JPS58108739A - Josephson junction device - Google Patents

Josephson junction device

Info

Publication number
JPS58108739A
JPS58108739A JP56206939A JP20693981A JPS58108739A JP S58108739 A JPS58108739 A JP S58108739A JP 56206939 A JP56206939 A JP 56206939A JP 20693981 A JP20693981 A JP 20693981A JP S58108739 A JPS58108739 A JP S58108739A
Authority
JP
Japan
Prior art keywords
layer
film
junction
oxide
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206939A
Other languages
Japanese (ja)
Inventor
Yoshinobu Taruya
良信 樽谷
Juichi Nishino
西野 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56206939A priority Critical patent/JPS58108739A/en
Publication of JPS58108739A publication Critical patent/JPS58108739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the junction structure having excellent Josephson and superconductive tunnel characteristics for the Josephson junction element in which Nb is used as a lower electrode. CONSTITUTION:A metal film, whereon only an oxide which turns into an insulating layer in an oxidizing process will be formed, is coated on the surface of the Nb film 1 which will be turned to the lower electrode. Ta is used as the metal film having the above characteristics. The thickness of the Ta is to be within the range of 1-20nm. When the thickness is in excess of 3nm, a non-oxidized Ta layer remains between the Ta oxides layer 7 and the Nb layer 1. In the case of a junction having a Ta oxide as a barrier layer, as the low grade oxide which will be formed between a Ta2O5 oxide film and metal Ta layer is thinly formed, there exists almost no superconduction deteriorating layer and a normal conductive layer (within 10Angstrom ). Accordingly, a Josephson junction having little leak current and high quality can be formed.

Description

【発明の詳細な説明】 本発明はジョセフソン接合装置の構造に関し、とくに高
速計算機用スイッチング素子に好適なサンドインチ形ジ
ョセフノン接合素子特性を向上させ、かつ安定化するの
に好適な接合障壁層の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a Josephson junction device, and in particular to a junction barrier layer suitable for improving and stabilizing the characteristics of a sandwich-type Josephson non-junction device suitable for switching elements for high-speed computers. Regarding the structure of

従来のNb膜を下部電極とするNb系ジョセフソン接合
の接合部障壁層はNb膜表面の酸化層によって形成され
ていた。しかしながら、このような障壁層を有する接合
および、接合の製造方法には以下のような問題点がおっ
た。
The junction barrier layer of a conventional Nb-based Josephson junction using a Nb film as the lower electrode was formed by an oxide layer on the surface of the Nb film. However, the following problems arose in the junction having such a barrier layer and the method for manufacturing the junction.

fllNbは酸素などと活性であるため、バタンニング
等のプロセス工程において表面汚染層が100人の深さ
まで形成される。
Since flNb is active with oxygen and the like, a surface contamination layer is formed up to a depth of 100 nm during process steps such as battening.

+21Nb膜表面を熱酸化、あるいは酸素雰囲気中の高
周波放電によって酸化させた場合、絶縁層となるべきN
b、OL1酸化物以外に常伝導的性質を示すNbOある
いはNbO,などが形成される。N、0゜層の厚みはス
イッチング素子用接合の場合2〜3nm程度であるが、
第1図に示すごとく同時にNb0層とNbO2層が3n
m以上の厚さで形成される(XNb/Nb □xide
/pb−AIloy JosephsonTunnel
  Junctions”、  S、  1.  Ra
1der   and  R,。
When the +21Nb film surface is oxidized by thermal oxidation or high-frequency discharge in an oxygen atmosphere, the Nb film that should become an insulating layer is
b. In addition to the OL1 oxide, NbO, NbO, etc. exhibiting normal conductivity are formed. The thickness of the N,0° layer is approximately 2 to 3 nm in the case of a junction for a switching element.
As shown in Figure 1, the Nb0 layer and NbO2 layer are 3n at the same time.
Formed with a thickness of m or more (XNb/Nb □xide
/pb-AIloy JosephsonTunnel
Junctions”, S, 1. Ra
1der and R,.

E、 Drake、 IEEE Trans、 Mag
lMAG IL299(1981))。とくにNb0層
は常伝導のトンネル電1流湯となり、この部分がNb系
接合のトンネル特性を低下させる。
E, Drake, IEEE Trans, Mag
lMAG IL299 (1981)). In particular, the Nb0 layer becomes a normal conducting tunnel current, and this portion deteriorates the tunneling characteristics of the Nb-based junction.

f31Nb膜はpb合金膜と比較して、障壁層として必
要な酸化膜厚が短時間で容易に形成されるため、酸化膜
厚の正確な制御が逆に困難となる。
Compared to the pb alloy film, the f31Nb film can easily form the oxide film thickness required as a barrier layer in a short time, so that accurate control of the oxide film thickness becomes difficult.

本発明の目的は下部電極をNbとするジョセフソン接合
素子において、ジョセフソンおよび超電導トンネル特性
が優れ、かつ制御性よくトンネル障壁層を形成できる接
合構造を与えることにある。
An object of the present invention is to provide a Josephson junction device having Nb as the lower electrode, which has excellent Josephson and superconducting tunneling properties and which allows formation of a tunnel barrier layer with good controllability.

上記目的を達成するために、下部電極となるNb膜表面
に、酸化プロセスにおいて絶縁層となるべき酸化物のみ
が形成される金属被膜をコーティングする。このような
性質を有する金属膜としてTaを用いる。Taの膜厚と
して1〜20nmの範囲とする。Taの厚みを3nm以
上とした場、合、’fa酸化物層とNb層との間に未酸
化Ta層が残る。Taの臨界温度は4.5にであり、N
bの臨界温度9.3によシ低いが、Taの極薄層が超電
導トンネル特性の劣化をもたらし難いことを以下に示す
In order to achieve the above object, the surface of the Nb film that will become the lower electrode is coated with a metal film in which only an oxide that will become an insulating layer is formed in an oxidation process. Ta is used as a metal film having such properties. The Ta film thickness is in the range of 1 to 20 nm. When the Ta thickness is 3 nm or more, an unoxidized Ta layer remains between the 'fa oxide layer and the Nb layer. The critical temperature of Ta is 4.5 and N
Although the critical temperature of b is lower than 9.3, it will be shown below that an ultrathin layer of Ta is unlikely to cause deterioration of superconducting tunneling properties.

一般に超電導体に常電導体を接続したサンドインチ構造
の金属においては、超電導体から常電導体への超電導電
子(いわゆるクーパ一対)のしみこみ、および常電導体
から超電導体への常電導電子のしみこみ現象、いわゆる
プロキシミテイ効果及存在する。この結果、超電導体内
部における常電導電子の割合が増加して超電導特性が劣
化するとともに、常電導体における超電導電子の存在に
よって超電導性が生じる。ここで超電導トンネル特性の
優れた接合を得るためには、プロキシミテイ効果によっ
て常電導体の超電導特性を下部電極超電、導体の特性に
近づける必要がある。このための条件は、(1)超電導
体と常電導体間の電子透過係数が大きいこと。(2)常
電導体の膜厚が薄いことである。(1)に関しては結晶
構造の異なる2種類の物質の界面において、電子が散乱
されやすく、透過係数が大きい。NbとTaの場合、両
方共結晶構造が等しく体心立方晶であり、格子定数は3
桁目まで等しい(0,3300m )。したがって清浄
なNb膜表面上にTa極薄膜を真空蒸着した場合、+p
 a結晶はNb上にエピタキシアルに成長する。
In general, in metals with a sandwich structure in which a normal conductor is connected to a superconductor, superconducting electrons (so-called Cooper pairs) seep into the normal conductor, and normal conductive electrons seep in from the normal conductor to the superconductor. A phenomenon, the so-called proximity effect, exists. As a result, the proportion of normal conducting electrons inside the superconductor increases and the superconducting properties deteriorate, and superconductivity occurs due to the presence of superconducting electrons in the normal conductor. In order to obtain a junction with excellent superconducting tunneling properties, it is necessary to bring the superconducting properties of the normal conductor closer to those of the lower electrode superconductor through the proximity effect. The conditions for this are: (1) the electron transmission coefficient between the superconductor and the normal conductor is large; (2) The film thickness of the normal conductor is thin. Regarding (1), electrons are easily scattered at the interface between two types of substances with different crystal structures, and the transmission coefficient is large. In the case of Nb and Ta, both crystal structures are equally body-centered cubic, and the lattice constant is 3.
Equal to the digits (0,3300m). Therefore, when an extremely thin Ta film is vacuum-deposited on a clean Nb film surface, +p
The a-crystal grows epitaxially on Nb.

この結果NbとTa界面における電子の透過係数間 は異なる結晶構造の金−一り面の場合(透過率はほぼ0
.1)より大きくなる。(2)に関してはすべての金属
の組合せに共通であシ、Taの場合、この条件により膜
厚が20nm以下に制限される。Taに関しては臨界温
度が4.5にであり、上に述べたプロキシミテイ効果に
よる臨界温度の上昇効果により超電導特性が向上し、実
効的な臨界温度はNb層値に近くなる。
As a result, the transmission coefficient of electrons at the Nb and Ta interface is different for the case of a single gold plane with a different crystal structure (the transmittance is almost 0).
.. 1) Become larger. Regarding (2), it is common to all metal combinations, and in the case of Ta, the film thickness is limited to 20 nm or less due to this condition. Regarding Ta, the critical temperature is 4.5, and the superconducting properties are improved due to the effect of increasing the critical temperature due to the proximity effect described above, and the effective critical temperature becomes close to the value of the Nb layer.

本発明に基づいて製造したジョセフソン接合に関する実
施例を以下に示す。
Examples of Josephson junctions manufactured according to the present invention are shown below.

まず以下に示す工程によってNb系接合素子の作製を行
なった。
First, an Nb-based junction element was manufactured through the steps shown below.

fll  8iウエハe14F’とH2Oの混合液によ
って洗浄する。
Clean with a mixture of fll 8i wafer e14F' and H2O.

+2+siウエハを真空蒸着装置に装着し、真空装置を
to−’paの真空度に排気する。なおこの蒸着装置に
は2個のルツボを備えた電子ビーム銃加熱装置を装備し
、それぞれNbおよびTaの塊を挿入した。
The +2+si wafer is mounted on a vacuum evaporation apparatus, and the vacuum apparatus is evacuated to a degree of vacuum of to-'pa. This vapor deposition apparatus was equipped with an electron beam gun heating device equipped with two crucibles, into which Nb and Ta lumps were inserted.

f31  Siウェハを加熱して400Cに保チ、Nb
を電子ビーム銃によって加熱蒸発させて、Siウェハ上
に2 n m / sの蒸着速度で蒸着する。膜厚は2
001mとする。
f31 Heating Si wafer and keeping it at 400C, Nb
is heated and evaporated using an electron beam gun, and is deposited on a Si wafer at a deposition rate of 2 nm/s. Film thickness is 2
001m.

14)Nb膜薫蒸着後基板温度を一定に保ち、電子ビー
ム銃のルツボ位置を移動して、Ta膜の蒸着(5) を行なった。膜厚は6nmとした。
14) After the Nb film was vapor-deposited, the Ta film was deposited (5) by keeping the substrate temperature constant and moving the crucible position of the electron beam gun. The film thickness was 6 nm.

(51NbとTaの積層膜が全面に付着したSiウェハ
にレジスト膜をコーティングし、ジョセフソン接合の下
部電極パターンを形成した。
(A resist film was coated on a Si wafer on which a laminated film of 51Nb and Ta was adhered to the entire surface, and a lower electrode pattern of a Josephson junction was formed.

(61HFとHNO,とHlOの混合液によってNb−
Ta膜のエツチングを行ない、下部電極パターンの形成
を行なった。引続いて接合開口用SiO膜のためのレジ
ストパターンニングを行なった。
(Nb-
The Ta film was etched to form a lower electrode pattern. Subsequently, resist patterning for the SiO film for the junction opening was performed.

(7) SIO膜の真空蒸着、リフトオフによるSiO
膜パターン形成を行なう。続いて上部電極用レジストパ
ターンの形成を行なった。
(7) Vacuum deposition of SIO film, SiO by lift-off
Perform film pattern formation. Subsequently, a resist pattern for an upper electrode was formed.

+S+Siウェハを別の真空蒸着装置の高周波電極に装
着し、0.4 P aのAr雰囲気中で高周波放電を行
なう。これによりパターンニング工程における汚染物を
除去した。
The +S+Si wafer is attached to a high frequency electrode of another vacuum evaporation device, and high frequency discharge is performed in an Ar atmosphere of 0.4 Pa. This removed contaminants during the patterning process.

(9)0□2%−Ar混合ガス雰囲気中で高周波放電を
行なうことによりTa酸化膜層を形成する。
(9) A Ta oxide film layer is formed by performing high frequency discharge in a 0□2%-Ar mixed gas atmosphere.

Tam化膜の形成条件は以下の通シとした。つまり、酸
素とアルゴンの混合ガス(酸素2 vo1%)を3m’
porrの圧力で導入し、高周波電圧200、(6) ■(ピーク間電圧)の下で10分間高周波放電を行なっ
た。この条件下では通常表面から20〜30人の厚さで
酸化膜が形成される。引続いて7XIO−’Paに真空
排気し、Pb−In合金膜の蒸着を行なう。リフトオフ
を行なうことによシ接合を完成した。この結果、接合構
造は第2図に示すごとく形成された。この接合の電流−
電圧特性を測定したところ、従来のNb酸化膜を障壁層
とする接合よりすぐれた特性が得られた。すなわち。
The conditions for forming the Tam film were as follows. In other words, a mixed gas of oxygen and argon (oxygen 2 vol 1%) is
porr pressure, and high-frequency discharge was performed for 10 minutes under a high-frequency voltage of 200, (6) (peak-to-peak voltage). Under these conditions, an oxide film is usually formed to a thickness of 20 to 30 people from the surface. Subsequently, the vacuum was evacuated to 7XIO-'Pa, and a Pb-In alloy film was deposited. The joint was completed by performing lift-off. As a result, a bonded structure as shown in FIG. 2 was formed. Current in this junction −
When voltage characteristics were measured, characteristics superior to those of conventional junctions using Nb oxide films as barrier layers were obtained. Namely.

エネルギーギャップ以下における抵抗と以上における抵
抗の比が、Nb酸化膜を障壁層とする接合^ の聯合、約10であったのに対し、Ta酸化膜を障壁J
−とする接合では15以上であった。以上の酸化条件で
作製した接合のジョセフソン臨界電流密度は1000A
/C1n2であった。
The ratio of the resistance below the energy gap to that above the energy gap was about 10 for a junction with a Nb oxide film as a barrier layer, while it was about 10 for a junction with a Nb oxide film as a barrier layer,
It was 15 or more in the case of -. The Josephson critical current density of the junction fabricated under the above oxidation conditions was 1000 A.
/C1n2.

本発明によれば実施例に述べたごとく以下のような効果
を有する。
According to the present invention, as described in the embodiments, the following effects are achieved.

1)Ta酸化物を障壁層とする接合は、’ra、o、酸
化膜と金属Ta層との間に形成される低級酸化物の厚さ
が薄いので対応する超電導劣化層および常電導層がほと
んど存在しない(10層以内)。したがってリーク電流
の少ない、質の高いジョセフソン接合を形成することが
できる。常電導トンネル抵抗とリーク電流の比は、Nb
酸化膜をバリアとする接合の場合、通常1:10であっ
たのに対して、Tag化膜をバリアとする接合の場合、
1:15あるいはそれ以上の値が得られた。
1) In a junction using Ta oxide as a barrier layer, since the lower oxide formed between the oxide film and the metal Ta layer is thin, the corresponding superconducting degraded layer and normal conducting layer are Almost non-existent (within 10 layers). Therefore, a high-quality Josephson junction with low leakage current can be formed. The ratio of normal conducting tunnel resistance to leakage current is Nb
In the case of bonding using an oxide film as a barrier, the ratio was usually 1:10, whereas in the case of bonding using a tag film as a barrier,
Values of 1:15 or higher were obtained.

2)Ta酸化物を障壁層とする接合は、Nb酸化物を障
壁層とする接合と比較して、同一の酸化条件に対してト
ンネル抵抗値が低くなる。したがってNb酸化物障壁層
の接合と比較して、容易に高い臨界電流密度(、:10
7A/m2 )を実現できるとともに、障壁層形成時に
おけるトンネル抵抗値の制御が容易となる。
2) A junction using Ta oxide as a barrier layer has a lower tunnel resistance value under the same oxidation conditions than a junction using Nb oxide as a barrier layer. Therefore, compared to the junction of Nb oxide barrier layer, it is easy to obtain a high critical current density (,:10
7A/m2), and the tunnel resistance value can be easily controlled when forming the barrier layer.

3)TaはNbと比較して、パターン形成工程を施すこ
とによる表面からの汚染層の侵入深さが浅い。したがっ
て下部電極表面酸化層形成前の、表面スパッタクリーニ
ング深さが、Nb膜の場合100人必要なのに対して、
Ta膜の場合は50Å以下でよい。
3) Compared to Nb, Ta has a shallower penetration depth of a contaminant layer from the surface when subjected to a patterning process. Therefore, the surface sputter cleaning depth before forming the lower electrode surface oxide layer is 100 people required for Nb film, whereas
In the case of a Ta film, the thickness may be 50 Å or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNb−Nb酸化物−pb金合金pb−In)接
合の断面図である。第2図はTa酸化物を障壁層とする
Nb−障壁層−pb合金(Pb−In)接合の断面図で
ある。 1・・・Nb膜、2・・・NbOおよびNbO,層、3
・・・Nb、O,層、4・ Pb−In膜、5−s i
ウニノー、6・・・’pa層、7・・・Ta、06層、
8・・・sio膜。 烹 1 図 夕 ! Z 図
FIG. 1 is a cross-sectional view of a Nb-Nb oxide-pb gold alloy pb-In) junction. FIG. 2 is a cross-sectional view of an Nb-barrier layer-pb alloy (Pb-In) junction using Ta oxide as a barrier layer. DESCRIPTION OF SYMBOLS 1...Nb film, 2...NbO and NbO, layer, 3
...Nb, O, layer, 4-Pb-In film, 5-s i
Unino, 6...'pa layer, 7...Ta, 06 layer,
8...Sio membrane.烹 1 Illustration! Z diagram

Claims (1)

【特許請求の範囲】[Claims] 1、Nb膜を下部電極とするジョセフソン接合装置にお
いて、Nb膜表面を覆った厚さ1〜20nmのTaの極
薄膜の全部もしくは表面部を酸化してなる酸化膜を接合
障壁層とすることを特徴とするジョセフソン接合装置。
1. In a Josephson junction device using a Nb film as the lower electrode, an oxide film formed by oxidizing the entire or surface portion of an extremely thin Ta film with a thickness of 1 to 20 nm covering the Nb film surface is used as the junction barrier layer. A Josephson joining device featuring:
JP56206939A 1981-12-23 1981-12-23 Josephson junction device Pending JPS58108739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206939A JPS58108739A (en) 1981-12-23 1981-12-23 Josephson junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206939A JPS58108739A (en) 1981-12-23 1981-12-23 Josephson junction device

Publications (1)

Publication Number Publication Date
JPS58108739A true JPS58108739A (en) 1983-06-28

Family

ID=16531534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206939A Pending JPS58108739A (en) 1981-12-23 1981-12-23 Josephson junction device

Country Status (1)

Country Link
JP (1) JPS58108739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289880A (en) * 1987-05-21 1988-11-28 Agency Of Ind Science & Technol Manufacture of josephson junction device
JPS6468980A (en) * 1987-09-09 1989-03-15 Agency Ind Science Techn Josephson junction element and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289880A (en) * 1987-05-21 1988-11-28 Agency Of Ind Science & Technol Manufacture of josephson junction device
JPS6468980A (en) * 1987-09-09 1989-03-15 Agency Ind Science Techn Josephson junction element and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
JPH0444438B2 (en)
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPS58108739A (en) Josephson junction device
JP2539584B2 (en) Superconducting quantum interference device
JP3241798B2 (en) Method for manufacturing superconducting device
JPS63224274A (en) Superconductive device
JPH04285012A (en) Formation of oxide superconductor thin film
JP2966378B2 (en) Method for producing Ba-K-Bi-O-based superconducting thin film
JPH02186682A (en) Josephson junction device
JPS5994481A (en) Josephson junction device
JP2835203B2 (en) Superconducting element manufacturing method
JP2731513B2 (en) Superconducting element and method of manufacturing the same
JPH0338075A (en) Method of manufacturing multi- layer electronic film element
JP2647251B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP3120914B2 (en) Method for manufacturing superconducting device
JPS59194482A (en) Tunnel junction type josephson element
JPH0249481A (en) Oxide josephson junction device
JPS63318176A (en) Manufacture of oxide superconductive junction
JPS63194376A (en) Josephson junction element
JPS62183576A (en) Manufacture of josephson element
JPH04118978A (en) Superconducting element and manufacture thereof
JPH04317380A (en) Manufacture of barrier type electronic element
JPH05152627A (en) Superconducting device and its manufacture