JPS58107833A - Split operation control type internal-combustion engine - Google Patents

Split operation control type internal-combustion engine

Info

Publication number
JPS58107833A
JPS58107833A JP20637081A JP20637081A JPS58107833A JP S58107833 A JPS58107833 A JP S58107833A JP 20637081 A JP20637081 A JP 20637081A JP 20637081 A JP20637081 A JP 20637081A JP S58107833 A JPS58107833 A JP S58107833A
Authority
JP
Japan
Prior art keywords
oxygen concentration
concentration sensor
combustion engine
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20637081A
Other languages
Japanese (ja)
Inventor
Makoto Ueno
真 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20637081A priority Critical patent/JPS58107833A/en
Publication of JPS58107833A publication Critical patent/JPS58107833A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the oil ascent or oil descent in a resting cylinder by providing a cutoff valve with a leak section near an oxygen density sensor at a discharge passage on the resting cylinder side during a partial cylinder operation so as to prevent the temperature of said sensor from dropping during said operation. CONSTITUTION:During a light load operation of said engine, a negative pressure is introduced to the first diaphragm device 26 then an intake cutoff valve 24 is closed, thereby the air inflow to resting cylinders 10d-10f is cut off and also rest side injectors 29d-29f are made off. In addition, a discharge cutoff valve 40 is fully opened by means of the second diaphragm device 42, thus feeding back the discharge air to the resting cylinders 10d-10f. In this case, a butterfly type cutoff valve 50 is provided upstream an oxygen density sensor 34 of a rest side manifold 30b, and said valve 50 is formed with a gap (leak section) 50b provided on a part of a valve disk 50a and is constituted so as to be closed by the third diaphragm device 52 during a partial cylinder operation.

Description

【発明の詳細な説明】 本発明は、分割運転制御式内燃機関に係り、特に、排気
ガス浄化対策が施された自動車用エンジンに用いるのに
好適な、部分気筒運転時に休止気筒群への吸入空気及び
燃料の供給を遮断する手段と、同1.T、 <部分気筒
運転時に休止気筒群の排気を休止気筒群の吸気系に還流
する手段と、稼動気筒群の排気が流れる稼動側排気通路
と休止気筒群の排気が流れる休止側排気通路の両者に露
出する単一の酸素濃度センサと、空燃比制御手段とを有
し、機関軽負荷時に稼動気筒群への吸入空気及び燃料の
供給を遮断し、且つ、休止気筒群に排気を還流せしめて
■1分気筒運転を行うと共に、前記酸素濃度センサの出
力に基づいて空燃比をフィードバック制御するようにし
た分割運転制御式内燃機関の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a divided operation control type internal combustion engine, and is particularly suitable for use in an automobile engine equipped with exhaust gas purification measures. means for cutting off the supply of air and fuel; T, <Means for recirculating the exhaust gas of the inactive cylinder group to the intake system of the inactive cylinder group during partial cylinder operation, and both the operating side exhaust passage through which the exhaust gas from the operating cylinder group flows and the inactive side exhaust passage through which the exhaust gas from the inactive cylinder group flows. It has a single oxygen concentration sensor exposed to air and an air-fuel ratio control means, which cuts off the supply of intake air and fuel to the operating cylinder group when the engine is lightly loaded, and allows exhaust gas to recirculate to the idle cylinder group. (1) The present invention relates to an improvement in a divided operation control type internal combustion engine that performs one-minute cylinder operation and performs feedback control of the air-fuel ratio based on the output of the oxygen concentration sensor.

吸気絞り弁により機関の負荷を制御するようにした内燃
機関では、絞り弁開度が小さくなるにつれて燃料消費率
が悪化する。従って、燃料消費率を向上するために、機
関軽負荷運転時には、一部の気筒を休止させると共に残
りの気筒に高負荷運転を行わせるようにした分割運転制
御式内燃機関が、例えば、特開昭55−69736号に
開示されているように公知である。
In an internal combustion engine in which the engine load is controlled by an intake throttle valve, the fuel consumption rate worsens as the throttle valve opening becomes smaller. Therefore, in order to improve the fuel consumption rate, a split operation control type internal combustion engine is developed, for example, in which some cylinders are deactivated during light engine load operation and the remaining cylinders are operated at high load. It is known as disclosed in Japanese Patent No. 55-69736.

この分割運転制御式内燃機関は、例えば第1図に示すよ
うに、吸入空気の流量を検出するためのエアフローメー
タ12と、ダクト14と、図示されないアクセルペダル
と連動して回転される、吸気管16内を流れる吸入空気
の流量を制御するための吸気絞り弁18と、エンジン1
0の常時運転される稼動気筒群10a、10b、10c
に対応1、て設けられた稼動側サージタンク20aと、
部分気筒運転時に休止される休止気筒群10d、10 
e、  10 fに対応して設けられた休止側サージタ
ンク20bと、該休止側サージタンク20bと前記稼動
側サージタンク20aを連通する吸気通路22に配設さ
れた吸気遮断弁24と、部分気筒運転時に前記吸気遮断
弁24を閉止するための第1のダイヤフラム装置26と
、前記稼動側サージタンク20aと稼動気筒10 a、
  10 b、  10afそれぞれ連通する吸気管2
8a、28b。
As shown in FIG. 1, for example, this split operation control type internal combustion engine includes an air flow meter 12 for detecting the flow rate of intake air, a duct 14, and an intake pipe that is rotated in conjunction with an accelerator pedal (not shown). an intake throttle valve 18 for controlling the flow rate of intake air flowing through the engine 1;
0 operating cylinder groups 10a, 10b, 10c that are constantly operated
1, an operating side surge tank 20a provided in response to 1;
Deactivated cylinder groups 10d and 10 that are deactivated during partial cylinder operation
e and 10 f, an inactive surge tank 20b provided corresponding to the inactive surge tank 20b, an intake cutoff valve 24 disposed in an intake passage 22 that communicates the inactive surge tank 20b with the operating surge tank 20a, and a partial cylinder a first diaphragm device 26 for closing the intake cutoff valve 24 during operation, the operating side surge tank 20a and the operating cylinder 10a,
10 b, 10 af, intake pipes 2 communicating with each other
8a, 28b.

28cと、該吸気管28&、28b、28eにそれぞれ
配設された稼動側インジェクタ29a529b・ 29
cと、前記休止側サージタンク20bと前記休止気筒1
0d、10e、10fをそれぞれ連通する吸気管28d
、28e、28fと、該吸気管28d、28e、28f
にそれぞれ配設された休止側インジェクタ29d、29
e、29fと、稼動気筒10 a、  10 b、 1
0 cに接続された稼動側排気マニホルド30aと、休
止気筒10 d、 10 e、  10 fに接続され
た休止側排気マニホルド30bと、前記稼動側排気マニ
ホルド30aと休止側排気マニホルド30bの下流側を
連通する連通孔32に配設された、排気ガス中の残存酸
素濃度から空燃比を検知するための酸素濃度センサ34
と、前記稼動側排気マニホルド30aに接続された稼動
側排気管36aと、前記休止側排気マニホルド30bに
接続された休止側排気管36bと、前記休止側排気マニ
ホルド30bの上流側と前記休止側サージタンク20b
を連通する排気還流管38と、該排気還流管38の途中
に配設された、排気還流管38を閉止可能な排気遮断弁
40と、部分気筒運転時に前記排気遮断弁40を開放す
るための第2のダイヤフラム装置(5) 42とを備えている。
28c, and operating side injectors 29a, 529b, and 29 disposed in the intake pipes 28&, 28b, and 28e, respectively.
c, the inactive side surge tank 20b and the inactive cylinder 1
Intake pipe 28d that connects 0d, 10e, and 10f, respectively.
, 28e, 28f, and the intake pipes 28d, 28e, 28f.
Inactive side injectors 29d and 29 respectively disposed in
e, 29f, and operating cylinders 10a, 10b, 1
The working side exhaust manifold 30a is connected to the working side exhaust manifold 30a connected to the working side exhaust manifold 30a, the stopping side exhaust manifold 30b is connected to the stopping cylinders 10d, 10e, and 10f, and the downstream side of the working side exhaust manifold 30a and the stopping side exhaust manifold 30b is An oxygen concentration sensor 34 disposed in the communicating hole 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas.
, a working side exhaust pipe 36a connected to the working side exhaust manifold 30a, a resting side exhaust pipe 36b connected to the resting side exhaust manifold 30b, and an upstream side of the resting side exhaust manifold 30b and the resting side surge. tank 20b
an exhaust gas recirculation pipe 38 that communicates with A second diaphragm device (5) 42 is provided.

従って、このような分割運転制御式内燃機関においては
、機関が軽負荷に移行すると、第1のダイヤフラム装置
26に負圧が導入されて吸気連断弁24が閉じられ、休
止気筒10 d、  10 e。
Therefore, in such a split operation control type internal combustion engine, when the engine shifts to a light load, negative pressure is introduced into the first diaphragm device 26, the intake connecting valve 24 is closed, and the idle cylinders 10d, 10 are closed. e.

10fに対する吸入空気の流入が遮断されると同時に、
休止側メインインジェクタ29d、29e。
At the same time as the inflow of intake air to 10f is blocked,
Inactive main injectors 29d and 29e.

29fがオフとされて休止気筒10 d、  10 a
29f is turned off and the cylinders 10d and 10a are inactive.
.

10fに対する燃料供給が遮断され、更に、第2のダイ
ヤフラム装置42に負圧が導入されて排気遮断弁40が
全開とされ、排気還流管38を介して休止気筒10d、
10e、10fに排気が還流されて機関は部分気筒運転
状態となるようにされている。
The fuel supply to cylinder 10f is cut off, and further, negative pressure is introduced into the second diaphragm device 42 to fully open the exhaust cutoff valve 40, and the cylinders 10d and 10f are inactive via the exhaust gas recirculation pipe 38.
Exhaust gas is recirculated to 10e and 10f, so that the engine is in a partial cylinder operation state.

一方、排気ガス浄化対策の必要性から、前記のような分
割運転制御式内燃機関においても、酸素濃度センサ34
の出力に基づいて、インジェクタ、−’ 29 a−f
の開弁時間を制御することによって、空燃比を制御する
ようにされている。この空燃比制御に際して、全気筒運
転状態であれば、稼動側(6) 排気マニホルド30aと休止側排気マニホルド30bの
両者に高温の排気ガスが流れており、従って、酸素濃度
センサ34も十分な高温に保たれて活性化されている。
On the other hand, due to the need for exhaust gas purification measures, the oxygen concentration sensor 34 is also used in the split operation control type internal combustion engine as described above.
Based on the output of the injector, -' 29 a-f
The air-fuel ratio is controlled by controlling the valve opening time. During this air-fuel ratio control, if all cylinders are in operation, high-temperature exhaust gas is flowing through both the operating side (6) exhaust manifold 30a and the idle-side exhaust manifold 30b, and therefore the oxygen concentration sensor 34 also has a sufficiently high temperature. is maintained and activated.

一方、部分気筒運転時には、同じ(酸素濃度センサ34
により検出された稼動側排気マニホルド30afi7流
れる排気ガス中の残存酸素濃度に応じて、稼動側インジ
ェクタ29a〜Cのみに開弁時間信号を出力して、稼動
気筒10 a = cの燃料供給量をフィードバック制
御するようにされているが、休止気筒10d−fは運転
が休止されており、休止側排気マニホルド30bには高
温排気ガスが流れないので、酸素濃度センサ34の休止
側排気マニホルド30bに露出した部分は熱が放散して
冷却される。特に、機関の負荷が、部分気筒運転でも軽
(、しかも、エンジン回転数が低い時は、休止側排気マ
ニホルド30bを流れる排気ガスの流量が少な(なり、
酸素濃度センサ34を十分高い濃度に保つことができず
、酸素濃度センサ34によるフィートノ(ツク制御が不
可能となっていた。
On the other hand, during partial cylinder operation, the same (oxygen concentration sensor 34
According to the residual oxygen concentration in the exhaust gas flowing through the working side exhaust manifold 30afi7 detected by the operating side exhaust manifold 30afi7, a valve opening time signal is output only to the working side injectors 29a to 29C, and the fuel supply amount to the working cylinders 10a = c is fed back. However, since the operation of the idle cylinders 10d-f is suspended and high-temperature exhaust gas does not flow into the idle-side exhaust manifold 30b, the oxygen concentration sensor 34 is exposed to the idle-side exhaust manifold 30b. The parts are cooled by dissipating heat. In particular, when the load on the engine is light (even in partial cylinder operation) and the engine speed is low, the flow rate of exhaust gas flowing through the idle side exhaust manifold 30b is small (
The oxygen concentration sensor 34 could not be maintained at a sufficiently high concentration, and the oxygen concentration sensor 34 could not control the oxygen concentration.

このような問題点を解消するべ(、実開昭55−139
238号に開示されているように、休止側排気マニホル
ド30bの酸素濃度センサ34の上流側に、ガス流を連
断する遮断弁を設け、部分気筒運転時に前記遮断弁を閉
じることによって、酸素濃度センサ34の温度低下を防
止することが提案されている。しかしながら、車両の定
常走行が連続して部分気筒運転状態が長時間持続される
と、ピストンやピストンリングとシリンダのnl潤滑す
るオイル、又は、バルブステムとステムガイドを潤滑す
るオイルが、燃焼室内や吸排気ボートに霧状にしみ出し
て、未燃焼のまま排気ボートから休止側排気マニホルド
30bに排出されることになる。排出されたオイルは、
ミスト又は小さな液滴であるため、大部分は、排出ガス
の流れに混じって休止気筒10d−fの吸気系に還流さ
れるが、一部は、休止側排気マニホルド30bの内壁に
付着(2、大きな液滴となって休止側排気管36aの方
向に流れる。従って、部分気筒運転時に、長時間、休止
側排気マニホルド30bの酸素濃度センサ34の上流側
を完全に閉じてしまうと、休止側排気マニホルド30b
を流れてきたオイルがせき止められてしまい、部分気筒
運転から全気筒運転に切替えられた時に、多量の未燃オ
イルが一気に流れ出して、酸素濃度センサ34にオイル
が付着し、酸素濃度検出素子部を被毒して、酸素濃度セ
ンサ34を故障させる恐れがある。
These problems should be solved (, U.S. Pat.
As disclosed in No. 238, a cutoff valve that connects the gas flow is provided upstream of the oxygen concentration sensor 34 of the idle side exhaust manifold 30b, and by closing the cutoff valve during partial cylinder operation, the oxygen concentration can be adjusted. It has been proposed to prevent the temperature of the sensor 34 from decreasing. However, when a vehicle is driven continuously and partial cylinder operation continues for a long period of time, the oil that lubricates the piston, piston ring and cylinder, or the oil that lubricates the valve stem and stem guide is lost in the combustion chamber and It seeps into the intake/exhaust boat in the form of a mist, and is discharged unburned from the exhaust boat to the idle-side exhaust manifold 30b. The drained oil is
Since it is mist or small droplets, most of it is mixed with the flow of exhaust gas and returned to the intake system of the idle cylinders 10d-f, but some of it adheres to the inner wall of the exhaust manifold 30b on the idle side (2, It flows in the direction of the idle side exhaust pipe 36a in the form of large droplets. Therefore, if the upstream side of the oxygen concentration sensor 34 of the idle side exhaust manifold 30b is completely closed for a long time during partial cylinder operation, the idle side exhaust Manifold 30b
When the oil that had been flowing through was blocked, and when switching from partial cylinder operation to full cylinder operation, a large amount of unburned oil suddenly flowed out, and the oil adhered to the oxygen concentration sensor 34, causing the oxygen concentration detection element to be damaged. There is a risk that the oxygen concentration sensor 34 may be damaged due to poisoning.

本発明は、前記従来の欠点を解消するべくなされたもの
で、部分気筒運転状態における酸素濃度センサの冷却を
防止することができると共に、長時間部分気筒運転が持
続しても、酸素濃度センサを故障させる恐れのない分割
運転制御式内燃機関を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional drawbacks, and is capable of preventing the oxygen concentration sensor from being cooled during partial cylinder operation, and is capable of preventing the oxygen concentration sensor from cooling even if partial cylinder operation continues for a long time. An object of the present invention is to provide a split operation control type internal combustion engine that is free from failure.

本発明は、部分気筒運転時に休止気筒群への吸入空気及
び燃料の供給全遮断する手段と、同じく部分気筒運転時
に休止気筒群の排気を休止気筒群の吸気系に還流する手
段と、稼動気筒群の排気が流れる稼動側排気通路と休止
気筒群の排気が流れる休止側排気通路の両者に露出する
単一の酸素濃度センサと、空燃比制御手段とを有し、機
関軽負荷時に稼動気筒群への吸入空気及び燃料の供給を
遮断し、且つ、休止気筒群に排気を還流せしめて部分気
筒運転を行うと共に、前記酸素濃度センサの出力に基づ
いて空燃比をフィードバック制御するようにした分割運
転制御式内燃機関において、前記休止側排気通路の酸素
濃度センサ近傍に、ガス流を連断するための、漏洩部が
形成された遮断弁を設け、該遮断弁を、部分気筒運転時
に閉じるようにして、前記目的を達成したものである。
The present invention provides a means for completely cutting off the supply of intake air and fuel to a group of inactive cylinders during partial cylinder operation, a means for recirculating exhaust gas from the group of inactive cylinders to the intake system of the group of inactive cylinders during partial cylinder operation, and It has a single oxygen concentration sensor exposed to both the active side exhaust passage through which the exhaust gas of the cylinder group flows and the idle side exhaust passage through which the exhaust gas of the inactive cylinder group flows, and an air-fuel ratio control means. A split operation in which partial cylinder operation is performed by cutting off the supply of intake air and fuel to the cylinder group and recirculating exhaust gas to a group of idle cylinders, and performing feedback control of the air-fuel ratio based on the output of the oxygen concentration sensor. In the controlled internal combustion engine, a shutoff valve having a leakage portion for connecting the gas flow is provided near the oxygen concentration sensor in the exhaust passage on the idle side, and the shutoff valve is closed during partial cylinder operation. Thus, the above objective has been achieved.

又、前記遮断弁を、前記酸素濃度センサのヒ流イ則に設
けるようにしたものである。
Further, the cutoff valve is provided in a closed loop of the oxygen concentration sensor.

或いは、前記遮断弁を、前記酸素濃度センサの上流側及
び下流側に設け、互いに同期して開閉するようにしたも
のである。
Alternatively, the cutoff valves are provided upstream and downstream of the oxygen concentration sensor and opened and closed in synchronization with each other.

又、前Me漏洩部を、前記遮断弁の非酸素濃度センサ側
に形成するようにしたものである。
Further, the front Me leakage portion is formed on the non-oxygen concentration sensor side of the shutoff valve.

更に、前記漏洩部を、前記遮断弁の弁体に形成された切
欠きとしたものである。
Furthermore, the leakage portion is a notch formed in the valve body of the shutoff valve.

又、前記漏洩部を、前記遮断弁の弁体に穿設された小孔
としたものである。
Further, the leakage portion is a small hole bored in the valve body of the shutoff valve.

以下、図面を参耶して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の第1実施例は、第2図及び第3図に示す如(、
前記従来例と同様の、稼動気筒10a5b、8%休止気
筒10d、e、f、エアフロメータ12、ダクト14、
吸気管16、吸気絞り弁18、稼動側サージタンク20
a、休止側サージタンク20b5吸気通路22、吸気遮
断弁24、第1のダイヤフラム装置26、吸気管28 
a = f、稼動側インジェクタ(図示省略)、休止側
インジェクタ(図示省略)、稼動側排気マニホルド30
a、休止側排気マニホルド30b、連通孔32、酸素濃
度センサ34、稼動側排気管36a、体IE側排気管3
6b、排気還流管38、排気遮断弁40、第2のダイヤ
フラム装置42を有してなる分割運転制御式の自動車用
エンジン10において、前記体1ト、側排気マニホルド
30bの酸素濃度センサ34の上流側に、ガスI&’k
 遮断するための、弁体50aの上部に略長方形状の切
欠き50bが形成されたバタフライ式の遮断弁50を設
けると共に、該遮断弁50を、第3のダイヤフラム装置
52により、部分気筒運転時に閉じるようにしたもので
ある。他の点については前記従来例と同様であるので説
明は省略する。
The first embodiment of the present invention is as shown in FIGS. 2 and 3.
Similar to the conventional example, operating cylinders 10a5b, 8% dormant cylinders 10d, e, f, air flow meter 12, duct 14,
Intake pipe 16, intake throttle valve 18, operating side surge tank 20
a, idle side surge tank 20b5 intake passage 22, intake cutoff valve 24, first diaphragm device 26, intake pipe 28
a = f, working side injector (not shown), resting side injector (not shown), working side exhaust manifold 30
a, idle side exhaust manifold 30b, communication hole 32, oxygen concentration sensor 34, operating side exhaust pipe 36a, body IE side exhaust pipe 3
6b, in the split operation control type automobile engine 10 comprising an exhaust recirculation pipe 38, an exhaust cutoff valve 40, and a second diaphragm device 42, the body 1 is located upstream of the oxygen concentration sensor 34 of the side exhaust manifold 30b. On the side, gas I&'k
A butterfly-type shutoff valve 50 is provided in which a substantially rectangular notch 50b is formed in the upper part of a valve body 50a for shutoff, and the shutoff valve 50 is operated by a third diaphragm device 52 during partial cylinder operation. It was designed to be closed. The other points are the same as those of the conventional example, so the explanation will be omitted.

前記遮断弁50は、前記休止側排気マニホルド30bの
前記酸素濃度センサ34の上流側位置にその弁軸50c
が、酸素濃度センサ、34の軸線と平行となり、且つ、
その切欠き50bが、遮断弁50を閉じた時に前記弁軸
50cより下流側に位置し、且つ、切欠き50bが、酸
素!#度センサ34に対向する休止側排気マニホルド3
0bの、ヒ側壁面に位置するように配設をれている。
The shutoff valve 50 has a valve shaft 50c located upstream of the oxygen concentration sensor 34 of the idle exhaust manifold 30b.
is parallel to the axis of the oxygen concentration sensor 34, and
The notch 50b is located downstream of the valve shaft 50c when the cutoff valve 50 is closed, and the notch 50b is located downstream of the valve shaft 50c when the cutoff valve 50 is closed. # The idle side exhaust manifold 3 facing the degree sensor 34
It is arranged so as to be located on the side wall surface of 0b.

本実施例においては、部分気筒運転時に、第3のダイヤ
フラム装置520作用により遮断弁50が閉じられるの
で、部分気筒運転状態の、特に、低回転、低負荷時にお
ける休止気筒10d、e。
In this embodiment, during partial cylinder operation, the cutoff valve 50 is closed by the action of the third diaphragm device 520, so that the idle cylinders 10d and 10e are in partial cylinder operation, particularly at low rotation speeds and low loads.

f側の低温排気が酸素濃度センサ34に当ることがな(
、酸素濃度センサ34の温度が活性温度以下となること
が防止され、酸素濃度センサ34の出力に基づ(空撚比
のフィードバック制御管確実に行うことができる。又、
遮断弁50の弁体50aに切欠ti50bが形成されて
いるので、長時間部分気筒運転が持続した際に、休止気
筒10d、e、、fから排気系に流れ出たオイルが、遮
断弁50の上方にたまることな(、切欠き50bかも、
高烏の排気ガスが充満している稼動側排気マニホルド3
0aK流出して、酸化・燃焼されるので、オイルにより
酸素濃度センサ34が被責して故障することがない。更
に、遮断弁50を全閉して長時間部分気筒運転をした場
合、排気還流管38を介して休止気筒10d、e、f内
を還流【2ている排気ガスが、吸気遮断弁24や排気遮
断弁40の軸受部分等から稼動気筒側或いは大気に漏れ
、休止気筒の内圧が下ってきて、オイル上り、オイル下
り等を起こす恐れがあるが、本発明によれば、遮断弁5
0の切欠き50bから排気ガスが休止側排気マニホルド
30bK流入するので、長時間部分気筒運転しても休止
気筒の内圧が変化しない。
The low-temperature exhaust gas on the f side does not hit the oxygen concentration sensor 34 (
, the temperature of the oxygen concentration sensor 34 is prevented from falling below the activation temperature, and the air twist ratio feedback control tube can be reliably controlled based on the output of the oxygen concentration sensor 34.
Since the cutout ti50b is formed in the valve body 50a of the cutoff valve 50, when partial cylinder operation continues for a long time, oil flowing into the exhaust system from the idle cylinders 10d, e, . It's not worth it (maybe the notch 50b,
Operating side exhaust manifold 3 filled with Takakarasu exhaust gas
Since 0aK flows out and is oxidized and burned, the oxygen concentration sensor 34 will not be damaged by the oil and will not malfunction. Furthermore, when partial cylinder operation is performed for a long time with the shutoff valve 50 fully closed, the exhaust gas recirculating in the idle cylinders 10d, e, and f via the exhaust recirculation pipe 38 may be There is a risk that the oil will leak from the bearing part of the cutoff valve 40 to the working cylinder side or to the atmosphere, and the internal pressure of the idle cylinder will drop, causing oil to rise or fall, but according to the present invention, the cutoff valve 5
Since the exhaust gas flows into the idle-side exhaust manifold 30bK through the notch 50b, the internal pressure of the idle cylinder does not change even if partial cylinder operation is performed for a long time.

本実施例においては、切欠き50bを、遮断弁50の弁
体50aの上部、即ち、酸素濃度センサ340反対側に
形成するようにしているので、体1E側排気マニホルド
30bを流れてきたオイルが、直接酸素濃度センサ34
#Fふれることがなく、酸素濃度センサ34が確実にオ
イルから保護される。
In this embodiment, the notch 50b is formed above the valve body 50a of the cutoff valve 50, that is, on the opposite side of the oxygen concentration sensor 340, so that the oil flowing through the exhaust manifold 30b on the body 1E side is , direct oxygen concentration sensor 34
#F does not touch, and the oxygen concentration sensor 34 is reliably protected from oil.

冑、前記実姉例においては、遮断弁50の弁体50aに
形成される漏洩部が、略長方形状の切欠き50bとされ
ていたが、漏洩部の構成はこれに限定されず、例えば、
第4図に示す如く、遮断弁50の弁体50aの上部に、
三日月状の切欠き50dを設けるようにしたり、或いは
、第5図に示す如(、遮断弁50の弁体50aの上部に
、2個の小孔50eを穿設するようにしたりすることも
可能である。
In the above example, the leak part formed in the valve body 50a of the shutoff valve 50 was a substantially rectangular notch 50b, but the configuration of the leak part is not limited to this, and for example,
As shown in FIG. 4, on the upper part of the valve body 50a of the shutoff valve 50,
It is also possible to provide a crescent-shaped notch 50d, or to make two small holes 50e in the upper part of the valve body 50a of the shutoff valve 50, as shown in FIG. It is.

次に、第6図を参照して、本発明の第2実施例を詳細に
説明する。
Next, a second embodiment of the present invention will be described in detail with reference to FIG.

本実施例は、従来例と同様の分割運転制御式の自動車用
エンジン10において、休止側排気マニホルド30bの
酸素濃度センサ34の一上流側に、ガス流を遮断するた
めの、前記第1実施例と同様の、弁体50aの上部に切
欠き50bが形成されたバタフライ式の遮断弁50を設
けると共に、前記休止側排気マニホルド30bの酸素濃
度センサ34の下流側に、同じくガス流を遮断するため
の、漏洩部が形成されていないバタフライ式の遮断弁5
4を設け、前記遮断弁50.54を、第4のダイヤフラ
ム装置56により、部分気筒運転時に互いに同期して閉
じるようにしたものである。他の点については、前記従
来例式いは第1実施例と同様であるので説明は省略する
This embodiment is for cutting off the gas flow on the upstream side of the oxygen concentration sensor 34 of the idle side exhaust manifold 30b in the split operation control type automobile engine 10 similar to the conventional example. A butterfly-type cutoff valve 50 similar to that in which a notch 50b is formed in the upper part of the valve body 50a is provided, and also on the downstream side of the oxygen concentration sensor 34 of the idle side exhaust manifold 30b, in order to similarly cut off the gas flow. Butterfly type shutoff valve 5 with no leakage part formed
4, and the shutoff valves 50, 54 are closed synchronously with each other during partial cylinder operation by a fourth diaphragm device 56. The other points are the same as those of the conventional example or the first embodiment, so the explanation will be omitted.

本実施例Vこおいては、部分気筒運転時に、稼動気筒側
の排気ガスが休止側排気管36bK流入しないので、排
気ガスの温度低下が少な(、稼動側jノド気管36aの
下流側に配設されている触媒コンバータ(図示省略)の
温度を、触媒の活性化温度以上に維持することが容易で
ある。他の作用効果については、前記第1実施例と同様
であるので説明(工省略する。
In the present embodiment V, during partial cylinder operation, the exhaust gas from the active cylinder side does not flow into the idle side exhaust pipe 36bK, so that the temperature drop of the exhaust gas is small. It is easy to maintain the temperature of the installed catalytic converter (not shown) above the activation temperature of the catalyst.Other functions and effects are the same as those of the first embodiment, so explanations will be omitted. do.

尚前記実施例においては、いずれも、部分気筒運転時V
こ、即、遮断弁50、或いは、遮断弁50及び54を閉
じるようにしていたが、部分気筒運転状態においても、
高回転時、或いは、高負荷時には、稼動側排気系を流れ
る排気ガスの流量が比較的多いので、この様な場合には
遮断弁を閉じることな(、稼動側排気マニホルド30a
f:流れる排気ガスのitが少なくなり、酸素濃度セン
サ34を十分高い温度に保つことが困難となる、部分気
筒運転状態におけ′る低回転数、軽負荷時にのみ、遮断
弁?閉じるように1−1ても良い。
In each of the above embodiments, V during partial cylinder operation
In this case, the shutoff valve 50 or the shutoff valves 50 and 54 were closed immediately, but even in the partial cylinder operation state,
During high rotation or high load, the flow rate of exhaust gas flowing through the working side exhaust system is relatively large, so in such cases, do not close the shutoff valve (or close the working side exhaust manifold 30a).
f: The shutoff valve is activated only at low rotational speeds and light loads in partial cylinder operating conditions, when the amount of flowing exhaust gas decreases and it becomes difficult to maintain the oxygen concentration sensor 34 at a sufficiently high temperature. You can also close it 1-1.

前記実施例は、いずれも、本発明を自動車用エンジンに
適用していたが、本発明の適用範囲はこれに限定されず
、一般の内燃機関にも同様に適用できることは明らかで
ある。
In all of the above embodiments, the present invention was applied to an automobile engine, but the scope of application of the present invention is not limited thereto, and it is clear that the present invention can be similarly applied to a general internal combustion engine.

以上説明した通り、本発明によれば、部分気筒運転時に
おける酸素濃度センサの温度低下を防止することができ
、部分気筒運転時にも精度の高い空燃比フィードバック
制御が可能となる。又、休止気筒の排気系に流れ出たオ
イルが酸化・燃焼されるので、長時間部分気筒運転が持
続しても、酸素濃度センサが故障する恐れがない。更に
、部分気筒運転時に休止気筒を循環している還流排気が
、遮断弁の漏洩部から補なわれるので、休止気筒の内圧
が、長時間部分気筒運転を持続しても変化せず、オイル
上り、オイル下り等を引き起こすことがない等の優れた
効果を有する。
As described above, according to the present invention, it is possible to prevent the temperature of the oxygen concentration sensor from decreasing during partial cylinder operation, and it is possible to perform highly accurate air-fuel ratio feedback control even during partial cylinder operation. Furthermore, since the oil flowing into the exhaust system of the idle cylinder is oxidized and burned, there is no risk of the oxygen concentration sensor breaking down even if partial cylinder operation continues for a long time. Furthermore, the recirculated exhaust gas that circulates through the idle cylinders during partial cylinder operation is supplemented from the leakage part of the shutoff valve, so the internal pressure of the idle cylinders does not change even if partial cylinder operation continues for a long time, and oil rises. It has excellent effects such as not causing oil dripping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の分割運転制御式内燃機関の一例の構成
を示す断面図、第2図は、本発明に係る分割運転制御式
内燃機関の第1実施例の構成を示す断面図、第3図は、
前記第1実施例で用いられている遮断弁に形成された漏
洩部の形状を示す正面図、第4図は、同じ(、遮断弁1
(形成された漏洩部の変形例の形状を示す正面図、第5
図は、同じく、遮断弁に形成された漏洩部の他の変形例
の形状を示す正面図、第6図は、本発明に係る分割運転
制御式内燃機関の第2実施例の構成を示す断面図である
。 10・・・エンジン、10a、、b% C・・・稼動気
筒、10d、11.f・・・休止気筒、12・・・エア
フローメータ、18・・・吸気絞り弁、20a・・・稼
動側サージタンク、20b・・・休止側サージタンク、
24川吸(17) 気遮断弁、26.42.52,56・・・ダイヤフラム
装着、28a〜f・・・吸気管、291% b、  c
・・・稼動側インジェクタ、29abe% f・・・休
止側インジェクタ% 30 a・・・稼動側排気マニホ
ルド、30b・・・休止側排気マニホルド、32・・・
連通孔、34・・・酸素濃度センサ、36a・・・稼動
側排気管、36b・・・休止側排気管、38・・・排気
還流管、40・・・排気遮断弁、50,54・・・遮断
弁、508554 m−=弁体、50b、50d・・・
切欠き、50e・・・小孔。 代理人  高 矢   論 (ほか1名) 「18) 第 6  図 66a
FIG. 1 is a sectional view showing the structure of an example of a conventional split operation control type internal combustion engine, and FIG. 2 is a sectional view showing the structure of a first embodiment of the split operation control type internal combustion engine according to the present invention. Figure 3 is
The front view and FIG.
(Front view showing the shape of a modified example of the formed leakage part, 5th
6 is a front view showing the shape of another modified example of the leakage portion formed in the shutoff valve, and FIG. 6 is a cross-sectional view showing the configuration of the second embodiment of the split operation control type internal combustion engine according to the present invention. It is a diagram. 10...Engine, 10a,,b% C...Operating cylinder, 10d, 11. f: Dormant cylinder, 12: Air flow meter, 18: Intake throttle valve, 20a: Operating side surge tank, 20b: Dormant side surge tank,
24 River intake (17) Air cutoff valve, 26.42.52, 56...Diaphragm installed, 28a-f...Intake pipe, 291% b, c
... Working side injector, 29abe% f... Stopping side injector % 30 a... Working side exhaust manifold, 30b... Stopping side exhaust manifold, 32...
Communication hole, 34... Oxygen concentration sensor, 36a... Operating side exhaust pipe, 36b... Dormant side exhaust pipe, 38... Exhaust recirculation pipe, 40... Exhaust cutoff valve, 50, 54...・Shutoff valve, 508554 m-=valve body, 50b, 50d...
Notch, 50e...small hole. Agent Takaya Ron (and 1 other person) “18) No. 6 Figure 66a

Claims (6)

【特許請求の範囲】[Claims] (1)  部分気筒運転時に休止気筒群への吸入空気及
び燃料の供給ヲ辿断する手段と、同じ(部分気筒運転時
に休止気筒群の排気を休止気筒群の吸気系に還流する手
段と、稼動気筒群の排気が流れる稼動側排気通路と休止
気筒群の排気が流れる休止側排気通路の両者に露出する
単一の酸素濃度センサと、空燃比制御手段とを有し、機
関軽負荷時に稼動気筒群への吸入空気及び燃料の供給を
遮断し、且つ、休止気筒群に排気を還流せしめて部分気
筒運転を行うと共に、前記酸素濃度センサの出力に基づ
いて空燃比をフィードバック制御するようにした分割運
転制御式内燃機関において、前記休止側排気通路の酸素
濃度センサ近傍に、ガス流を遮断するための、漏洩部が
形成された遮断弁を設け、該遮断弁を、部分気筒運転時
に閉じるようにしたことを特徴とする分割運転制御式内
燃機関。
(1) The same means as the means for cutting off the supply of intake air and fuel to the inactive cylinder group during partial cylinder operation (the means for recirculating the exhaust gas from the inactive cylinder group to the intake system of the inactive cylinder group during partial cylinder operation, It has a single oxygen concentration sensor exposed to both the active side exhaust passage through which the exhaust gas of the cylinder group flows and the idle side exhaust passage through which the exhaust gas of the inactive cylinder group flows, and an air-fuel ratio control means. Partial cylinder operation is performed by cutting off the supply of intake air and fuel to the cylinder group and recirculating exhaust gas to the idle cylinder group, and feedback control is performed on the air-fuel ratio based on the output of the oxygen concentration sensor. In the operation-controlled internal combustion engine, a shutoff valve having a leakage portion for shutting off the gas flow is provided near the oxygen concentration sensor in the exhaust passage on the idle side, and the shutoff valve is closed during partial cylinder operation. An internal combustion engine with split operation control.
(2)前記遮断弁が、前記酸素濃度センサの上流側に設
けられている特許請求の範囲第1項に記載の分割運転制
御式内燃機関。
(2) The split operation control type internal combustion engine according to claim 1, wherein the cutoff valve is provided upstream of the oxygen concentration sensor.
(3)前記遮断弁が、前記酸素濃度センサの上流側及び
下流側に設けられ、互いに同期して開閉するようにされ
ている特許請求の範囲第1項に記載の分割運転制御式内
燃機関。
(3) The split operation control type internal combustion engine according to claim 1, wherein the cutoff valves are provided upstream and downstream of the oxygen concentration sensor and are opened and closed in synchronization with each other.
(4)前記漏洩部が、前記遮断弁の非酸素濃度センサ側
に形成されている特許請求の範囲第1項に記載の分割運
転制御式内燃機関。
(4) The split operation control type internal combustion engine according to claim 1, wherein the leakage portion is formed on the non-oxygen concentration sensor side of the shutoff valve.
(5)前記漏洩部が、前記遮断弁の弁体に形成された切
欠きである特許請求の範囲第1項又は第4項に記載の分
割運転制御式内燃機関。
(5) The split operation control type internal combustion engine according to claim 1 or 4, wherein the leakage portion is a notch formed in the valve body of the shutoff valve.
(6)前記漏洩部が、前記遮断弁の弁体に穿設された小
孔である特許請求の範囲第1項又は第4項に記載の分割
運転制御式内燃機関。
(6) The split operation control type internal combustion engine according to claim 1 or 4, wherein the leakage portion is a small hole formed in the valve body of the shutoff valve.
JP20637081A 1981-12-21 1981-12-21 Split operation control type internal-combustion engine Pending JPS58107833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20637081A JPS58107833A (en) 1981-12-21 1981-12-21 Split operation control type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20637081A JPS58107833A (en) 1981-12-21 1981-12-21 Split operation control type internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58107833A true JPS58107833A (en) 1983-06-27

Family

ID=16522197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20637081A Pending JPS58107833A (en) 1981-12-21 1981-12-21 Split operation control type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58107833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831217A3 (en) * 1996-09-20 1998-06-24 Yamaha Hatsudoki Kabushiki Kaisha Multi-cylinder internal combustion engine
EP2801714A1 (en) * 2013-05-08 2014-11-12 Ford Global Technologies, LLC ICE with a cylinder which can be switched off and method to operate such an ICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831217A3 (en) * 1996-09-20 1998-06-24 Yamaha Hatsudoki Kabushiki Kaisha Multi-cylinder internal combustion engine
EP2801714A1 (en) * 2013-05-08 2014-11-12 Ford Global Technologies, LLC ICE with a cylinder which can be switched off and method to operate such an ICE

Similar Documents

Publication Publication Date Title
US4391240A (en) Internal combustion engine
JPS6030450Y2 (en) Exhaust pipe of engine with cylinder number control
GB2050502A (en) Fuel supply control in i c engines operable on less than all cylinders
US20090077952A1 (en) Secondary-air supply system for internal combustion engine
CA1072841A (en) Intake regulator for internal combustion engine
US4068637A (en) Multicylinder internal combustion engine
JPS58107833A (en) Split operation control type internal-combustion engine
US4284056A (en) Split-type internal combustion engine
JPS58107832A (en) Split operation control type internal-combustion engine
JPH03199627A (en) Intake air device for engine
JPH0645607Y2 (en) Supercharger for vehicle
JPS6013934A (en) Secondary-air supplying apparatus for engine with turbocharger
KR100300710B1 (en) Method for controlling exhaust gas recycling system for free accelerator smoke test mode
JPH0128244Y2 (en)
JP2023131355A (en) gas engine system
JPH07158539A (en) Fuel injection device
KR100279966B1 (en) How to diagnose engine lean burn device
JPH037553Y2 (en)
JPS6315552Y2 (en)
KR830000292B1 (en) Intake control method of internal combustion engine
JPH02173309A (en) Blow-by gas deoxidation device of engine
SU1315637A1 (en) Carburetor for internal combustion engine
JPS6210451Y2 (en)
JP2006105010A (en) Exhaust emission control device for multiple cylinder engine
JPS58192938A (en) Control device of auxiliary throttle valve for two-inlet engine