JPS5811385B2 - Toukousei Ceramics Kusuno Seizouhouhou - Google Patents

Toukousei Ceramics Kusuno Seizouhouhou

Info

Publication number
JPS5811385B2
JPS5811385B2 JP49060724A JP6072474A JPS5811385B2 JP S5811385 B2 JPS5811385 B2 JP S5811385B2 JP 49060724 A JP49060724 A JP 49060724A JP 6072474 A JP6072474 A JP 6072474A JP S5811385 B2 JPS5811385 B2 JP S5811385B2
Authority
JP
Japan
Prior art keywords
ceramics
sintered body
toukousei
seizouhouhou
kusuno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49060724A
Other languages
Japanese (ja)
Other versions
JPS50151910A (en
Inventor
宮内克己
戸田尭三
松山巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP49060724A priority Critical patent/JPS5811385B2/en
Publication of JPS50151910A publication Critical patent/JPS50151910A/ja
Publication of JPS5811385B2 publication Critical patent/JPS5811385B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は、ペロブスカイト型強誘電セラミックスとくに
チタン酸、ジルコン酸鉛系セラミックスの焼結において
、気孔がほとんどなく均質でかつ高密度の透明焼結体を
得るための製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a manufacturing method for obtaining a homogeneous and high-density transparent sintered body with almost no pores in the sintering of perovskite-type ferroelectric ceramics, especially titanate and lead zirconate ceramics. It is related to.

透明な強誘電性セラミックスは、すぐれた電気光学特性
を有し、各種の光変調素子あるいは画像蓄積素子用材料
としてきわめて有用なものである。
Transparent ferroelectric ceramics have excellent electro-optical properties and are extremely useful as materials for various light modulation elements or image storage elements.

従来、強誘電性セラミックスとしては、チタン酸バリウ
ム(BaTiO3)あるいはチタン酸ジルコン酸鉛固溶
体PZT〔Pb(Zr、Ti)O3〕などが知られてお
り、これらは誘電体材料、コンデンサー、圧電材料とし
て実用化されているものである。
Conventionally, barium titanate (BaTiO3) and lead zirconate titanate solid solution PZT [Pb(Zr,Ti)O3] are known as ferroelectric ceramics, and these are used as dielectric materials, capacitors, and piezoelectric materials. This is something that has been put into practical use.

しかし、これらのセラミックス材料は、はとんど透光性
を有しないため、その用途は上記特定分野に限定され、
電気光学的な面への応用は皆無であった。
However, since these ceramic materials rarely have translucency, their use is limited to the specific fields mentioned above.
There was no application to electro-optical aspects.

ところが最近になって、透明強誘電性セラミックス が開発されたことにより、セラミックスの電気光学的応
用が期待されるようになってきた。
However, with the recent development of transparent ferroelectric ceramics, electro-optical applications of ceramics are now expected.

周知のように、電気光学セラミックスにおいては、光散
乱の原因となる気孔や、組成の不均一部分が少ないほど
光学特性がすぐれている。
As is well known, in electro-optic ceramics, the fewer pores and non-uniform composition areas that cause light scattering, the better the optical properties.

本発明は、以上のような事実を考慮し、焼結体中に気孔
及び組成の不均一部分が少なく、高密度で、電磁気的、
光学的特性にすぐれたセラミックス焼結体を得るための
製法に関するものである。
In consideration of the above facts, the present invention has been developed to provide a sintered body with fewer pores and non-uniform composition areas, high density, electromagnetic,
The present invention relates to a manufacturing method for obtaining a ceramic sintered body with excellent optical properties.

従来、チタン酸ジルコン酸鉛セラミックスに他の元素(
例えばW、Ta、Nb、Bi、La、Ba、Sr、Li
)を固溶させる場合、上記元素の単一酸化物あるいは、
炭酸物、水酸化物、シュウ酸物として添加するのが普通
である。
Traditionally, other elements (
For example, W, Ta, Nb, Bi, La, Ba, Sr, Li
), a single oxide of the above element or
It is usually added as a carbonate, hydroxide, or oxalate.

ところが単一酸化物の融点がかなり高い場合、この添加
物とZrO2、TiO2との固相反応が十分に進行せず
、組成の不均一が生じる場合が多い。
However, when the melting point of the single oxide is quite high, the solid phase reaction between this additive and ZrO2 or TiO2 does not proceed sufficiently, often resulting in compositional non-uniformity.

また、炭酸物、水酸化物、シュウ酸物なと塩類の場合、
PbO1ZrO2、TiO2などと混合し、固相反応に
よって固溶体化させるため一度仮焼し、その後焼結する
のが普通である。
In addition, in the case of carbonates, hydroxides, oxalates and other salts,
Usually, it is mixed with PbO1ZrO2, TiO2, etc., calcined once to form a solid solution through solid phase reaction, and then sintered.

しかし、焼結体をよくするには、仮焼粉末の粒度はでき
るかぎり細かいことが大切であり、微粉末仮焼粉を得る
には仮焼温度を低くしたり、時間を短くする必要がある
However, in order to obtain a good sintered body, it is important that the particle size of the calcined powder is as fine as possible, and in order to obtain fine calcined powder, it is necessary to lower the calcining temperature or shorten the calcining time. .

ところが、このことは水酸化物、炭酸物などの分解が不
十分となり、焼結時にセラミックス中にCO2などの分
解ガスが残留し、十分高密度焼結体を得ることができな
かった。
However, this resulted in insufficient decomposition of hydroxides, carbonates, etc., and decomposed gases such as CO2 remained in the ceramic during sintering, making it impossible to obtain a sufficiently high-density sintered body.

一方、仮焼時に分解と固相反応を完全に進行させると粒
子径が粗大化し、この場合も上述したように焼結性が低
下し、高密度焼結体を得ることができなかった。
On the other hand, if the decomposition and solid phase reaction proceed completely during calcination, the particle size becomes coarse, and in this case as well, the sinterability deteriorates as described above, making it impossible to obtain a high-density sintered body.

このような理由から従来、透明強誘電性セラミックスと
してはPLZTLか開発されていなかった。
For these reasons, PLZTL has not been developed as a transparent ferroelectric ceramic.

したがって、本発明の目的は、上記欠点を解消するため
になされたもので、出発原料粉末の焼結性を低下させる
ことなく、かつ添加物とPZT母体との固溶体化を十分
進行させる目的で、添加物の原料粉末として、母体酸化
物との複合酸化物(例えばジルコネート、あるいはナタ
ネート)を用い均質でかつ高密度の焼結体を得る方法を
提供するものである。
Therefore, an object of the present invention was made to eliminate the above-mentioned drawbacks, and for the purpose of sufficiently promoting solid solution formation of additives and PZT matrix without reducing the sinterability of the starting material powder, The present invention provides a method for obtaining a homogeneous and high-density sintered body using a composite oxide (for example, zirconate or nathanate) with a base oxide as a raw material powder for an additive.

この方法は、PZT系セラミックスのみでなく、一般の
添加元素を単一酸化物としてでなく、母体元素との複合
酸化物として添加することが可能なセラミックスの焼結
に適用できるものである。
This method is applicable not only to PZT ceramics but also to the sintering of ceramics in which general additive elements can be added not as a single oxide but as a composite oxide with a host element.

また焼結性向上のため、粒度の細かい仮焼粉末を合成す
るには、各元素の酸化物を使用する上記方法以外に、ア
ルコオキサイド、シュウ酸物などから光学的に共沈させ
る方法もあり、添加物の添加法として同様の効果がある
In addition to the above method of using oxides of each element, there is also a method of optical coprecipitation from alkoxides, oxalates, etc. to synthesize fine-grained calcined powder to improve sinterability. , similar effects can be obtained as a method of adding additives.

以下本発明を実施例によって詳細に説明する。The present invention will be explained in detail below using examples.

実施例 1 酸化鉛、酸化ジルコニウム、酸化バリウム、酸化チタニ
ウムの各粉末(純度99.9%、平均粒子径<1μm)
を (Pb0.70、Ba0.30)(Zr0.70、Ti
0.30)O3の組成式に従って秤量し、さらに焼結中
に蒸発により失われるPbOを補償する目的で10mo
1%PbOを過剰に加え、純水を溶媒として1時間ボー
ルミルを行なう。
Example 1 Powders of lead oxide, zirconium oxide, barium oxide, and titanium oxide (purity 99.9%, average particle size <1 μm)
(Pb0.70, Ba0.30) (Zr0.70, Ti
0.30) Weighed according to the composition formula of O3, and further added 10 mo to compensate for PbO lost by evaporation during sintering.
Add an excess of 1% PbO, and perform ball milling for 1 hour using pure water as a solvent.

これを蒸発乾固した後、白金製ボートに移しかえ、酸素
気流中900℃で60分仮焼する。
After this was evaporated to dryness, it was transferred to a platinum boat and calcined at 900° C. for 60 minutes in an oxygen stream.

上記仮焼粉をメノウ乳鉢に移し十分粉砕した後、アセト
ンを溶媒として1時間ボールミルする。
The calcined powder was transferred to an agate mortar, thoroughly ground, and then ball milled for 1 hour using acetone as a solvent.

90℃で一昼夜アセトンを乾燥させた後、さらにアセト
ンを完全に除去する目的で700℃、1時間、酸素気流
中で加熱する。
After drying the acetone at 90°C for a day and night, it was further heated at 700°C for 1 hour in an oxygen stream in order to completely remove the acetone.

冷却後、350kg/cm2の圧力で円筒状に成形した
アルミナダイス中に挿入し、電気炉中にセットして、酸
素気流中にて温度1400℃、圧力150kg/cm2
で加圧焼結する。
After cooling, it was inserted into an alumina die formed into a cylindrical shape at a pressure of 350 kg/cm2, set in an electric furnace, and heated in an oxygen stream at a temperature of 1400°C and a pressure of 150 kg/cm2.
Sinter under pressure.

上記焼結体の透過率は、試料厚み200μm測定波長0
.55μmにおいて35%であった。
The transmittance of the above sintered body is measured at a sample thickness of 200 μm and a wavelength of 0.
.. It was 35% at 55 μm.

また顕微鏡観察の結果、組成の不均質に起因すると思わ
れる光学的な不均質部分(orange peal)が
多く存在することがわかった。
Further, as a result of microscopic observation, it was found that there were many optically heterogeneous portions (orange peels) that were thought to be caused by the heterogeneity of the composition.

−万、原料粉末としてBaOのかわりにBaTi0a(
純度99.9%、粒子径<2μ)を用い、同組成となる
ように各酸化物粉末を秤量し、上記プロセスと同じ方法
にて加圧焼結した場合、その光透過率は62%であった
-10,000, BaTi0a(
When each oxide powder is weighed to have the same composition using 99.9% purity and particle size < 2μ) and pressure sintered using the same process as above, the light transmittance is 62%. there were.

この試料の反射率は30%程度であるため、反射損失を
除くと90%程度の透光性を示している。
Since the reflectance of this sample is about 30%, it exhibits a light transmittance of about 90% excluding reflection loss.

さらにorange pealも著るしく減少した。Furthermore, orange peel was also significantly reduced.

これはBaOより、複酸化物であるBaTiO3のほう
がPZTと容易に固相反応し均質な焼結体となったため
である。
This is because BaTiO3, which is a double oxide, reacts with PZT in a solid phase more easily than BaO, resulting in a homogeneous sintered body.

実施例 2 実施例1では原料複酸化物としてバリウムチタネート(
BaTiO3)を用いたが、本実施例ではジルコネート
でも同様に透明焼結体が得られることを示す。
Example 2 In Example 1, barium titanate (
Although BaTiO3) was used, this example shows that a transparent sintered body can be similarly obtained using zirconate.

PbO、ZrO2、BaZrO3各酸化物(純度99.
9%、粒子径く2μm)を (Pb1−x、Bax)ZrO3、(x=0.25.0
.30.0.35)の組成式に従い秤量し、実施例1と
同様の方法で焼結した。
PbO, ZrO2, BaZrO3 oxides (purity 99.
(Pb1-x, Bax)ZrO3, (x=0.25.0
.. 30.0.35), and sintered in the same manner as in Example 1.

その結果、密度は理論値の99,6〜99.8%、光透
過率は第1表のようであった。
As a result, the density was 99.6 to 99.8% of the theoretical value, and the light transmittance was as shown in Table 1.

第 1 表 一方、PbO,ZrO2、BaOを用いる従来法で焼結
した結果、焼結体の光透過率は32%できわめて低く、
また焼結体中に不均質部分や残留気孔が認められた。
Table 1 On the other hand, as a result of sintering using the conventional method using PbO, ZrO2, and BaO, the light transmittance of the sintered body was extremely low at 32%.
In addition, heterogeneous areas and residual pores were observed in the sintered body.

実施例 3 PbO、ZrO2、TiO2、SrTiO3の各粉末(
純度99.9%、粒子径く2μ)を (Pb0.70、Sr0.30)(Zr0.70、Ti
0.30)O3の組成式にしたがい秤量し、実施例1と
同様の方法で焼結体を作成した。
Example 3 Each powder of PbO, ZrO2, TiO2, SrTiO3 (
(Pb0.70, Sr0.30) (Zr0.70, Ti
0.30) A sintered body was prepared in the same manner as in Example 1 by weighing according to the composition formula of O3.

その結果、均質性にすぐれた、高密度、高透光性(>9
0%)強誘電性セラミックスが得られた。
As a result, it has excellent homogeneity, high density, and high translucency (>9
0%) ferroelectric ceramics were obtained.

以上説明したごとく、本発明によれば、ペロプスカイト
型強誘電セラミックス、とくにチタン酸ジルコン酸鉛系
セラミックスを透明化する場合、PbO,ZrO2、T
iO2以外の元素の原料粉末としてこれらとの複合酸化
物を使用することにより、均質性にすぐれ、かつ、高密
度、高透光性を有する強誘電性セラミックスを得ること
ができる。
As explained above, according to the present invention, when making perovskite-type ferroelectric ceramics, particularly lead zirconate titanate ceramics, transparent, PbO, ZrO2, T
By using composite oxides of elements other than iO2 as raw material powders, it is possible to obtain ferroelectric ceramics with excellent homogeneity, high density, and high translucency.

Claims (1)

【特許請求の範囲】[Claims] 1 母体の出発原料と添加物の出発原料の混合物を加圧
焼結する方法において、上記添加物の出発原料としてB
aTiO3、BaZrO3、SrTiO3又はSrZr
O3を用いることを特徴とするBa又はSrを添加物と
して含むチタン酸ジルコン酸鉛よりなる透光性セラミッ
クスの製造方法。
1 In a method of pressure sintering a mixture of a base starting material and an additive starting material, B is used as the starting material for the additive.
aTiO3, BaZrO3, SrTiO3 or SrZr
A method for producing translucent ceramics made of lead zirconate titanate containing Ba or Sr as an additive, characterized by using O3.
JP49060724A 1974-05-31 1974-05-31 Toukousei Ceramics Kusuno Seizouhouhou Expired JPS5811385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49060724A JPS5811385B2 (en) 1974-05-31 1974-05-31 Toukousei Ceramics Kusuno Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49060724A JPS5811385B2 (en) 1974-05-31 1974-05-31 Toukousei Ceramics Kusuno Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS50151910A JPS50151910A (en) 1975-12-06
JPS5811385B2 true JPS5811385B2 (en) 1983-03-02

Family

ID=13150499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49060724A Expired JPS5811385B2 (en) 1974-05-31 1974-05-31 Toukousei Ceramics Kusuno Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5811385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288960A (en) * 1987-05-21 1988-11-25 Nippon Denso Co Ltd Production of (pb, bi) (zr, ti)o3
JPS63288963A (en) * 1987-05-21 1988-11-25 Nippon Denso Co Ltd Production of (pb, ba) (zr, ti)o3
JPS63288961A (en) * 1987-05-21 1988-11-25 Nippon Denso Co Ltd Production of (pb, la) (hf, ti)o3
JPS63288962A (en) * 1987-05-21 1988-11-25 Nippon Denso Co Ltd Production of (pb, sr) (zr, ti)o3

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843196A (en) * 1971-10-04 1973-06-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843196A (en) * 1971-10-04 1973-06-22

Also Published As

Publication number Publication date
JPS50151910A (en) 1975-12-06

Similar Documents

Publication Publication Date Title
Ouchi Piezoelectric Properties and Phase Relations of Pb (Mg1/3Nb2/3) O3‐PbTiO3− PbZrO3 Ceramics with Barium or Strontium Substitutions
US4019915A (en) Method of producing optically transparent ceramics
JPS6320790B2 (en)
JPS5811385B2 (en) Toukousei Ceramics Kusuno Seizouhouhou
JP6267673B2 (en) Method for producing ferroelectric ceramics
JPH0159967B2 (en)
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JP2002321975A (en) Piezoelectric ceramic
Wu et al. Enhancing piezoelectricity of PLZT ceramics by bismuth stearate coating via water-soluble defatted powder injection molding
JP6970702B2 (en) Method for manufacturing ferroelectric ceramics
JP2002326870A (en) Piezoelectric ceramic
JPH03247562A (en) Production of transparent plzt ceramics
JP2607519B2 (en) Manufacturing method of optical ceramics
JPS63218514A (en) Production of perovskite ceramic powder containing zirconium
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
JPS6363512B2 (en)
Kaleva et al. Peculiarities of Modified Ceramics (Na 0.5 Bi 0.5) TiO 3–BaTiO 3–(K 0.5 Na 0.5) NbO 3
JP2607520B2 (en) Manufacturing method of optical ceramics
KR940004381B1 (en) Composition of ceramic dielectric substance
JP3243692B2 (en) Manufacturing method of piezoelectric ceramics
KR20210158224A (en) Lead-free piezoelectric ceramic composition and preparation method thereof
JPS62162670A (en) Manufacture of lead zirconate titanate sintered body
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JPS60141675A (en) Manufacture of light permeable high dielectric ceramic
JPS5912618B2 (en) Manufacturing method of electro-optic ceramics