) ... Twisted wire, (8) ... Crimp terminal, (9) ... Silver paste, 01 ... Stainless steel terminal, (B) ... Aluminum braided wire, @...Krang,
Q3...Structure-1 (conventional type) heating element, Q4)...
Heating element of gantry-2 (present invention). (or more) 4331

Claims (1)

【特許請求の範囲】 ■(1)ランタンクロマイト系発熱体の両端子部分に設
けられた複数周の螺旋溝、 (I1)ランタンクロマイト系発熱体中心部側の上記螺
旋溝終端から発熱体端部に延びる縦溝、(自)上記螺旋
溝及び縦溝を含むランタンクロマイト系発熱体の両端子
部分全面に形成された耐熱及び耐酸化性の導電性金属皮
膜、 翰上記螺旋溝及び縦溝内に巻設されており、その両端部
分がmb合わされた状態で端子に接続されている耐熱及
び耐酸化性の金属導線、及び M上記螺旋溝及び縦溝内に巻設された金属導線上に形成
されていて、ランタンクロマイト系発熱体の両端子部分
表面を平滑ならしめている耐熱及び耐酸化性の導電性金
属皮膜 を備えたランタンクロマイト系発熱体電極。 ■(1)ランタンクロマイト系発熱体の両端子部分に設
けられた複数周の互いに平行な円周溝、(I1)ランタ
ンクロマイト系発熱体の中心部に最も近い上記円周溝か
ら各円周溝と互いに交差して発熱体端部に延びる縦溝、 QID上記円周溝及び縦溝を含むランタンクロマイト系
発熱体の両端子部分全面に形成された耐熱及び耐酸化性
の導電性金属皮膜、 Q埴上記円周溝及び縦溝内に巻設されておシ、その両端
部分が撚シ合わされた状態で端子に接続されている耐熱
及び耐酸化性の金属導線、及び べφ上記円周溝及び縦溝内に巻設された金属導線上に形
成されていて、ランタンクロマイト系発熱体の両端子部
分表面を平滑ならしめている耐熱及び耐酸化性の導寥妹
金属皮膜 ヲ備えたランタンクロマイト系発熱体電極。
[Claims] (1) A spiral groove with multiple circumferences provided at both terminals of the lanthanum chromite heating element; (I1) from the end of the spiral groove on the center side of the lanthanum chromite heating element to the end of the heating element; A heat-resistant and oxidation-resistant conductive metal film formed on the entire surface of both terminals of the lanthanum chromite heating element, including the spiral grooves and vertical grooves above; A heat-resistant and oxidation-resistant metal conductive wire that is wound and connected to a terminal with both end portions aligned, and a metal conductor wire that is wound in the spiral groove and vertical groove. A lanthanum chromite heating element electrode comprising a heat-resistant and oxidation-resistant conductive metal film smoothing the surfaces of both terminals of the lanthanum chromite heating element. (1) Multiple circumferential grooves parallel to each other provided on both terminals of the lanthanum chromite heating element, (I1) Each circumferential groove starting from the above circumferential groove closest to the center of the lanthanum chromite heating element. A heat-resistant and oxidation-resistant conductive metal film formed on the entire surface of both terminal portions of the lanthanum chromite heating element, including the circumferential grooves and vertical grooves, which intersect with each other and extend to the end of the heating element. A heat-resistant and oxidation-resistant metal conductor wire is wound in the circumferential groove and the longitudinal groove above, and its both ends are twisted together and connected to the terminal; A lanthanum chromite heating element that is formed on a metal conductor wire wound in a vertical groove and has a heat-resistant and oxidation-resistant conductive metal film that smooths the surfaces of both terminals of the lanthanum chromite heating element. Body electrode.
JP21585781A 1981-12-28 1981-12-28 Heater electrode of lanthanum chromite series Granted JPS58115792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21585781A JPS58115792A (en) 1981-12-28 1981-12-28 Heater electrode of lanthanum chromite series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21585781A JPS58115792A (en) 1981-12-28 1981-12-28 Heater electrode of lanthanum chromite series

Publications (2)

Publication Number Publication Date
JPS58115792A true JPS58115792A (en) 1983-07-09
JPS649713B2 JPS649713B2 (en) 1989-02-20

Family

ID=16679418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21585781A Granted JPS58115792A (en) 1981-12-28 1981-12-28 Heater electrode of lanthanum chromite series

Country Status (1)

Country Link
JP (1) JPS58115792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116676A (en) * 1989-09-29 1991-05-17 Shinagawa Refract Co Ltd Electrode joining method for nonmetal heating element
JP2007285644A (en) * 2006-04-19 2007-11-01 Nitsukatoo:Kk Electric furnace
WO2009096311A1 (en) * 2008-01-29 2009-08-06 Tounetsu Corporation Dip-type heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116676A (en) * 1989-09-29 1991-05-17 Shinagawa Refract Co Ltd Electrode joining method for nonmetal heating element
JP2007285644A (en) * 2006-04-19 2007-11-01 Nitsukatoo:Kk Electric furnace
WO2009096311A1 (en) * 2008-01-29 2009-08-06 Tounetsu Corporation Dip-type heater
CN101953226A (en) * 2008-01-29 2011-01-19 株式会社东热 Dip-type heater
US8422871B2 (en) 2008-01-29 2013-04-16 Tounetsu Corporation Immersion heater
JP5371784B2 (en) * 2008-01-29 2013-12-18 株式会社トウネツ Immersion heater

Also Published As

Publication number Publication date
JPS649713B2 (en) 1989-02-20

Similar Documents

Publication Publication Date Title
JP3801756B2 (en) Ceramic glow plug
US4001760A (en) Heating cables and manufacture thereof
US4281451A (en) Electric heater -method of making
US1157916A (en) Insulated wire and terminal therefor.
JPS58115792A (en) Heater electrode of lanthanum chromite series
US2253577A (en) Resistance device
JPH04272685A (en) Sheath heater
US2047302A (en) Spark plug
US2303514A (en) Vapor electric device
US5401937A (en) Sheathed heater
US4033028A (en) Method of making heating cables
KR870005491A (en) Thermocouple spark plugs and manufacturing method thereof
US2324961A (en) Resistor
US10767862B2 (en) Flame rod
DE2743036A1 (en) Tubular resistor assembly with wire wound on insulator - has concentric cooling tube inside insulator tube with coolant flowing through it
CN107005031A (en) For the method for the sparking-plug electrode for manufacturing the fuse with the igniting face that is stretched over
JPS5894925A (en) Wire electrode for electric discharge machining
JP4253444B2 (en) Ceramic glow plug
CA1095221A (en) Electric heater and method of making
US2285875A (en) Electric lamp assembly
JPS63271813A (en) Lengthy superconductive material
GB2024929A (en) Spark plug electrode
JP2892103B2 (en) Spark plug with heater
JPH08148265A (en) Sheathed heater
JP3358843B2 (en) Manufacturing method of electrolytic cell