JPS5811392A - Supporting structure of heat transmitting pipe for heat exchanger of heat - Google Patents

Supporting structure of heat transmitting pipe for heat exchanger of heat

Info

Publication number
JPS5811392A
JPS5811392A JP10708381A JP10708381A JPS5811392A JP S5811392 A JPS5811392 A JP S5811392A JP 10708381 A JP10708381 A JP 10708381A JP 10708381 A JP10708381 A JP 10708381A JP S5811392 A JPS5811392 A JP S5811392A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
exchanger tube
spiral
heat transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10708381A
Other languages
Japanese (ja)
Inventor
Toshiaki Ikeda
池田 壽昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10708381A priority Critical patent/JPS5811392A/en
Publication of JPS5811392A publication Critical patent/JPS5811392A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce a stress generated in the heat transmitting pipe or the support fixture therefor due to a thermal expansion caused by the temperature difference between the heat transmitting pipes each other by a method wherein an annular spacer is changed into the spiral spacer. CONSTITUTION:The spiral spacers 40, 41, 42, 43, inclined into reverse directions each other in each layers, are utilized as the spacers, and whereby primary side fluid, flowed down through respective sub channels, is collided against the upper parts of the spiral spacers 40, 41, 42, 43 and tries to flow along the inclined directions of the spiral spacers, thereby generating a whirling current finally. Accordingly, the primary side fluid moves to the peripheral direction subsequently through the sub channel and flows down through the outside of the heat transmitting pipes. Here, a space constituted at the center of the four pieces of the heat transmitting pipes adjoining each other, for example, the pipes, 31, 32, 33, 34, is referred as the sub channel.

Description

【発明の詳細な説明】 本発胛は、直管式熱交換器の伝熱管支持構造に係り、伝
熱管支持構造を前記伝熱管の軸方向に対しである角度を
有するらせん状にすることによシ、伝熱管外を流れる流
体を熱交換器内において周方向に旋回させ、前記伝熱管
の温度を一様化する構造に関するものである。
Detailed Description of the Invention The present invention relates to a heat exchanger tube support structure for a straight tube heat exchanger, and the heat exchanger tube support structure is formed into a spiral shape having a certain angle with respect to the axial direction of the heat exchanger tube. This invention relates to a structure in which the fluid flowing outside the heat exchanger tube is swirled in the circumferential direction within the heat exchanger to uniformize the temperature of the heat exchanger tube.

従来の熱交換器を第1図に従って説明する。外胴1は、
1次流体入ロノズル2と1次流体出口ノズル6とを有す
る。2次側上部鏡板3は、上管板4と一体化され、内部
に2次側上部ブレナム5を形成シ、上方に2次流体出口
ノズル7を有する。
A conventional heat exchanger will be explained with reference to FIG. The outer body 1 is
It has a primary fluid inlet nozzle 2 and a primary fluid outlet nozzle 6. The secondary upper end plate 3 is integrated with the upper tube plate 4, forms a secondary upper blemish 5 inside, and has a secondary fluid outlet nozzle 7 above.

伝熱管9は、上端を上管板4、下端を下管板8に接続さ
れ、それぞれの管板近傍に熱遮蔽板11を内包している
6 また、伝熱管9の外側を囲んで上部に入口窓12、及び
下部に出口窓13を有する外部シュラクトlOが設置さ
れている。2次流体入口管15は、2次側上部鏡板3、
上管板4及び下管板8を貫通して2次側下部プレナム1
4に下端開口部を有する。
The heat exchanger tube 9 has an upper end connected to the upper tube plate 4 and a lower end connected to the lower tube plate 8, and includes a heat shield plate 11 near each tube plate 6. Also, a heat shield plate 11 is included in the upper part surrounding the outside of the heat exchanger tube 9. An external shracto 10 is installed which has an entrance window 12 and an exit window 13 at the bottom. The secondary fluid inlet pipe 15 is connected to the secondary side upper end plate 3,
The secondary lower plenum 1 passes through the upper tube plate 4 and the lower tube plate 8.
4 has a lower end opening.

1次側高温流体は、1次流体入ロノズル2よシ外胴1内
に導入され、外部シュラウド10に設けられている入口
窓1?から外部シュラクト10内に流入し、伝熱管9内
を上昇する2次流体き熱交換しながら下降し、外部シュ
ラウド10の下部に設けられた出口窓13を通り、1次
流抹出ロノズル6よシ機器外へ流出する。
The primary high temperature fluid is introduced into the outer shell 1 through the primary fluid inlet nozzle 2, and is introduced into the outer shell 1 through the inlet window 1 provided in the outer shroud 10. The secondary fluid flows into the outer shroud 10, rises in the heat transfer tube 9, descends while exchanging heat, passes through the outlet window 13 provided at the lower part of the outer shroud 10, and enters the primary flow discharge nozzle 6. leaks out of the equipment.

一方、2次側低温流体祉、2次流体入口管15より機器
内に流入し、2次側下部プレナム14に至り反転して下
管板8に設けられている伝熱管内に流れ込み、1次流体
と熱交換しながら上昇し、2次側上部プレナム5に至り
、2次流体出口ノズル7より機器外へ流出する。
On the other hand, the secondary side cold fluid flows into the equipment from the secondary fluid inlet pipe 15, reaches the secondary side lower plenum 14, turns around, flows into the heat transfer tube provided on the lower tube plate 8, and flows into the primary It rises while exchanging heat with the fluid, reaches the secondary side upper plenum 5, and flows out of the device from the secondary fluid outlet nozzle 7.

また従来の伝熱管支持金具構造を第2図および第3図に
示す。伝熱管群9は前記伝熱管群9を周方向に等分割す
る仕切板22に固定されたリング状スペーサ20にさら
に固定された伝熱管支持金具21で同心円配置で固定さ
れる。
Further, the conventional heat exchanger tube support metal structure is shown in FIGS. 2 and 3. The heat exchanger tube group 9 is fixed in a concentric arrangement by a heat exchanger tube support fitting 21 further fixed to a ring-shaped spacer 20 fixed to a partition plate 22 that equally divides the heat exchanger tube group 9 in the circumferential direction.

このような伝熱管群9の配置においては、隣シ合う4本
の伝熱管例えば31,32,33.34あるいは、33
,34,35.36の中央に構成される空間(以後これ
をサブチャンネをと言う。)に沿って流れようとする。
In such an arrangement of the heat exchanger tube group 9, four adjacent heat exchanger tubes, for example, 31, 32, 33.34 or 33.
, 34, 35, and 36 (hereinafter referred to as a subchannel).

これは、伝熱管群9が直管であるため伝熱管群9の外側
を流れる1次側流体は周方向あるいは半径方向に流れよ
うとする速度成分を持ち得ないからである。これらのサ
ブチャンネルを流れる1次側流体の流量は、入口窓12
から管束部に流入した直後の流量配分によってほぼ決定
され、以後その流量を維持しfcまま各々のサブチャン
ネルを流下しようとする。このような流動状況において
は、各サブチャンネルを流れる1次側流体温度は下記の
(1)式によシ表わされる。
This is because the heat exchanger tube group 9 is a straight tube, so the primary fluid flowing outside the heat exchanger tube group 9 cannot have a velocity component that tends to flow in the circumferential direction or the radial direction. The flow rate of the primary fluid flowing through these subchannels is controlled by the inlet window 12.
The distribution of the flow rate is determined almost immediately after the flow rate flows into the tube bundle, and from then on, the flow rate is maintained and the flow rate continues to flow down each subchannel at fc. In such a flow situation, the temperature of the primary fluid flowing through each subchannel is expressed by the following equation (1).

” Gt Cp tΔTt ここに、 GHs GB + Gs3 、 GB4 :伝熱管31
,32゜33.34を流れる2 次側流体流量(Kf/n r ) G1 :サブチャンネルを流れる1次側流体流量(Kf
/nr) Cpl:1次側流体比熱(kcat/に4”C)Cpl
:2次側流体比熱(kCat/KgC>ΔT1:1次側
流体温度降下(tZ’)ΔT、=2次側流体温度上昇(
C) ここで2次側流体流量は各伝熱管に等分配されると仮定
すれば、 Gsl” G12 = Gsa = Gs< =Qt 
      (2)となり、1次側流体、2次側流体の
比熱が等しければ(1)式は結局(3)式で表わされる
” Gt Cp tΔTt Here, GHs GB + Gs3, GB4: Heat exchanger tube 31
, 32°33.34 Secondary fluid flow rate (Kf/n r ) G1 : Primary fluid flow rate flowing through the subchannel (Kf
/nr) Cpl: Primary fluid specific heat (kcat/4”C) Cpl
: Secondary fluid specific heat (kCat/KgC>ΔT1: Primary fluid temperature drop (tZ') ΔT, = Secondary fluid temperature rise (
C) Here, assuming that the secondary fluid flow rate is equally distributed to each heat transfer tube, Gsl'' G12 = Gsa = Gs< =Qt
(2), and if the specific heat of the primary fluid and the secondary fluid are equal, then equation (1) can be expressed as equation (3).

ΔT+” (Gt/Gt)Δ’rt         
(a)すなわチ(3)式よ〕、各サブチャンネルを流れ
る1次側流体の流量がそれぞれのサブチャンネル毎に異
なれば、それが直接1次側流体の温度降下量のちがいと
なる。今、伝熱管温度はその外側を流れる1次側流体温
度と内側を流れる2次側流体温度で決まるので1次側流
体温度が各サブチャンネル毎に異なれば伝熱管温度はそ
れぞれ異なってくる。
ΔT+” (Gt/Gt)Δ'rt
(a), that is, Equation (3)], if the flow rate of the primary fluid flowing through each subchannel is different for each subchannel, this directly results in a difference in the amount of temperature drop of the primary fluid. Now, the heat exchanger tube temperature is determined by the temperature of the primary fluid flowing outside and the secondary fluid flowing inside, so if the primary fluid temperature differs for each subchannel, the heat exchanger tube temperatures will differ.

しかるに、伝熱管群9はその両端を上管板4および下管
板8で固定されているので、伝熱管群9を構成する伝熱
管の温度が異なれば、伝熱管群9の平均温度に対し、相
対的に温度が高い伝熱管はその温度に相当する分だけ熱
膨張によシ伸びようとし、相対的に温度が低い伝熱管は
その温度に相当する分だけ熱収縮によシ縮もうとする。
However, since both ends of the heat exchanger tube group 9 are fixed by the upper tube plate 4 and the lower tube plate 8, if the temperature of the heat exchanger tubes composing the heat exchanger tube group 9 differs, the average temperature of the heat exchanger tube group 9 will differ. A heat exchanger tube whose temperature is relatively high will try to expand by thermal expansion by an amount corresponding to that temperature, and a heat exchanger tube whose temperature is relatively low will try to contract by an amount corresponding to that temperature by thermal contraction. do.

ここで伝熱管群9の平均温度よシ高い温度の伝熱管が伸
びようとしても、伝熱管群9#−1その両端を下管板4
および下管板8で固定されているため、伝熱管は伸びる
ことが出来ず、伝熱管の軸に直角な方向に変形し、この
伝熱管に曲げ応力が働き、かつ伝熱管支持金具21に伝
熱管の曲げ応力に相当する反力が加わシ、伝熱管および
伝熱管支持金具21の強度上の信頼性を低下させる原因
となる。
Even if the heat exchanger tubes with a temperature higher than the average temperature of the heat exchanger tube group 9 try to extend, both ends of the heat exchanger tube group 9#-1 are connected to the lower tube plate 4.
Since the heat exchanger tubes are fixed by the upper and lower tube plates 8, the heat exchanger tubes cannot stretch and are deformed in a direction perpendicular to the axis of the heat exchanger tubes. A reaction force corresponding to the bending stress of the heat tube is applied, which causes a decrease in reliability in terms of strength of the heat exchanger tube and the heat exchanger tube support fitting 21.

そこで本発明においては、リング状スペーサを伝熱管の
軸直角方向にある角度だけ傾けたらせん状スペーサとし
、伝熱管を同心円のらせん状スペーサに固定した伝熱管
支持金具で支持する方法を用いる。リング状スペーサを
らせん状スペーサとすることによL1次側流体に旋回流
を生ぜしめ、各サブチャンネル間で混合させることによ
シ、1次側流体温度をサブチャンネル間で均一化し、ひ
いては伝熱管平均温度を均一化させるものでbる。
Therefore, in the present invention, a method is used in which the ring-shaped spacer is a spiral spacer tilted by a certain angle in the direction perpendicular to the axis of the heat exchanger tube, and the heat exchanger tube is supported by a heat exchanger tube support fitting fixed to the concentric spiral spacer. By changing the ring spacer to a spiral spacer, a swirling flow is generated in the L primary fluid, and by mixing between each subchannel, the temperature of the primary fluid is made uniform between the subchannels, and the transmission is improved. It makes the average temperature of the heat tube uniform.

本発明の一実施例を第4図および第5図に示す。An embodiment of the invention is shown in FIGS. 4 and 5.

スペーサとして各層毎に互いに逆方向に傾けたらせん状
スペーサ4G、41.42.43を用いることによシ、
各々のサブチャンネルを流下して東N1次側流体はらせ
ん状スペーサ40,41゜42.43の上部に当たり、
らせん状スペーサ40,41,42.43の傾いた方向
に流れようとし、結局旋回流を生ずることになる。これ
によって1次側流体はサブチャンネルを順次周方向に移
りつつ伝熱管外を流下するため、従来の熱交換器で見ら
れたようなサブチャンネル毎の1次側流体の流量配分で
伝熱管温度が決定されることなく周方向に均一化され、
伝熱管相互の温度差に起因する熱膨張により伝熱管98
るいは伝熱管支持金具40に発生する応力を低減出来る
By using spiral spacers 4G, 41, 42, 43 tilted in opposite directions for each layer as spacers,
The east N primary side fluid flowing down each subchannel hits the upper part of the spiral spacer 40, 41゜42.43,
It tends to flow in the direction in which the spiral spacers 40, 41, 42, and 43 are inclined, resulting in a swirling flow. As a result, the primary fluid flows down the outside of the heat exchanger tube while sequentially moving through the subchannels in the circumferential direction, so the heat exchanger tube temperature can be adjusted by distributing the flow rate of the primary fluid for each subchannel as seen in conventional heat exchangers. is uniform in the circumferential direction without being determined,
Heat exchanger tubes 98 due to thermal expansion due to temperature difference between the heat exchanger tubes
In addition, the stress generated in the heat exchanger tube support fitting 40 can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換器の構造概略図、第2図および第
3図は従来の伝熱管支持構造平面図および正面図、第4
図および第5図は本発明による伝熱管支持構造平面図お
よび正面図である。 20・・・リング状スづ−サ、21・・・伝熱管支持金
具、22・・・仕切板、30〜35・・・伝熱管、40
・・・伝熱あ10 8z口 第3図 第4図 #愕図
Figure 1 is a structural schematic diagram of a conventional heat exchanger, Figures 2 and 3 are a plan view and front view of a conventional heat exchanger tube support structure, and Figure 4 is a schematic diagram of the structure of a conventional heat exchanger.
FIG. 5 is a plan view and a front view of a heat exchanger tube support structure according to the present invention. 20... Ring-shaped spring, 21... Heat exchanger tube support fitting, 22... Partition plate, 30-35... Heat exchanger tube, 40
...Heat transfer A10 8z mouth Figure 3 Figure 4 #Amazing diagram

Claims (1)

【特許請求の範囲】[Claims] 1、管板に複数の直管の伝熱管が同心円配置に装着され
、伝熱管間隙には同心円配置にリング状スペーサが設け
られ、各伝熱管が前記スペーサに固着された弾性を有す
る支持金具によシ、各伝熱管単独に弾性支持されてなる
伝熱管支持構造において、前記スペーサを軸方向に対し
ある角度を設けたらせん状に取付けることを特徴きする
熱交換器の伝熱管支持構造。
1. A plurality of straight heat exchanger tubes are installed in a concentric arrangement on a tube plate, a ring-shaped spacer is provided in a concentric arrangement in the gap between the heat exchanger tubes, and each heat exchanger tube is attached to an elastic support fitting fixed to the spacer. A heat exchanger tube support structure for a heat exchanger in which each heat exchanger tube is elastically supported independently, wherein the spacer is attached in a spiral shape at a certain angle with respect to the axial direction.
JP10708381A 1981-07-10 1981-07-10 Supporting structure of heat transmitting pipe for heat exchanger of heat Pending JPS5811392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10708381A JPS5811392A (en) 1981-07-10 1981-07-10 Supporting structure of heat transmitting pipe for heat exchanger of heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10708381A JPS5811392A (en) 1981-07-10 1981-07-10 Supporting structure of heat transmitting pipe for heat exchanger of heat

Publications (1)

Publication Number Publication Date
JPS5811392A true JPS5811392A (en) 1983-01-22

Family

ID=14450039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10708381A Pending JPS5811392A (en) 1981-07-10 1981-07-10 Supporting structure of heat transmitting pipe for heat exchanger of heat

Country Status (1)

Country Link
JP (1) JPS5811392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446589A (en) * 1987-04-17 1989-02-21 Novatome Spacer grid
CN104697360A (en) * 2015-03-03 2015-06-10 郑州大学 Longitudinal-flow heat exchanger supported by flow equalization helix of shell pass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446589A (en) * 1987-04-17 1989-02-21 Novatome Spacer grid
CN104697360A (en) * 2015-03-03 2015-06-10 郑州大学 Longitudinal-flow heat exchanger supported by flow equalization helix of shell pass

Similar Documents

Publication Publication Date Title
JP2003106795A (en) Commutation device
EP0382098B1 (en) Multi-tube type heat transfer apparatus
US3776303A (en) Heat exchanger
US4029054A (en) Waste heat boiler
US4505329A (en) Heat exchanger
US4285393A (en) Heat exchanger for high-temperature gases
JPS5811392A (en) Supporting structure of heat transmitting pipe for heat exchanger of heat
RU2699851C1 (en) Tubular heat exchanger
JPH031092A (en) Heat exchanger used for cooling of cracked gas
US4687052A (en) Support system for coiled tube bunch of a heat exchanger
US3930537A (en) Heat exchanger
JPH03113291A (en) Heat exchager for cooling reaction gas
US3446279A (en) Air-cooled radiation recuperator
JPS6060492A (en) Heat exchanger
JP2017521625A (en) Heat exchange apparatus for cooling synthesis gas and method of assembling the same
CN109883222A (en) Heat exchanger
JPS62288446A (en) Forced combustion type water heater not using heat absorbing fins
US3247831A (en) Recuperator with helical coils
JPS5931667B2 (en) Kouonetsukoukanki
JPH0436595A (en) Multipipe heat exchanger
JPH05203388A (en) Straight-tube type shell and tube heat exchanger
SU1390509A1 (en) Shell-and-tube heat exchanger
JP2541162Y2 (en) Heat exchanger
JPS61190286A (en) Heat exchanger
JPS60243494A (en) Heat exchanger