JPS58108373A - Method of cooling driving motor for circulating pump of absorption type refrigerator - Google Patents

Method of cooling driving motor for circulating pump of absorption type refrigerator

Info

Publication number
JPS58108373A
JPS58108373A JP56206916A JP20691681A JPS58108373A JP S58108373 A JPS58108373 A JP S58108373A JP 56206916 A JP56206916 A JP 56206916A JP 20691681 A JP20691681 A JP 20691681A JP S58108373 A JPS58108373 A JP S58108373A
Authority
JP
Japan
Prior art keywords
circulation pump
drive motor
solution
cooling
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206916A
Other languages
Japanese (ja)
Inventor
福田 民雄
大内 富久
臼井 三平
能文 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56206916A priority Critical patent/JPS58108373A/en
Publication of JPS58108373A publication Critical patent/JPS58108373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Reciprocating Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍や空気調和に用いられるフロンを冷媒とし
た吸収式冷凍機に係り、特に騒音と振動の防止に好適な
フロン系吸収式冷凍機の循環ポンプ駆動モータの冷却方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption refrigerator using fluorocarbons as a refrigerant used in refrigeration and air conditioning, and in particular to a circulation pump drive motor of a fluorocarbon-based absorption refrigerator suitable for preventing noise and vibration. Regarding cooling method.

まず、フロン系吸収式冷凍機の冷凍サイクルを第1図に
より説明する。冷媒の占める割合の多い溶液(以下、濃
溶液と呼ぶ)は、発生器1において加熱源11により加
熱され高圧の冷媒蒸気を発生する。発生した冷媒蒸気は
配管31により凝縮器2に導かれる。凝縮器2において
、冷却源13により冷却され凝縮液化し九冷媒は、配管
32゜33及び絞り7を通り減圧されて蒸発器3に入p
First, the refrigeration cycle of a fluorocarbon-based absorption refrigerator will be explained with reference to FIG. A solution containing a large proportion of refrigerant (hereinafter referred to as a concentrated solution) is heated by a heating source 11 in a generator 1 to generate high-pressure refrigerant vapor. The generated refrigerant vapor is guided to the condenser 2 through a pipe 31. In the condenser 2, the refrigerant is cooled by the cooling source 13 and condensed into a liquid.The refrigerant is depressurized through the pipes 32 and 33 and the throttle 7, and enters the evaporator 3.
.

冷凍負荷12から熱を奪って蒸発気化する。蒸発器3で
気化した冷媒蒸気は配管34を通って吸収器4に導かれ
、発生器1において冷媒蒸気を放出し冷媒の占める割合
の少ない溶液(以下、希溶液と呼ぶ)に吸収される。こ
の時発生する吸収熱は冷却源14により冷却される。吸
収器4において冷媒蒸気を吸収した濃溶液は配管35a
、液溜り6、配管35bを順に通り、循環ポンプ5によ
り昇圧され配管36を通り発生器1に送り込まれ、再び
加熱源11により加熱される。なお1第1図には図示し
ていないが、通常の冷凍サイクルにおいては希溶液と濃
溶液を熱交換する熱交換器が配管36と配管37の途中
に配置されている。
It takes heat from the refrigeration load 12 and evaporates it. The refrigerant vapor vaporized in the evaporator 3 is led to the absorber 4 through the pipe 34, and the refrigerant vapor is released in the generator 1 and absorbed into a solution containing a small proportion of refrigerant (hereinafter referred to as a dilute solution). The absorbed heat generated at this time is cooled by the cooling source 14. The concentrated solution that has absorbed the refrigerant vapor in the absorber 4 is transferred to the pipe 35a.
, the liquid reservoir 6, and the pipe 35b, the pressure is increased by the circulation pump 5, and the water is sent to the generator 1 through the pipe 36, where it is heated again by the heat source 11. Although not shown in FIG. 1, in a normal refrigeration cycle, a heat exchanger for exchanging heat between a dilute solution and a concentrated solution is placed between the pipes 36 and 37.

前記した冷凍サイクルにおいて循環ポンプ5を駆動モー
タごと容器に収納すれば、外気とサイクルを仕切ること
ができサイクルからの溶液並びに冷媒の漏れをなくすこ
とが可能となり、その結果、長期間にわたって保守点検
が不要となるという大きな利得が生まれる。
In the above-mentioned refrigeration cycle, if the circulation pump 5 and the drive motor are housed in a container, the cycle can be separated from the outside air, making it possible to eliminate leakage of solution and refrigerant from the cycle, and as a result, maintenance and inspection can be carried out over a long period of time. There is a huge benefit in that it is no longer needed.

ところで、駆動モータ21tfその内部損失による場合
、その冷却方法を工夫する必要がある。
By the way, if the drive motor 21tf is due to its internal loss, it is necessary to devise a cooling method.

そのひとつとして、第2図に示したように、容器の外部
にフィン23を設けるとともにファン24及びファン2
4の駆動モータ(図示せず)を設けて、強制的に空気に
より冷却する方法が考えられる。ところがこの方法にお
いては、冷却効果を良くするために、フィン23を多数
設ける必要があったり、77/24による空気流量を多
くする必要がある。このため、収納容器が大きくなり7
アン24の駆動動力が多くなるなどの欠点がある。
As one of them, as shown in FIG. 2, fins 23 are provided on the outside of the container, and a fan 24 and
A conceivable method is to provide No. 4 drive motor (not shown) and forcibly cool it with air. However, in this method, in order to improve the cooling effect, it is necessary to provide a large number of fins 23 or to increase the air flow rate by 77/24. For this reason, the storage container becomes larger.
There are disadvantages such as the driving power of the ring 24 increases.

第2図に代わるモータの冷却方法として、第3図に示す
ような循環ポンプ21の吐出し配管36と収納容器22
を結ぶ導管41及び収納容器22から循環ポンプの吸込
み口へ抜ける通路42′もしくは収納容器2,2と循環
ポンプ21の吸込み配管35を結ぶ導管42を設けた冷
却方法が考えられる。この方法を実験したところ、冷凍
サイクルを循環する溶液量の0.5%程度を導管41、
収納容器22、導管42もしくは通路42′の順に流す
ことにより、モータの冷却は十分えることカ罵わかった
が、新たな問題点が発生した。即ち、循環ポンプ5に振
動が発生するとともに騒音が増大し循環ポンプ5の吐出
し量が約5%低下した。この原因は、モータ21の発熱
により溶液が加熱され、溶液の飽和蒸気圧が上昇し冷媒
蒸気が発生し、この冷媒蒸気泡が循環ポンプ5に吸引さ
れつぶされるというあたかもキャビテーションの如き現
象が生じ九ためである。
As an alternative method of cooling the motor to that shown in FIG. 2, the discharge piping 36 of the circulation pump 21 and the storage container 22 as shown in FIG.
A conceivable cooling method is to provide a conduit 41 that connects the storage container 22 and a passage 42' that connects the storage container 22 to the suction port of the circulation pump, or a conduit 42 that connects the storage containers 2, 2 and the suction pipe 35 of the circulation pump 21. When we experimented with this method, we found that about 0.5% of the amount of solution circulating in the refrigeration cycle was transferred to the conduit 41.
Although it has been found that the motor can be sufficiently cooled by flowing the fluid through the storage container 22 and the conduit 42 or the passage 42' in this order, a new problem has arisen. That is, vibration occurred in the circulation pump 5, noise increased, and the discharge amount of the circulation pump 5 decreased by about 5%. The cause of this is that the solution is heated by the heat generated by the motor 21, the saturated vapor pressure of the solution increases, and refrigerant vapor is generated, and this refrigerant vapor bubble is sucked into the circulation pump 5 and crushed, a phenomenon similar to cavitation. It's for a reason.

本発明の目的は、上述の問題点を解決することすなわち
、 (1)騒音及び振動の増大並びに吐出し量の低減が起ら
ず、 (り 冷却に用いる溶液の使用量が少なく、(3)  
コンパクトな 吸収式冷凍機の循環ポンプ駆動モータの冷却方法を提供
することにある。
The purpose of the present invention is to solve the above-mentioned problems, namely: (1) No increase in noise and vibration or reduction in discharge amount occurs; (i) The amount of solution used for cooling is small; (3)
An object of the present invention is to provide a compact cooling method for a circulation pump drive motor of an absorption refrigerator.

本発明は、溶液の顕熱だけでなく、冷媒蒸気発生による
潜熱をも利用することにより、より少量の溶液で駆動モ
ータの冷却ができることに着目して為されたものである
The present invention was made with the focus on the fact that a drive motor can be cooled with a smaller amount of solution by utilizing not only the sensible heat of the solution but also the latent heat generated by refrigerant vapor generation.

また、従来技術のままでは冷媒蒸気泡がポンプに吸引さ
れ、第3図で説明した不具合発生の原因となるので、そ
の1つの防止対策として、駆動モータ冷却後の溶液と冷
媒蒸気を冷却して溶液の飽和蒸気圧を低下させ、冷媒蒸
気を完全に溶液に吸収させた後に、この溶液をポンプに
吸込ませたことを特徴とする。
Furthermore, if the conventional technology is used, refrigerant vapor bubbles will be sucked into the pump, causing the problem described in Figure 3.One preventive measure is to cool the solution and refrigerant vapor after cooling the drive motor. The method is characterized in that after the saturated vapor pressure of the solution is lowered and the refrigerant vapor is completely absorbed into the solution, the solution is sucked into the pump.

また、1つの対策としては、駆動モータ冷却後の溶液と
冷媒蒸気をポンプ吸込み口に前置された液溜9に導き、
気液分離させて溶液のみをポンプに吸込ませるようにし
たことを特徴とする。
In addition, as one countermeasure, the solution and refrigerant vapor after cooling the drive motor are guided to the liquid reservoir 9 placed in front of the pump suction port,
It is characterized by separating gas and liquid so that only the solution is sucked into the pump.

以下、本発明の第1の発明の一実施例を警4図により説
明する。
An embodiment of the first aspect of the present invention will be described below with reference to FIG.

以下の各図において、第1図と同−符号金材したものは
、第1図と同一部品、声1−機能であるから説明を省略
する。
In the following figures, the same reference numerals as in FIG. 1 indicate the same parts and functions as in FIG. 1, so the explanation will be omitted.

第4図に示す実施例では、循環ポンプ5の吐出し配管3
6と収納容器22とを結ぶ導’1F41並びに収納容器
22と液溜り6とを結ぶ導管43a。
In the embodiment shown in FIG. 4, the discharge piping 3 of the circulation pump 5
6 and the storage container 22; and a conduit 43a that connects the storage container 22 and the liquid reservoir 6.

43bt配設し、導管43&、43bC)途中に冷却器
とそれを冷却する配管54と冷却源15が設けられて−
る。
43bt is installed, and a cooler, a piping 54 for cooling it, and a cooling source 15 are installed in the middle of the conduit 43&, 43bC).
Ru.

次に1本実施例の動作を説明する。循環ポンプ5の吐出
し配管36から導管41により分岐された濃溶液は圧力
差により収納容器22に導かれ、駆動モータ21により
加熱され冷媒蒸気を発生する。収納容器22で暖められ
た溶液並びに発生した冷媒蒸気は、圧力差により導管4
3aを径て冷却器24に導かれ、冷却源15により冷却
される。
Next, the operation of this embodiment will be explained. The concentrated solution branched from the discharge pipe 36 of the circulation pump 5 by a conduit 41 is guided to the storage container 22 due to the pressure difference, and is heated by the drive motor 21 to generate refrigerant vapor. The solution warmed in the storage container 22 and the generated refrigerant vapor flow through the conduit 4 due to the pressure difference.
3 a to the cooler 24 and cooled by the cooling source 15 .

冷却器24で冷却された溶液は随伴した冷媒蒸気を完全
に吸収し、圧力差により導’1143bを経て液溜り6
に導かれ、主サイクルに戻される。
The solution cooled by the cooler 24 completely absorbs the accompanying refrigerant vapor, and due to the pressure difference passes through the conduit 1143b to the liquid reservoir 6.
guided back to the main cycle.

本実施例で用いた冷媒はフロンR22であり、溶媒はテ
トラエチレングリコール・ジメチルエーテルである。循
環ポンプ5は、毎分200tの溶液を吸込み圧力が0.
6MPmから吐出し圧力が2.1MPaまで1.5MP
麿昇圧させている。循環ポンプ5に吸込まれる溶液の質
量濃度1j43%での吐出し量の0.5%である毎分l
tを導管41に流し駆動モータ21を冷却させた。この
駆動モータ21の内部損失による発熱量は1.2kW程
度である。上記の冷却用溶液毎分ltを流したところモ
ータ内部の温度は60Cとなった。冷却用溶液の温度は
55CとIOK上昇しかつ毎分175g即ち毎分8.4
を程度の冷媒蒸気が発生した。これらの冷媒蒸気と暖め
られた溶液は、導管43aを通快冷却器25に導かれ、
吸収器4t−冷却する空気(約35C)により酷却した
The refrigerant used in this example was Freon R22, and the solvent was tetraethylene glycol dimethyl ether. The circulation pump 5 sucks in 200 tons of solution per minute and has a pressure of 0.
Discharge pressure from 6MPm to 2.1MPa 1.5MPa
Maro is being boosted. l per minute, which is 0.5% of the discharge amount when the mass concentration of the solution sucked into the circulation pump 5 is 1j43%.
t was flowed into the conduit 41 to cool the drive motor 21. The amount of heat generated by internal loss of this drive motor 21 is about 1.2 kW. When the above cooling solution was passed at a rate of lt per minute, the temperature inside the motor became 60C. The temperature of the cooling solution increased to 55C and IOK and the temperature increased to 175g/min or 8.4g/min.
A certain amount of refrigerant vapor is generated. These refrigerant vapors and the warmed solution are led to the conduit cooler 25 through the conduit 43a,
Absorber 4t - Thoroughly quenched with cooling air (approximately 35C).

以上の結果、騒音は第3図で説明した冷却方法に比べ5
dB低下し、撮動も軽減した。また、ポンプ5の吐出し
量の低下も起きなかった。
As a result of the above, the noise level is 55% lower than that of the cooling method explained in Figure 3.
dB reduction, and the shooting was also reduced. Further, the discharge amount of the pump 5 did not decrease.

なお、本実施例において、冷却器25を駆動モータ21
の冷却後の溶液導管43M、43bの途中に配設したの
で、 1) 冷却器25の冷却媒体と溶液との温度差が大きく
とれるので冷却器25をコンパクトにできる、 2) 冷却器25で冷却された溶液は吸収器4から流出
する溶液と同温度でよいから、冷却源15に特別低温の
ものを用いる必要はない、3) 冷却器25を配設した
ので、主サイクルへの溶液戻し管43bの接続箇所は、
希溶液の流調弁8から吸収器4、液溜り6を径由して、
ポンプ5′の吸込み口に至る溶液ラインのいずれの箇所
にも最も配管が短縮できるように配設できる、という効
果がある。
In this embodiment, the cooler 25 is connected to the drive motor 21.
Since the solution conduit pipes 43M and 43b are disposed in the middle of the cooled solution, 1) there is a large temperature difference between the cooling medium of the cooler 25 and the solution, so the cooler 25 can be made more compact; 2) cooling with the cooler 25 Since the temperature of the dissolved solution may be the same as that of the solution flowing out from the absorber 4, there is no need to use a particularly low-temperature cooling source 15.3) Since the cooler 25 is installed, the solution return pipe to the main cycle is The connection point of 43b is
From the dilute solution flow control valve 8 through the absorber 4 and the liquid reservoir 6,
This has the advantage that the solution line leading to the suction port of the pump 5' can be placed anywhere in the solution line in such a way that the piping can be shortened the most.

次に本発明の第2の発明の一実施例を第5図により説明
する。この実施例の特徴は、循環ポンプ5の吐出し配管
36と収納容器22とを結ぶ導管41並びに収納容器2
2と吸収器4の配管途中とを結ぶ導管44を設は九こと
である。本実施例の動作は第4図に示した実施例の動作
とほぼ同一で、相違点は収納容器22で発生した冷媒蒸
気と暖められた溶液を吸収器4に導き、吸収器4内で冷
却した点である。したがって、第4図で示した専用の冷
却器24が不要となるという効果がある。
Next, an embodiment of the second aspect of the present invention will be described with reference to FIG. The features of this embodiment include a conduit 41 connecting the discharge pipe 36 of the circulation pump 5 and the storage container 22;
A conduit 44 connecting the pipe 2 and the middle of the pipe of the absorber 4 is provided. The operation of this embodiment is almost the same as that of the embodiment shown in FIG. This is the point. Therefore, there is an effect that the dedicated cooler 24 shown in FIG. 4 becomes unnecessary.

次に、本発明の第3の発明の一実施例を第6図により説
明する。この実施例の特徴は、循環ポンプ5の吐出し配
管36と収納容器22とを結ぶ導管41並びに収納容器
22とポンプ5に前置された液溜り6とを結ぶ導管43
を配設したことである。次に、本実施例の動作について
説明する。導管41により収納容器22に導かれた濃溶
液は、駆動モータ21により加熱され冷媒蒸気を発生す
る。収納容器22で暖められた溶液並びに発生した冷媒
蒸気は、導管43を径てポンプ5に前置された液溜夛6
に導かれ、液溜り6において完全に気液分離する。これ
らの冷媒蒸気並びに溶液は、吸収器4で過冷却された濃
溶液により冷却され吸収される。なお、液溜り6は冷凍
機の運転中宮に気液界面が形成されており、冷媒蒸気の
吸収に十分な気液界面の面積が確保されている。本発明
においては、吸収器4から流出する溶液に過冷却が必要
である点が前の発明と異なる。この過冷却度としては、
実施例1の場合の実験条件において0.3に以上である
。この程度の過冷却度を得るように吸収器4t−設計す
るのは容易である。
Next, an embodiment of the third aspect of the present invention will be described with reference to FIG. This embodiment is characterized by a conduit 41 that connects the discharge pipe 36 of the circulation pump 5 and the storage container 22, and a conduit 43 that connects the storage container 22 and the liquid reservoir 6 provided in front of the pump 5.
This means that the Next, the operation of this embodiment will be explained. The concentrated solution introduced into the storage container 22 through the conduit 41 is heated by the drive motor 21 and generates refrigerant vapor. The solution warmed in the storage container 22 and the refrigerant vapor generated are passed through a conduit 43 to a liquid reservoir 6 disposed in front of the pump 5.
gas and liquid are completely separated in the liquid reservoir 6. These refrigerant vapors and solutions are cooled and absorbed by the supercooled concentrated solution in the absorber 4. Note that a gas-liquid interface is formed in the liquid reservoir 6 during operation of the refrigerator, and a sufficient area of the gas-liquid interface for absorption of refrigerant vapor is ensured. The present invention differs from the previous invention in that the solution flowing out of the absorber 4 requires supercooling. This degree of supercooling is
Under the experimental conditions of Example 1, it is more than 0.3. It is easy to design the absorber 4t to obtain this degree of supercooling.

本実施例では、駆動モータを冷却後の溶液をポンプに前
置し九液溜りKlしたので、 l)専用の冷却器が不用、 2)液溜りに配管するので接続作業が容易である、とい
う効果がある。
In this example, the solution after cooling the drive motor is placed in front of the pump to form a nine-liquid reservoir, so 1) a dedicated cooler is not required, and 2) connection work is easy because piping is connected to the liquid reservoir. effective.

本発明によれば、循環ポンプ駆動モータの冷却過程溶液
から発生する冷媒蒸気泡が循環ポンプの吸込み口から循
環ポンプ内へ防止できるので、αフ 騒音及び振動の増
大防止並びに吐出し量の低減防止が図られる、 (2)  駆動モータの冷却に溶液の蒸発潜熱が利用で
き、少量の溶液での冷却ができる、 (3)駆動モータの冷却を効率的に行えるのでコンパク
トにできる、 という効果がある。
According to the present invention, refrigerant vapor bubbles generated from the cooling process solution of the circulation pump drive motor can be prevented from entering the circulation pump from the suction port of the circulation pump. (2) The latent heat of vaporization of the solution can be used to cool the drive motor, allowing cooling with a small amount of solution. (3) The drive motor can be cooled efficiently, making it more compact. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸収式冷凍機の基本的なサイクル構成図、第2
図及び第3図は各々従来の循環ポンプ駆動モータの冷却
方法の説明図、第4図、第5図。 第6図はそれぞれ第1の発明、第2の発明、第3の発明
の吸収式冷凍機の循環ポンプ駆動モータの冷却方法の一
実施例のサイクル構成図である。 4・・・吸収器、5・・・循環ポンプ、6・・・液溜り
、15・・・冷却器の冷却源%21・・・循環ポンプ駆
動モータ、22・・・駆動モータ収納容器、23・・・
収納容器のフィン、24・・・収納容器冷却用ファン、
25・・・冷却器、35,358,35b・・・循環ポ
ンプの吸込み配管、36・・・循環ポンプの吐出し配管
、41・・・吐出し配管と収納容器とを結ぶ導管、42
・・・収納容器と吸込み配管とを結ぶ導管、42′・・
・収納容器と循環ポンプ吸込み口とを結ぶ通路、43,
438゜43b・・・収納容器と液溜りとを結ぶ導管、
44・・・収納容器と吸収器の配管途中とを結ぶ導管、
54・・・冷却器の冷却用配管。 Ml  図 VJ4(2] VJ s 口 12 %61¥1 2 、)l    I3  35
Figure 1 is the basic cycle configuration diagram of an absorption chiller, Figure 2
3 and 3 are explanatory diagrams, FIG. 4, and FIG. 5, respectively, of a conventional cooling method for a circulation pump drive motor. FIG. 6 is a cycle configuration diagram of an embodiment of a method for cooling a circulation pump drive motor of an absorption refrigerator according to the first invention, the second invention, and the third invention, respectively. 4...Absorber, 5...Circulation pump, 6...Liquid reservoir, 15...Cooling source of cooler %21...Circulation pump drive motor, 22...Drive motor storage container, 23 ...
Storage container fin, 24...Storage container cooling fan,
25... Cooler, 35, 358, 35b... Suction pipe of circulation pump, 36... Discharge pipe of circulation pump, 41... Conduit connecting discharge pipe and storage container, 42
... Conduit connecting the storage container and the suction pipe, 42'...
・A passage connecting the storage container and the circulation pump suction port, 43,
438゜43b... Conduit connecting the storage container and the liquid reservoir,
44... Conduit connecting the storage container and the middle of the absorber piping,
54...Cooling piping for the cooler. Ml Figure VJ4 (2) VJ s 口12 %61¥1 2 ,)l I3 35

Claims (1)

【特許請求の範囲】 1、発生器、凝縮器、′M発器、吸収器、循環ポンプ、
これらを結ぶ配管類や循環ポンプ駆動モータより成る吸
収式冷凍機において、前記駆動モータを収納する容器と
循環ポンプ吐出し配管とを結ぶ導管及び該容器と循環ポ
ンプ吸込み配管とを結ぶ導管並びに後者の導管途中に冷
却器管設けたことを特徴とする吸収式冷凍機の循環ポン
プ駆動上−夕の冷却方法。 2 発生器、凝縮器、蒸発器、吸収器、循環ポンプ、こ
れらを結ぶ配管類や循環ポンプ駆動モータなどより成る
吸収式冷凍機において、前記駆動モータを収納する容器
と循環ポンプ吐出し配管とを結ぶ導管及び鉄容器と吸収
器とを結ぶ導管を設けたことを特徴とする吸収式冷凍機
の循環ポンプ駆動モータの冷却方法。 龜 発生器、凝縮器、蒸発器、吸収器、循環ポンプ、こ
れらを結ぶ配管類や循環ポンプ駆動モータなどより成る
吸収式冷凍機において、前記駆動モータを収納する容器
と循環ポンプ吐出し配管とを結ぶ導管及び鉄容器と循環
ポンプ吸込み配管に前置された液溜りとを結ぶ導管を設
けたことを特徴とする吸収式冷凍機の循環ポンプ駆動モ
ータの冷却方法。
[Claims] 1. Generator, condenser, 'M generator, absorber, circulation pump,
In an absorption chiller comprising piping connecting these and a circulation pump drive motor, a conduit connecting the container housing the drive motor and the circulation pump discharge piping, a conduit connecting the container and the circulation pump suction piping, and a conduit connecting the latter A method for cooling an absorption refrigerating machine by driving a circulation pump, characterized in that a cooler tube is provided in the middle of the conduit. 2. In an absorption refrigerator consisting of a generator, a condenser, an evaporator, an absorber, a circulation pump, piping connecting these, a circulation pump drive motor, etc., a container housing the drive motor and a circulation pump discharge piping are connected to each other. A method for cooling a circulation pump drive motor of an absorption refrigerating machine, characterized by providing a conduit connecting the iron container and the absorber. In an absorption refrigerating machine consisting of a generator, a condenser, an evaporator, an absorber, a circulation pump, piping connecting these, a circulation pump drive motor, etc., a container housing the drive motor and a circulation pump discharge piping are connected to each other. A method for cooling a circulation pump drive motor of an absorption refrigerating machine, characterized by providing a conduit connecting the iron container and a liquid reservoir provided in front of the circulation pump suction piping.
JP56206916A 1981-12-23 1981-12-23 Method of cooling driving motor for circulating pump of absorption type refrigerator Pending JPS58108373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206916A JPS58108373A (en) 1981-12-23 1981-12-23 Method of cooling driving motor for circulating pump of absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206916A JPS58108373A (en) 1981-12-23 1981-12-23 Method of cooling driving motor for circulating pump of absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS58108373A true JPS58108373A (en) 1983-06-28

Family

ID=16531196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206916A Pending JPS58108373A (en) 1981-12-23 1981-12-23 Method of cooling driving motor for circulating pump of absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS58108373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147377U (en) * 1985-03-06 1986-09-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147377U (en) * 1985-03-06 1986-09-11

Similar Documents

Publication Publication Date Title
JP2782555B2 (en) Absorption heat pump
JPS58108373A (en) Method of cooling driving motor for circulating pump of absorption type refrigerator
JP3028820B2 (en) refrigerator
CN205783242U (en) One utilizes the hot heating system of hydraulic oil
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
US3241330A (en) Prevention of concentrated solution flashing in an absorption refrigeration system
JP2828700B2 (en) Absorption refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
US1369365A (en) Method of refrigeration
KR940011076B1 (en) Refrigerator
JP2777427B2 (en) Absorption refrigerator
JP2883439B2 (en) Operating method of absorption refrigerator
JP3402984B2 (en) Absorption refrigerator
JP3154043B2 (en) Absorption refrigerator
JPH0830629B2 (en) Absorption refrigerator
JP2000283598A (en) Method for controlling engine heat pump
JPS5989966A (en) Circulator for cooling water of refrigerator
JPS5977269A (en) Absorption type heat pump
KR20220074259A (en) the water-cooled air-conditioning and heating equipment for the ship using the seawater
TW201308839A (en) Cooling system for electronic device
JPS58203362A (en) Absorption type refrigerator
JPS58164968A (en) Device for pumping up refrigerant liquid for double effect absorption refrigerator
JPH086982B2 (en) Absorption refrigerator
JPS61153352A (en) Regulator for quantity of refrigerant for absorption type water chiller and heater
JPH0464871A (en) Absorption heat pump