JPS58114396A - Nonvolatile memory - Google Patents

Nonvolatile memory

Info

Publication number
JPS58114396A
JPS58114396A JP56213616A JP21361681A JPS58114396A JP S58114396 A JPS58114396 A JP S58114396A JP 56213616 A JP56213616 A JP 56213616A JP 21361681 A JP21361681 A JP 21361681A JP S58114396 A JPS58114396 A JP S58114396A
Authority
JP
Japan
Prior art keywords
potential
transistor
type transistor
node
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56213616A
Other languages
Japanese (ja)
Other versions
JPH0323999B2 (en
Inventor
Sumio Tanaka
田中 寿実夫
Shigeyoshi Watanabe
重佳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56213616A priority Critical patent/JPS58114396A/en
Publication of JPS58114396A publication Critical patent/JPS58114396A/en
Publication of JPH0323999B2 publication Critical patent/JPH0323999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To generate the writing/reading potential by means of a complete CMOS process, by forming a potential changeover switch with an enhancement type transistor to which a substrate electrode is connected in a prescribed way. CONSTITUTION:When the potential of a node 24 is set at a high level, the output of an inverter 90 having the prescribed threshold voltage is set at a low level with the output of an inverter 34 set at a high level respectively. Thus a potential changeover switch is formed. Then an enhancement type transistor 221 to which a substrate electrode and writing high potential are connected and an enhancement type transistor 23 to which a substrate electrode and an output node 5 are connected with a current path cut off with adjustment of the bias voltage and with a connection secured to the reading voltage VCC are turned on and off respectively. The writing high potential VPP is generated at the node 5. The reading potential VCC is generated in the same way without using a depression type transistor. Thus the writing/reading potential is generated with on-chip and by switching through a complete CMOS process in which the photoetching processes are decreased with the saved power.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、外部電源として書自込み用/消去用高電位と
読み出し用電位が印加される0M01回路をメモリーセ
ル・アレイの周辺部に有する不揮発性メモリーに関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a non-volatile memory having an 0M01 circuit in the periphery of a memory cell array to which a high potential for writing/erasing and a potential for reading are applied as an external power supply. Regarding.

発明の技術的背景とその間照点 第1図はチップ上にあるメモリーセル・アレイ以外の周
辺回路が、NチャネルM/D (エン/Sンスメント/
デデレッシ、ン) lit yos回路である不揮発性
メモリーの従来の書き込み用高電位。
Technical Background of the Invention and Points of Interest Figure 1 shows that the peripheral circuits other than the memory cell array on the chip are N-channel M/D
Conventional high potential for writing in non-volatile memory, which is a lit yos circuit.

読み出し用電位切シ換えスイッチ部を示している。ここ
でデデレ、シ、ン型トランジスタ11゜120閾値電圧
は約″″−3v”である。を良書き込み用高電位V。の
節点1には20v、貌与出し用電位vccO穎点2には
5vが印加されている。いま節点4を■。、節点3を0
(零)Vにすれば、電位切シ換え節点5は略■。になる
A read potential changeover switch section is shown. Here, the threshold voltage of the thin-type transistor 11°120 is approximately ``''-3V''.The high potential for good writing V is 20V at node 1, and the potential for writing is 20V at node 2. 5V is applied.Now, node 4 is set to ■., node 3 is set to 0.
If it is set to (zero) V, the potential switching node 5 is approximately ■. become.

逆に節点4をOv1節点3′t−vPPの電位にすれば
、切り換え節点5は略vPPになる。このようにしてD
lll)ランジスタti、isを用いれば、電位切〉換
えスイッチ回路は容易に実現できる。
Conversely, if node 4 is set to the potential of Ov1 node 3't-vPP, switching node 5 becomes approximately vPP. In this way D
ll) By using transistors ti and is, a potential switching circuit can be easily realized.

しかしながら、ノタワー節約のために周辺回路IcMo
gi(相補製MO8)構成にしたときには、Dfi)ラ
ンジスタは閾値を1個増すことでPEP(′I#真蝕刻
工li)数が2回増加し、PffiP数の大きなcmo
aの工11を更に増加させる大きな欠点を有していた。
However, in order to save power, the peripheral circuit IcMo
When the gi (complementary MO8) configuration is used, the Dfi) transistor increases the PEP ('I# true etching process li) number by two times by increasing the threshold value by one, and the cmo with a large PffiP number
This had the major drawback of further increasing the work 11 of a.

発明の目的 本発明は上記実情KfI/1みてなされたもので、その
目的とすゐとζろは、CMO8構成をメモリーセル・ア
レイの周辺回路にもつ不揮発性メモリーにおいて、書き
込み用高電位と読み出し用電位を、従来の問題なしにオ
ンeチ、ゾで切り換えることができるスイッチ回路を有
した不揮発性メモリーを提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned actual situation KfI/1, and its purpose and objectives are to provide a high potential for writing and a high potential for reading in a non-volatile memory having a CMO8 configuration in the peripheral circuit of the memory cell array. It is an object of the present invention to provide a non-volatile memory having a switch circuit which can switch the electric potential on-the-fly without the conventional problems.

発明の概要 ・ 上記発−の目的を達成する九めに、本発明では電位切シ
換えスイッチに、二ンノ・ンスメント或いはBl−MO
8構造を用いる。しかしD臘トランノスタをE型トラン
ジスタに単純に置自換えただけでは、上記切ル換えスイ
ッチの一方の電極とサブストレート電極間にPN正バイ
アスがかかつて電流の迷流路が生じ、電位切〉換えの正
常動作が期待できない。そこで本発明では、上記PN正
バイアスがかがゐトランジスタのtブストレート電極を
電位切勤換え陣点儒Kli続し、上記電流の迷流路tm
断じて正常な電位導出を行なうものである。
Summary of the invention - Ninthly, in order to achieve the above-mentioned purpose, the present invention uses a potential changeover switch with a secondary voltage switch or a BL-MO switch.
8 structure is used. However, simply replacing the D-transistor with an E-type transistor causes a PN positive bias to build up between one electrode of the changeover switch and the substrate electrode, creating a stray current path, causing the potential to turn off. Normal operation cannot be expected after replacement. Therefore, in the present invention, the PN positive bias connects the t-bright electrode of the diagonal transistor to the potential switching point Kli, so that the current stray flow path tm
This ensures normal potential derivation.

発明の実施例 以下@2図を参照して本発明の一実施例を説明する。同
図はNチャネルSAMO8構造をメ篭り一セルに用いた
N−W@11構成のCuO2iiI Mをメモリー周辺
部に用いた場合の例であるが、慕1図と対応する個所に
は同一符号を用いる。
Embodiment of the Invention An embodiment of the invention will be described below with reference to FIG. This figure is an example of a case where CuO2iiM with an N-W@11 configuration using an N-channel SAMO8 structure in one cell is used in the memory peripheral area. use

まず、電位切ル換えのスイッチ部21では、書き込み/
消去用高電位V□の節点1と電位切シ換え節点5との間
にPチャネルのlc型トランジスjl122t−接続し
、読み出し用電位vc=の節点2と節点5との間にPチ
ャネルのIcII)ランノスタ21を接続すゐ、トラン
ジスタ22のサブストレート電極はV□節点JKil続
し、トランジスタ2Jのナシストレート電極は節点5に
接続する。また電圧V□と■cco@’118え導出を
行なう丸めの信号iの供給用節点24、vcc電位tf
f−)入力とするNチャネル型トランジスタ25を介し
て節点J#Kli続する。この節点2#はPチャネル蓋
トランジスタzyt介してvP?節点1に接続する0節
点7g#iPチャネル型トランジスタ21、Nチャネル
型トラン2スタ2jIよpなるインバータの入力となシ
、#イン・母−夕30の一端はV□節点1に接続され、
他端は接地される。インバータ30の出力端りt)節点
31はトランジスタxi、zyのr−ト入力とな〉、壜
たPチャネル蓋トランジスタJJ、Nチャネル蓋トラン
ジスタ3Jよりなるインバータ34(D入力となる。イ
ンバータ34の一端はvP?節点1に接続され、他端は
接地される。ま九インバータ34の出力端つtシ節点J
5はトランジスタ23のダート入力となる。
First, in the potential switching switch section 21, the writing/
A P-channel lc type transistor jl122t- is connected between the node 1 of the erase high potential V□ and the potential switching node 5, and a P-channel IcII is connected between the node 2 and the node 5 of the read potential vc=. ) When the lannostar 21 is connected, the substrate electrode of the transistor 22 is connected to the V□ node JKil, and the auxiliary straight electrode of the transistor 2J is connected to the node 5. Also, a node 24 for supplying the rounded signal i for deriving the voltages V□ and ■cco@'118, vcc potential tf
f-) Connected to node J#Kli via N-channel transistor 25 serving as input. This node 2# is connected to vP? through a P-channel lid transistor zyt. 0 node 7g #i connected to node 1, P channel type transistor 21, N channel type transistor 2 jI, and the input of the inverter p, #in/mother 30 is connected to V□ node 1,
The other end is grounded. The output end of the inverter 30 (t) node 31 is the r-toinput of the transistors xi, zy), and the inverter 34 (becomes the D input) consisting of the P-channel lid transistor JJ and the N-channel lid transistor 3J. One end is connected to the vP node 1, and the other end is grounded.The output end of the inverter 34 is connected to the node J
5 becomes the dart input of the transistor 23.

8112図の回路動作を説明する。まず節点JKV□電
位を発生させる場合、節点140信号iを高レベルにす
る。このとき信号■の一幅は、接地レベル(低レベル)
かうvccの高レベル資で振幅するので、はじめ節点2
6の電位は@v−v  ’(v   Fi鋼値電圧)K
tk!、jcc   th罵     th冨 こでインバータJOの回路閾値を”CC”ill’よ)
も低く設計しておけば、節点J1は低レベルになシ、ト
ランジスタ21がオンして節点26をv、P電位レベル
まで上昇させる。このとa節assのレベルは、インバ
ータ34によフてV□電位まで上昇する。即ち節点11
は低レベル、節点35はV□電位となシ、トランジスタ
22はオンして節点5はV□電位になる。このときトラ
ン・ゾスタ2Jはオフし、節点1かも節点2には直流電
流は流れない。
The operation of the circuit shown in FIG. 8112 will be explained. First, when generating the node JKV□ potential, the node 140 signal i is set to high level. At this time, the width of signal ■ is the ground level (low level)
Since it oscillates at a high level of VCC, the first node 2
The potential of 6 is @v-v' (v Fi steel value voltage) K
tk! , jcc th, th Tomiko, set the circuit threshold of the inverter JO as "CC"ill')
If the voltage is also designed to be low, the node J1 will remain at a low level, and the transistor 21 will turn on, raising the node 26 to the v,P potential level. At this time, the level of the node a ass is increased to the V□ potential by the inverter 34. That is, node 11
is at a low level, node 35 is at V□ potential, transistor 22 is turned on and node 5 is at V□ potential. At this time, the Tran Zostar 2J is turned off, and no direct current flows through either node 1 or node 2.

逆に節点5にvcC電位を発生させる場合、信号Ht−
低レベルにする。このときトランジスタ21は、前記節
点J1が低レベルであることによ如オンしているので、
トランスファr−)2jのコンダクタンスを、トランジ
スタ21のコンダクタンスよ〉充分大きくなるように設
計する必畳がある。この工夫にし6節点260レベルが
インバータJ0の閾値よ)低くなれば、節点S1は高レ
ベルとなシ、トランジスタ21はオフとなる。このと亀
節点S5は低レベルになる。従ってトランジスタ2Jは
オンし、トランジスタ22はオフする0節点5はζOと
き、トランジスタ23によってV□電位からvcc電位
に放電される。
Conversely, when generating the vcC potential at node 5, the signal Ht-
make it low level. At this time, the transistor 21 is turned on because the node J1 is at a low level, so
It is necessary to design the conductance of the transfer r-)2j to be sufficiently larger than the conductance of the transistor 21. With this arrangement, if the level of the 6th node 260 becomes lower than the threshold of the inverter J0, the node S1 becomes high level and the transistor 21 is turned off. At this time, the tortoise node S5 becomes a low level. Therefore, the transistor 2J is turned on and the transistor 22 is turned off. When the 0 node 5 is ζO, the transistor 23 discharges the voltage from the V□ potential to the vcc potential.

以上のように、信号■がvcc(高レベル)のと自節点
5はv0レベルとな)、信号Hが0v(tレベル)のと
自節点5はvccレベルとなるものである。
As described above, when the signal (2) is at vcc (high level), the own node 5 is at the v0 level), and when the signal H is 0v (t level), the own node 5 is at the vcc level.

第3WAは籐2図の回路を、不揮発性メモリーの本体回
路に適用した場合の例を示すtので、号町〜amt入力
とする列デコー〆、4#はメモリーセル・アレイで、メ
モリーセル4#はSムMO8構造を有している。501
〜SO−は列選択用トランジスタ、5ノはトランジスタ
52〜55よりなるトランジスタ5Cの制御回路、” 
D t ll+H″は書き込み時に書自込み用データ入
力を@0#の時のみV□電位になル、その他詭み出し時
とかベリファイ(書き込みデータ検出)時にトランジス
タ56をオフとする信号、Jrはセンスアンプである。
The 3rd WA shows an example of applying the circuit shown in Figure 2 to the main circuit of a non-volatile memory, so the column decoder inputs No. cho~amt, 4# is the memory cell array, and the memory cell 4 # has a SMMO8 structure. 501
~SO- is a column selection transistor, 5 is a control circuit for transistor 5C consisting of transistors 52 to 55,
D t ll + H'' is a signal that sets the write data input to V□ potential only when @0# during writing, and turns off the transistor 56 when reading or verifying (writing data detection). It is a sense amplifier.

第3図におけるデータ書き込みは、節点jO電位をvP
Pにし、メモリーセルのコントロールゲートKVpp 
m トラ7ノX15 g 、 501〜J#。
Data writing in FIG. 3 is performed by setting the node jO potential to vP.
P, and the control gate of the memory cell KVpp
m tiger 7 no x 15 g, 501~J#.

を通してドレインにvPP電位が加わったメモリーセル
のみに書き込みが行なわれる。
Writing is performed only to memory cells to which the vPP potential is applied to the drain through.

次に書き込み量を検出(ベリファイ)する際は、■□を
書も込み電位のt壕にして節点jをV 電位にすれば、
書き込み直後にセルの書自込み状態が、センスアンプ5
1を通してデータ出力部にとp出されるものである。
Next, when detecting (verifying) the write amount, set ■□ to the write potential t trench and set node j to V potential.
Immediately after writing, the write state of the cell is determined by the sense amplifier 5.
1 to the data output section.

第2図の回路では、V□用済み後はvP?電位をvcC
II位よp下りることがある。−例としてv??電位t
−ovとすると、節点5から節点1へ向りてつt)トラ
ンジスタ21のソースからナラストレー)電極へ向って
順方向電流が流れ、節点5の電圧會V、電位よ〉下げて
し・壕う、そとて1114図に示される賓形例の如く、
1ランゾスタ22と節点5との間KPチャネル蓋トラン
ジスタ61を介挿する。この場合節点12が節点6の電
位よ〕下がってトランジスタ11がオンし死時、節点1
の電位をvccよ)下げてしまう、そこでトランジスタ
61のチャネルが形成されないように、)ランジスタロ
3.64よシな)かりvccを電源とするインバータ6
1if設け、その出力をトランジスタ61の入力とする
In the circuit shown in Figure 2, after V□ is used, vP? potential to vcC
It may go down to rank II. -For example, v? ? Potential t
-ov, a forward current flows from the node 5 to the node 1 (t) from the source of the transistor 21 to the Narastra electrode, lowering the voltage V at node 5. , as shown in Figure 1114,
A KP channel lid transistor 61 is inserted between the 1-run star 22 and the node 5. In this case, the potential of node 12 drops below the potential of node 6, turning on transistor 11, and at the time of death, node 1
In order to prevent the channel of the transistor 61 from being formed there, the potential of the transistor 61 is lowered by lowering the potential of the inverter 6 whose power source is VCC.
1if is provided, and its output is input to the transistor 61.

インバーター5の前段のインバーター6はトランジスタ
it、tieよシなり、信号Hの反転信号Kl得る。
The inverter 6 in the preceding stage of the inverter 5 consists of transistors it and tie, and obtains an inverted signal Kl of the signal H.

一方、第4図においてV□電位がOvの場合、節点3ノ
はOvKなりてしまう。このためトランジスタax、a
sが共にオフとな〉、節点35が70−ティングとなる
。しかし本来は、節点35はOvでトランジスタ2sは
オンしていなければいけなり。そのためにトランジスタ
C#を設は鋏トランシスタロpをオン状態とし。
On the other hand, in FIG. 4, when the V□ potential is Ov, the node 3 becomes OvK. For this reason, transistor ax, a
s are both off>, the node 35 becomes 70-ting. However, originally, the node 35 should be Ov and the transistor 2s should be on. For this purpose, the transistor C# is set and the scissor transistor R is turned on.

節点35をOVとしている。The node 35 is set as OV.

なお、本発明は実施例の与に@られることなく、本発明
の要旨を逸脱しない範囲で種々の応用が可能である。例
えば第5図に示される如く、1112図のトランジスタ
23t/童イポーラトランジスタ11で置き換えたり、
第6図に示される如<tlllLZ図のトランジスタ”
 e 1 ’J l/fイI−ラトランノスタrx、r
zで置き換えてもよい。これらパイ4−ラトランジスタ
はCMOI工程中に同時につくれるので、PEPの工程
増加とはならない。えだしこの場合vcc或いはvPP
とパイI−ラトランジスタのベース間に電mが流れるの
で、スタンドパイ時に直流・すt*らう場合には、前実
施′例で示し良ような完4&cMO1構成が好ましい。
Note that the present invention is not limited to the embodiments, and can be applied in various ways without departing from the gist of the present invention. For example, as shown in FIG. 5, the transistor 23t in FIG.
As shown in FIG.
e 1 'J l/f i-latrannosta rx, r
It may be replaced with z. Since these piezoelectric transistors can be manufactured simultaneously during the CMOI process, no additional PEP process is required. In this case vcc or vpp
Since an electric current m flows between the base of the piezoelectric transistor and the piezoelectric transistor, a complete 4&cMO1 configuration as shown in the previous embodiment is preferable when direct current is used in a standby transistor.

13〜15は過大なペース電流を流さぬための抵抗であ
る。また第7Iillに示される如く、第4図のFラン
ジスタJJIパイ4−ラトランジスタ11で置き換えた
り、第88aに示される如く第4図のトランジスタ22
゜23.61t/◆イー−ラトランジスタ72#11、
IIIで置自換え°Cもよい、IIは過大なペース電流
tRさぬための抵抗で弗る。また本発明はP−W@ l
 l II CMOs#II造、?w111−v@ll
llCMOa構造、或いはエピタキシャルWicMoB
′#I造を周辺回路に応用できること、またセルとして
、電気的に書自換え可能なものを用いることが可能であ
る。
13 to 15 are resistors for preventing excessive pace current from flowing. Also, as shown in FIG. 7Iill, the F transistor JJI piezoelectric transistor 11 of FIG. 4 may be replaced, or the transistor 22 of FIG.
゜23.61t/◆Era transistor 72#11,
It is also possible to replace III with a resistor to prevent excessive pace current tR. Further, the present invention provides P-W@l
l II CMOs #II construction? w111-v@ll
llCMOa structure or epitaxial WicMoB
'#I structure can be applied to peripheral circuits, and cells that can be electrically rewritten can be used.

発明の詳細 な説明した如く本発明によれば、電位切シ換えスイッチ
によシ1.完全CMOBノロセスによりてメモリー回路
本体内に書き込み用高電位vP2、読み出し用電位vc
c′t−発生させることが可能に、などた。また従来の
ような@CMO8+ rルッシ、:/m のような豪合
lロセスを排除し、picpの工程数を低減できる。ま
た回路設計も、CMOI構成であることにより回路マー
ジンを大
As described in detail, according to the present invention, the potential changeover switch provides: 1. A high potential vP2 for writing and a potential VC for reading are created in the memory circuit body by complete CMOB process.
c′t-can be generated, etc. Furthermore, the conventional process such as @CMO8+Russi:/m can be eliminated, and the number of picp steps can be reduced. In addition, the circuit design has a CMOI configuration, which increases the circuit margin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来回路の説明図、第2図は本1発例の二11
施例を示す回路図、嬉3図は同回路が適用されるメモリ
ー回路図、第4wJないし5taysは本発明の他の実
施例を示す回路図である。 !・・・書き込み電位供給用節点、2・・・読み出し電
位供給用節点、5・・・電位切少換え節点、22゜23
.61・・・E型トランジスタ、4Ij・・・メモリー
セルeアレイ、11,11.81・・・パイーーラトラ
ンジスタ。 出願人代理人  弁理士 鈴 江 R彦IIs図 第6図 第8図
Figure 1 is an explanatory diagram of the conventional circuit, and Figure 2 is an example of 211 of this 1st example.
Figure 3 is a circuit diagram showing an embodiment, Figure 3 is a memory circuit diagram to which the same circuit is applied, and Figures 4 to 5 are circuit diagrams showing other embodiments of the present invention. ! ...Write potential supply node, 2...Read potential supply node, 5...Potential switching node, 22゜23
.. 61...E-type transistor, 4Ij...memory cell e-array, 11,11.81...pillar transistor. Applicant's agent Patent attorney Suzue Rhiko IIs Figure 6 Figure 8

Claims (6)

【特許請求の範囲】[Claims] (1)  外部電源として少なくと4書亀込み用高電位
と読み出し用電位が印加される0M08回路をメモリー
七ル・アレイの周辺部に有する不揮発性メ毫り一におい
て、前記書自込み用高電位源と電位切〉換え節点との間
に第1のエンハンエンハンスメント型トランジスタを接
続し、前記Illのエンハンスメント製トランジスタの
サブストレート電極は前記書龜込み用高電位源側Kil
絖し、前記第2のエンハンスメント型トランジスタのサ
ブストレート電極は前記電位切り換え節点側Kil続し
、前記JI11のエンI・ンスメ/)臘トランジスタは
そのダートにデータ書き込み時に導通する信号が印加さ
れ、前記II2のエンハンスメント型トランジスタは七
のr−トにデータ読み出し時に導通する信号が印加され
ることを特徴とする不揮発性メモリー。
(1) In a non-volatile memory system having a 0M08 circuit in the periphery of the memory array to which at least four write high potentials and read potentials are applied as an external power supply, the write high potential A first enhancement type transistor is connected between the potential source and the potential switching node, and the substrate electrode of the enhancement transistor of the Ill is connected to the high potential source side Kil for writing.
The substrate electrode of the second enhancement type transistor is connected to the potential switching node side, and a signal that becomes conductive at the time of data writing is applied to the dirt of the JI11 transistor. The enhancement type transistor II2 is a non-volatile memory characterized in that a signal that becomes conductive when reading data is applied to the seventh r-gate.
(2)  前記第2のエンハンスメント型トランジスタ
を一々イ4−ラ蓋トランジスタに置自換えた特許請求の
範囲第1項に記載の不揮発性メモリー〇
(2) The non-volatile memory according to claim 1, in which each of the second enhancement type transistors is replaced with a four-layer lid transistor.
(3)  tm記第1.第2のエンハンスメント型トラ
ンジスタをパイI−ラ型トランジスタに置自換えた特許
請求の範囲第1項に記載の不揮発性メモリー。
(3) TM Book 1. 2. The nonvolatile memory according to claim 1, wherein the second enhancement type transistor is replaced with a pie-ra type transistor.
(4)外部電源として少くとも書自込み用高電位と読み
出し用電位が印加されるCMO畠回路をメモリーセル・
アレイの周辺WAK有する不揮発性メモリーにおいて、
前記書き込み用高電位源と電位切シ換え節点との間に纂
1.第2のエン・・ンスメント型トランジスタを直列接
続し、前記読み出し用電位源と前記電位切〕換え節点と
の間に第3のエンハンスメント製トランジスタを接続し
、前記第1のエンハンスメント型トランジスタのサブス
トレート電極は前記書自込み用高電位源側に接続し、前
記82のエン−・ンス前記m1.m20エンハンスメン
ト型トランシスlはそのr−)にデータ書自込与時に導
通する信号が印加され、前記第3のエンハンスメント臘
トランゾスタはそのr−トにデータ読み出し時に導通す
為信号が印加されることを特徴とすゐ不揮発性メモリー
(4) The CMO Hatake circuit, to which at least a high potential for writing and a potential for reading are applied as an external power supply, is used as a memory cell.
In non-volatile memory with WAK around the array,
A wire is connected between the writing high potential source and the potential switching node. A second enhancement type transistor is connected in series, a third enhancement transistor is connected between the read potential source and the potential switching node, and a substrate of the first enhancement type transistor is connected. The electrode is connected to the writing high potential source side, and the 82 engines m1. The m20 enhancement type transistor l has a signal applied to its r-to which becomes conductive when writing data, and the third enhancement type transistor has a signal applied to its r-to which makes it conductive when reading data. Features: Non-volatile memory.
(5)  前記第3のエンハンスメント型トランジスタ
tAイポーラ臘トランジスタで置き換え九特許請求の範
囲第4項に記載の不揮発性メモリー・
(5) The non-volatile memory according to claim 4 is replaced with the third enhancement type transistor tApolar transistor.
(6)  前・配路1ないし菖3のエン/1ンスメント
皺トランゾスタtバイポーラ臘トランジスタで置龜換え
た特許請求の範fi票4項に記載の不揮発性メ峰り−0
(6) The non-volatile memory-0 described in item 4 of the patent claim, which is replaced with a bipolar transistor in the front wiring 1 to iris 3.
JP56213616A 1981-12-26 1981-12-26 Nonvolatile memory Granted JPS58114396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56213616A JPS58114396A (en) 1981-12-26 1981-12-26 Nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56213616A JPS58114396A (en) 1981-12-26 1981-12-26 Nonvolatile memory

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3344996A Division JPH0799635B2 (en) 1991-12-26 1991-12-26 Non-volatile memory

Publications (2)

Publication Number Publication Date
JPS58114396A true JPS58114396A (en) 1983-07-07
JPH0323999B2 JPH0323999B2 (en) 1991-04-02

Family

ID=16642120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56213616A Granted JPS58114396A (en) 1981-12-26 1981-12-26 Nonvolatile memory

Country Status (1)

Country Link
JP (1) JPS58114396A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137245A2 (en) * 1983-08-30 1985-04-17 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
JPS60180000A (en) * 1984-02-03 1985-09-13 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Integrated circuit having fet transistor and programmable read only memory
JPS6134796A (en) * 1984-07-25 1986-02-19 Toshiba Corp Row decoder circuit of non-volatile memory
JPS61186019A (en) * 1985-02-13 1986-08-19 Toshiba Corp Logic circuit
EP0206710A2 (en) * 1985-06-17 1986-12-30 Advanced Micro Devices, Inc. CMOS high voltage switch
JPS62124700A (en) * 1985-11-25 1987-06-05 Mitsubishi Electric Corp Power source switching circuit
JPS62143297A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Semiconductor storage device
EP0317984A2 (en) * 1987-11-24 1989-05-31 Kabushiki Kaisha Toshiba Nonvolatile memory
EP0322002A2 (en) * 1987-12-01 1989-06-28 STMicroelectronics S.r.l. Voltage supply switching device for nonvolatile memories in MOS technology
FR2631503A1 (en) * 1988-05-10 1989-11-17 Thomson Video Equip Interfacing circuit for delivering analogue clock signals to a charge transfer device
JPH02187997A (en) * 1989-01-16 1990-07-24 Hitachi Ltd Semiconductor integrated circuit device
JPH05242690A (en) * 1992-06-19 1993-09-21 Toshiba Corp Eeprom
WO2004095470A1 (en) * 2003-04-24 2004-11-04 Fujitsu Limited Nonvolatile semiconductor memory
JP2008202299A (en) * 2007-02-20 2008-09-04 Oiles Eco Corp Blind device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124442U (en) * 1978-02-17 1979-08-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124442U (en) * 1978-02-17 1979-08-31

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137245A2 (en) * 1983-08-30 1985-04-17 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
JPS60180000A (en) * 1984-02-03 1985-09-13 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Integrated circuit having fet transistor and programmable read only memory
JPH0587918B2 (en) * 1984-02-03 1993-12-20 Fuiritsupusu Furuuiranpenfuaburiken Nv
JPH0348596B2 (en) * 1984-07-25 1991-07-24 Tokyo Shibaura Electric Co
JPS6134796A (en) * 1984-07-25 1986-02-19 Toshiba Corp Row decoder circuit of non-volatile memory
JPS61186019A (en) * 1985-02-13 1986-08-19 Toshiba Corp Logic circuit
JPH0519798B2 (en) * 1985-02-13 1993-03-17 Tokyo Shibaura Electric Co
EP0206710A2 (en) * 1985-06-17 1986-12-30 Advanced Micro Devices, Inc. CMOS high voltage switch
JPH0529997B2 (en) * 1985-11-25 1993-05-06 Mitsubishi Electric Corp
JPS62124700A (en) * 1985-11-25 1987-06-05 Mitsubishi Electric Corp Power source switching circuit
JPS62143297A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Semiconductor storage device
EP0317984A3 (en) * 1987-11-24 1991-01-09 Kabushiki Kaisha Toshiba Nonvolatile memory
US5016218A (en) * 1987-11-24 1991-05-14 Kabushiki Kaisha Toshiba Nonvolatile memory with data write circuitry to reduce write errors
EP0317984A2 (en) * 1987-11-24 1989-05-31 Kabushiki Kaisha Toshiba Nonvolatile memory
EP0322002A2 (en) * 1987-12-01 1989-06-28 STMicroelectronics S.r.l. Voltage supply switching device for nonvolatile memories in MOS technology
FR2631503A1 (en) * 1988-05-10 1989-11-17 Thomson Video Equip Interfacing circuit for delivering analogue clock signals to a charge transfer device
JPH02187997A (en) * 1989-01-16 1990-07-24 Hitachi Ltd Semiconductor integrated circuit device
JPH05242690A (en) * 1992-06-19 1993-09-21 Toshiba Corp Eeprom
WO2004095470A1 (en) * 2003-04-24 2004-11-04 Fujitsu Limited Nonvolatile semiconductor memory
US7280413B2 (en) 2003-04-24 2007-10-09 Fujitsu Limited Nonvolatile semiconductor memory
JP2008202299A (en) * 2007-02-20 2008-09-04 Oiles Eco Corp Blind device

Also Published As

Publication number Publication date
JPH0323999B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
US5276646A (en) High voltage generating circuit for a semiconductor memory circuit
JP3091687B2 (en) Sense amplifier circuit
US4737936A (en) Semiconductor memory device having improved write-verify operation
JP2588483B2 (en) Voltage switch circuit applying MOS technology
JPS58114396A (en) Nonvolatile memory
KR100247575B1 (en) Semiconductor memory device
US5859798A (en) Read circuit for non-volatile memory working with a low supply voltage
KR930001735B1 (en) Semiconductor memory device
US5986937A (en) Memory read circuit with precharging limitation device
JPH04274093A (en) Bias circuit for durable memory array
US5017803A (en) Power supply potential rising detection circuit
EP1226586B1 (en) Flash memory wordline tracking across whole chip
JP3607575B2 (en) Writable read-only memory
US4788460A (en) Circuit arrangement of sense amplifier for rapid evaluation of logic state
JP2801879B2 (en) Common source line driving circuit for nonvolatile semiconductor memory
KR100389173B1 (en) Inverter having a variable threshold potential
EP0668593B1 (en) Regulation circuit and method for the erasing phase of non-volatile memory cells
JPH0799635B2 (en) Non-volatile memory
JPS5819791A (en) Semiconductor storage device
JPS5930297A (en) Read-only memory with precharging property self-matched
JPH08293197A (en) Non-volatile semiconductor memory
JPS6321998B2 (en)
JPH07244995A (en) Sense circuit for read only memory
JPH0327998B2 (en)
US6249172B1 (en) Circuit for discharging a negative potential node to ground, including control of the discharge current