JPS58106394A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS58106394A
JPS58106394A JP20369481A JP20369481A JPS58106394A JP S58106394 A JPS58106394 A JP S58106394A JP 20369481 A JP20369481 A JP 20369481A JP 20369481 A JP20369481 A JP 20369481A JP S58106394 A JPS58106394 A JP S58106394A
Authority
JP
Japan
Prior art keywords
fins
heat exchanger
fin
pitch
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20369481A
Other languages
Japanese (ja)
Inventor
Kunio Fujie
藤江 邦男
Masakatsu Hayashi
政克 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20369481A priority Critical patent/JPS58106394A/en
Publication of JPS58106394A publication Critical patent/JPS58106394A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To contrive to reduce the size of a heat exchanger, by a method wherein small-pitch corrugated fins are fitted between meandering flat pipes so that the direction of corrugation is orthogonal to the meandering direction of the pipes, in a heat exchanger for exchanging heat between water and a refrigerant in a chiller unit such as a refrigerator or the like. CONSTITUTION:The flat pipe 8 having a rectangular cross section with height larger than width is placed in a container 4 in a meandering manner to constitute a fluid passage 7, the corrugated fins 10 with a pitch P made to be as small as possible are fitted into gaps between opposed parts of the pipe 8 constituting the passage 7 so that the direction of corrugation is orthogonal to the meadering direction of the passgae 7, and are welded to the pipe 8. Under such a constitution, a refrigerant is supplied into the container 4, exchanges heat will a fluid in the passage 7 through the fins 10, and bubbles generated by the evaporation of the refrigerant move upwards through gaps 12. Since the gaps 12 are narrow because of the small pitch P of the fins 10, the liquid refrigerant present in proximity to the fins 10 is subjected to an agitating action, and is brought into a forced convection condition.

Description

【発明の詳細な説明】 本発明は、冷凍機に適する熱交換器に係り、特にチラー
ユニット篭の水と冷媒の間の熱交換に好適な熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger suitable for a refrigerator, and particularly to a heat exchanger suitable for heat exchange between water and refrigerant in a chiller unit cage.

従来の熱交換器は、Il/41図に示されるように、パ
イプ1にフィン2を巻き付は九ローフインチ二一プやハ
イフィンチューブを用いていた。この熱交換器では、パ
イプ1に巻き付けるフィン2はフィンの高さが高−くな
ると、フィン2を巻き付けることが困難となるため、フ
ィンの高さを高くできない。また、これらのフィンチュ
ーブを熱交換器にまとめた場合、互いに3角形の頂点に
配置された311のパイプ1.1.1に巻き付けられf
I−フィン2.2.2間に空11i3が生じ、このため
、単位体積尚たシの伝熱面積は、前記中pJI3の部分
に相当する分だけ、伝熱面積が不足するため、熱交換器
が大型化する欠点がめった。
In the conventional heat exchanger, as shown in Figure Il/41, fins 2 are wrapped around a pipe 1, and a nine-loaf inch tube or a high-fin tube is used. In this heat exchanger, the height of the fins 2 wound around the pipe 1 cannot be increased because as the height of the fins increases, it becomes difficult to wrap the fins 2 around the pipes 1. In addition, when these fin tubes are combined into a heat exchanger, they are wrapped around 311 pipes 1.1.1 placed at the apexes of a triangle, and f
A void 11i3 is created between the I-fins 2.2.2, and for this reason, the heat transfer area of the unit volume is insufficient by the amount corresponding to the portion of the middle pJI3, so the heat exchange The drawback is that the vessel becomes large.

本発明の目的は、フィン表面における熱伝達率を大きく
するとともに単位体積当たりの伝熱面積を大きくするこ
とによシ、コンパクトにまとめうる熱交換器を提供する
にある。
An object of the present invention is to provide a heat exchanger that can be made compact by increasing the heat transfer coefficient on the fin surface and increasing the heat transfer area per unit volume.

本発明の特徴は、ボックス型の容器内に、偏平型のパイ
プを蛇行状に成形した流体通路を収納し、該流体通路に
おける相対向するパイプ間の空隙部に、波型に折曲する
とともに波のピッチを可及的に小さく形成したフィンを
、前記流体通路の蛇行方向に対してフィンの波の方向を
直交させて組み込んだところにアシ、この構成によシ前
記目的を確実に達成することができ九ものである。
A feature of the present invention is that a fluid passage formed by forming a meandering flat pipe is housed in a box-shaped container, and the fluid passage is bent into a wave shape in the gap between opposing pipes in the fluid passage. A reed is installed where a fin having a wave pitch as small as possible is installed with the wave direction of the fin perpendicular to the meandering direction of the fluid passage, and this configuration reliably achieves the above object. There are nine things you can do.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

Is2図、第3図は本発明の一実施例を示すもので、ボ
ックス聾容器4の底板には容器入口管5が堆シ付けられ
、上板には容器出口管6が取シ付けられている。
Figures 2 and 3 show an embodiment of the present invention, in which a container inlet pipe 5 is attached to the bottom plate of a box deaf container 4, and a container outlet pipe 6 is attached to the upper plate. There is.

また、容器4の内部には、断面における幅寸法に対して
高さ寸法が大きい長方形をなす偏平型のパイプ8を蛇行
状に成形した流体通路7が収納されており、流体通路人
口9と流体通路出口(図示省略)とは容器4の外側部に
導出されている。
Further, inside the container 4, a fluid passage 7 is housed, which is a rectangular flat pipe 8 whose height is larger than its width in cross section. A passage outlet (not shown) is led out to the outside of the container 4.

前記蛇行状に成形された流体通路7の相対向するパイプ
8.8間の空隙部には、波型に折曲されたフィン10が
流体通路7の蛇行方向に対してフィン10の波の方向を
直交させて介装され、かつパイプ8とフィン10との接
触部は溶接されている。前記フィン100波のピッチP
は、可及的に小さく形成されており、フィン10の波の
1単位としてのく字型をなすフィン片11とパイプ8の
側面とで囲まれた空隙12を通って上昇するガス化した
冷媒の気泡・13によシ液冷媒を攪拌しうるようになっ
ている。
In the gap between the opposing pipes 8 and 8 of the meandering fluid passage 7, fins 10 bent in a wave shape are arranged so that the wave direction of the fins 10 is oriented with respect to the meandering direction of the fluid passage 7. The pipes 8 and fins 10 are interposed at right angles to each other, and the contact portion between the pipe 8 and the fins 10 is welded. Pitch P of the 100 waves of fins
is formed as small as possible, and the gasified refrigerant rises through the gap 12 surrounded by the dogleg-shaped fin piece 11 as one unit of the wave of the fin 10 and the side surface of the pipe 8. The liquid refrigerant can be stirred by the air bubbles 13.

なお、この実施例では流体通路7およびフィン10と4
容器4の高さ方向に単段に設けられている。
In addition, in this embodiment, the fluid passage 7 and the fins 10 and 4
They are provided in a single stage in the height direction of the container 4.

前記実施例の熱交換器は、次のように作用する。The heat exchanger of the above embodiment operates as follows.

すなわち、流体通路入口9から蛇行状に形成され九流体
通路7内に熱交換用の流体が供給され、ま九容器入口管
5から容器4内に液冷媒が供給される。
That is, heat exchange fluid is supplied from the fluid passage inlet 9 into the meandering fluid passage 7, and liquid refrigerant is supplied into the container 4 from the container inlet pipe 5.

前記容器4内に入った液冷媒は、パイプ8.8間の空隙
部に組み込まれたフィン10に接触し、前記流体通路7
内を流れる流体と熱交換してガス冷媒となシ、容器出口
管6から取り出される。
The liquid refrigerant that has entered the container 4 comes into contact with the fins 10 installed in the gaps between the pipes 8 and 8, and flows through the fluid passages 7.
It exchanges heat with the fluid flowing inside to become a gas refrigerant, which is taken out from the container outlet pipe 6.

かかる熱交換によシ蒸発してガス化した冷媒は、183
図に示されるように気泡13となってフィン100波の
1単位としてのく字型のフィン片11とパイプ8の側面
とで囲まれ次空隙12を通って上昇する。この際、フィ
ン片11の表面でガス化した冷媒の気泡13は、フィン
片11の表面から離れた所を通って上昇しようとする。
The refrigerant evaporated and gasified by such heat exchange is 183
As shown in the figure, the bubble 13 is surrounded by the dogleg-shaped fin piece 11 as one unit of 100 fin waves and the side surface of the pipe 8, and then rises through the gap 12. At this time, the bubbles 13 of the refrigerant gasified on the surface of the fin piece 11 try to rise through a place away from the surface of the fin piece 11.

したがって、フィン10の波のピッチP1つtシく字型
をなすフィン片11の中心角を大きくとると、気泡13
はツイン片11とパイプ8の側面とで囲まれた空隙12
を素通りし、フィン片近傍の液冷媒を攪拌しない。
Therefore, if the pitch P of the wave of the fin 10 is 1t, and the center angle of the fin piece 11 forming the box shape is set large, the air bubbles 13
is a gap 12 surrounded by the twin piece 11 and the side surface of the pipe 8.
Do not stir the liquid refrigerant near the fin pieces.

これに対して、フィン100波のピッチPを可及的に小
さくすることによシ、前記気泡13が狭い空1!J12
に拘束され、第3図に矢印人で示される上昇中に、フィ
ン片近傍の液冷媒を矢印Bで示されるように攪拌する。
On the other hand, by making the pitch P of the 100 waves of fins as small as possible, the air bubbles 13 are narrower than the air 1! J12
The liquid refrigerant near the fin pieces is stirred as shown by arrow B during the upward movement shown by arrow B in FIG.

その結果、フィン片近傍の液冷媒は強制対流状態となシ
、フィン100表面における蒸発熱伝達率が向上する。
As a result, the liquid refrigerant near the fin pieces is in a forced convection state, and the evaporative heat transfer coefficient on the surface of the fin 100 is improved.

いま、フィン片11とパイプ8とで囲まれた空隙12t
−通って上昇する気泡13の平均径をDとするとき、実
験の結果ではフィン10の波のピッチPに対する気泡1
3の平均径D1すなわちP/Dの値が小さい程、気泡1
3の液冷媒を攪拌する作用が大きく、特にP/Dが2以
下の値のときは、攪拌作用が大きくなることが確認され
た。
Now, there is a gap 12t surrounded by the fin piece 11 and the pipe 8.
- When the average diameter of the bubbles 13 passing through and rising is D, the experimental results show that the bubble 1 is relative to the pitch P of the waves of the fins 10.
The smaller the average diameter D1 of 3, that is, the value of P/D, the smaller the bubble 1.
It was confirmed that the effect of stirring the liquid refrigerant in No. 3 is large, and especially when P/D is a value of 2 or less, the stirring effect becomes large.

また、フィン10の波のピッチPを小さくすることによ
って、フィン片11を密に配列することができ、したが
って単位体積当たりの伝熱面積が大きくなるので、熱交
換性能を向上できる。
Further, by reducing the pitch P of the waves of the fins 10, the fin pieces 11 can be arranged densely, and therefore the heat transfer area per unit volume becomes larger, so that the heat exchange performance can be improved.

次に、第4図および第5図は本発明の他の実施例を示す
Next, FIGS. 4 and 5 show another embodiment of the present invention.

その第4図に示される実施例のものは、高さが高い熱交
換器にお・へて、容器の高さ方向Hに3段にフィン14
,15.16が配置され、これらフィン14.15,1
41は上方に向かうにしたがい、フィンの波のピッチP
が大きく形成されている。
The embodiment shown in FIG. 4 has fins 14 arranged in three stages in the height direction H of the container.
, 15.16 are arranged, and these fins 14.15, 1
41 is the pitch P of the fin wave as it goes upward.
is largely formed.

ところで、高さが高い熱交換器では、熱交換によってガ
ス化し九冷媒の気泡13が上昇するにつれ、次第に大き
く成長する。したがって、容器4の下方から上方に至る
まで、フィンの波のピッチPを一様に小さくすると、気
泡13の上昇速度が遅くなり、最悪の場合には気泡13
によりエアロツク状態が発生したシ、気泡13による攪
拌作用が阻害されるおそれがある。
By the way, in a heat exchanger having a high height, as the bubbles 13 of the refrigerant gasified by heat exchange rise, they gradually grow larger. Therefore, if the pitch P of the fin waves is uniformly reduced from the bottom to the top of the container 4, the rising speed of the bubbles 13 will slow down, and in the worst case, the bubbles 13
As a result, an aerodynamic state may occur, and the stirring action of the air bubbles 13 may be inhibited.

これに対して、第4図に示されるようにフィン14.1
5.16の上段のもの程、波のピッチPを大きくするこ
とにより、高さが高い熱交換器で6っても、ガス化し九
冷媒の気fff113をスムーズに上昇させ、しかも蚊
気泡13による攪拌作用を盛んに行わせることができる
On the other hand, as shown in FIG.
5. By increasing the pitch P of the waves in the upper row of 16, even with a high heat exchanger, the gasification and refrigerant air fff113 rises smoothly, and the mosquito bubbles 13 The stirring action can be actively performed.

ついで、第5図に示される実施例のものは、容器の高さ
方向Hにフィン17.18.19.20゜21が配置さ
れ、かつ上方に向かうにしたがいフィンの波のピッチP
が大きく形成され、さらにフイ/の波が上、下のフィン
間で千鳥状に配列されている。
Next, in the embodiment shown in FIG. 5, fins 17, 18, 19, 20° 21 are arranged in the height direction H of the container, and the pitch P of the waves of the fins increases upward.
are formed large, and the waves of fins are arranged in a staggered manner between the upper and lower fins.

この第5図に示される実施例の鴨のは、フィン17.1
8.19.20.21の前縁効果を利用して熱伝達率を
よシ一層向上させることができる外は、前記ls4図に
示される実施例のものと同様でるる。
In the embodiment shown in FIG. 5, the fins 17.1
8.19.20.21 This is similar to the embodiment shown in FIG. ls4, except that the heat transfer coefficient can be further improved by utilizing the leading edge effect.

なお、本発明では流体通路7を構成するパイプ8は、図
示の断面長方形のものに限らず、長円形のもので4よく
、要は偏平型のもので心ればよい。
In the present invention, the pipe 8 constituting the fluid passage 7 is not limited to the rectangular cross section shown in the drawings, but may be oval in cross section, and in short, may be flat.

本発明は、以上説明した構成1作用のもので、本発明に
よれば蛇行状に成形された流体通路の相対向するパイプ
間の空隙部に、波型に折曲するとともに波のピッチを可
及的に小さく形成したフィンを組み込んでいるので、熱
交換してガス化しかつフィンの波方向に相隣接するフィ
ン片間の空隙を上昇する冷媒の気泡によシ、フィン片近
傍の液冷媒を攪拌することによってフィン表面の熱俵達
本を向上できる効果を有する外、前述のごとくフィンの
波のピッチを小さくシ次ことにょ夛、フィンによる単位
体積当たシの伝熱面積を大きくできるので、伝熱性能を
大幅に向上できる効果がめシ、ひいては著しくコンパク
トにまとめうる効果もめる。
The present invention has the above-described configuration 1, and according to the present invention, the gap between the opposing pipes of the fluid passage formed in a meandering shape is bent into a wave shape, and the pitch of the wave can be changed. Since it incorporates fins that are formed as small as possible, the liquid refrigerant near the fin pieces is absorbed by the air bubbles of the refrigerant that exchange heat and gasify and rise in the gaps between adjacent fin pieces in the wave direction of the fins. Not only does stirring have the effect of improving the heat distribution on the fin surface, but as mentioned above, the pitch of the fin waves can be made smaller and the heat transfer area per unit volume of the fins can be increased. This has the effect of greatly improving heat transfer performance, and also the ability to be made significantly more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換器のフィンチューブ部の断面図、
Is2図は本発明の一実施例を示す一部破断斜視図、第
3図は本発明熱交換器のフィンの作用説明図、第4図お
よび第5図はフィンの配置形態の異なる本発明の他の実
施例を示す断面図である。 4・・・ボックス製の容器、7・・・流体通路、8・・
・流体通路を構成する偏平状のパイプ、1o・・・フィ
ン、11・・・フィンの波の1単位としてのフィン片、
P・・・フィンの波のピッチ、12・・・フィン片とパ
イプの側面とで囲まれた空隙、13・・・気泡、D・・
・気泡の平均径、14〜21・・・フィン。 代理人 弁理士 薄田利幸 ′r3 1 図 第 2  図 液 冷 媒 ′vr1.3  図 (−1−一) 0
Figure 1 is a cross-sectional view of the fin tube part of a conventional heat exchanger.
Figure Is2 is a partially cutaway perspective view showing one embodiment of the present invention, Figure 3 is an explanatory diagram of the action of the fins of the heat exchanger of the present invention, and Figures 4 and 5 are views of the heat exchanger of the present invention in which the fins are arranged differently. FIG. 7 is a sectional view showing another embodiment. 4... Box container, 7... Fluid passage, 8...
・A flat pipe constituting a fluid passage, 1o...fin, 11...fin piece as one unit of a fin wave,
P... pitch of fin waves, 12... void surrounded by fin piece and side of pipe, 13... air bubble, D...
- Average diameter of bubbles, 14 to 21... fins. Agent Patent Attorney Toshiyuki Usuda'r3 1 Figure 2 Figure Liquid Refrigerant'vr1.3 Figure (-1-1) 0

Claims (1)

【特許請求の範囲】 1、 ボックス型の容器内に、偏平型のパイプを蛇行状
に成形し九流体通路を収納し、該流体通路における相対
向するパイプ間の空隙部に、波型に折曲するとともに波
のピッチを可及的に小さく形成したフィンを、前記流体
通路の蛇行方向に対してフィンの波の方向を直交させて
組み込んだことを特徴とする熱交換器。 2 前記フィンは、容器の高さ方向に多段に配置され、
かつ上方に向かうにしたがい、フィンの波のピッチが大
きく形成されていることを特徴とする特許請求の範囲第
1項記載の熱交換器。 1 前記フィンは、容器の高さ方向に多段に配置され、
かつ上下のツイン間においてツインの波が千鳥状に配列
されていることを特徴とする特許請求の範囲第1項tた
は第2項記載の熱交換器。 4.1ItI記フインは、波のピッチをPとし、フィン
の波の1単位としてのく字型のフィン片とパイプの側面
とで囲まれた空隙を上昇する気泡の平均径をDとすると
きに、P/D≦2に形成されていることを特徴とする特
許請求の範囲第1項、第2項ま九は第3項記載の熱交換
器。
[Claims] 1. Nine fluid passages are housed in a box-shaped container by forming flat pipes into a meandering shape, and the space between the opposing pipes in the fluid passages is folded into a wave shape. A heat exchanger characterized in that fins are curved and formed to have a wave pitch as small as possible, and the wave direction of the fins is orthogonal to the meandering direction of the fluid passage. 2. The fins are arranged in multiple stages in the height direction of the container,
2. The heat exchanger according to claim 1, wherein the pitch of the fin waves increases upwardly. 1. The fins are arranged in multiple stages in the height direction of the container,
The heat exchanger according to claim 1 or 2, wherein the twin waves are arranged in a staggered manner between the upper and lower twins. 4.1 When the wave pitch of the fin is P and the average diameter of the bubbles rising through the gap surrounded by the dogleg-shaped fin piece as one unit of the fin wave and the side surface of the pipe is D. Claims 1 and 2 are characterized in that the heat exchanger is formed so that P/D≦2.
JP20369481A 1981-12-18 1981-12-18 Heat exchanger Pending JPS58106394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20369481A JPS58106394A (en) 1981-12-18 1981-12-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20369481A JPS58106394A (en) 1981-12-18 1981-12-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS58106394A true JPS58106394A (en) 1983-06-24

Family

ID=16478291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20369481A Pending JPS58106394A (en) 1981-12-18 1981-12-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58106394A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725009B1 (en) 2005-12-16 2007-06-04 린나이코리아 주식회사 The manufacture method of a latent heat recovery type heat exchanger
WO2008058734A1 (en) * 2006-11-15 2008-05-22 Behr Gmbh & Co. Kg Heat exchanger
US8554390B2 (en) 2010-11-16 2013-10-08 International Business Machines Corporation Free cooling solution for a containerized data center
EP3073218A1 (en) * 2015-03-11 2016-09-28 Heatcraft Refrigeration Products LLC Water cooled microchannel condenser
CN107289677A (en) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 Heat exchanger and CO2Cooling system
EP3388770A4 (en) * 2015-12-09 2019-07-10 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725009B1 (en) 2005-12-16 2007-06-04 린나이코리아 주식회사 The manufacture method of a latent heat recovery type heat exchanger
WO2008058734A1 (en) * 2006-11-15 2008-05-22 Behr Gmbh & Co. Kg Heat exchanger
US8554390B2 (en) 2010-11-16 2013-10-08 International Business Machines Corporation Free cooling solution for a containerized data center
US9066451B2 (en) 2010-11-16 2015-06-23 International Business Machines Corporation Free cooling solution for a containerized data center
EP3073218A1 (en) * 2015-03-11 2016-09-28 Heatcraft Refrigeration Products LLC Water cooled microchannel condenser
EP3388770A4 (en) * 2015-12-09 2019-07-10 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger
US10520258B2 (en) 2015-12-09 2019-12-31 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger
CN107289677A (en) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 Heat exchanger and CO2Cooling system
CN107289677B (en) * 2016-03-31 2020-09-25 杭州三花研究院有限公司 Heat exchanger and CO2Cooling system

Similar Documents

Publication Publication Date Title
US4365667A (en) Heat exchanger
JP3048549B2 (en) Air conditioner heat exchanger
CN1174213C (en) Plate type heat exchanger
US4434844A (en) Cross-fin coil type heat exchanger
US10048020B2 (en) Heat transfer surfaces with flanged apertures
JP5388043B2 (en) Heat exchanger
US7219716B2 (en) Heat exchanger
JP2007078194A (en) Heat transfer tube for heat exchanger
US6286588B1 (en) Evaporator
AU1335192A (en) Optimized offset strip fin for use in compact heat exchangers
US5915471A (en) Heat exchanger of air conditioner
JP3315785B2 (en) Heat transfer tube for absorber
JPS58106394A (en) Heat exchanger
JPH10206085A (en) Heat-exchanger for air-conditioner
JP3048541B2 (en) Air conditioner heat exchanger
JP4011694B2 (en) Plate fin type heat exchanger with knob
US5067562A (en) Heat exchanger having fins which are different from one another in fin thickness
JP2903144B2 (en) Heat exchange equipment
JPH05322477A (en) Boiling heat transfer surface
JPH11223484A (en) Heat exchanger
GB1559329A (en) Air cooled atmospheric heat exchanger
JPS6021669Y2 (en) Stacked evaporator
GB1559330A (en) Water cooling apparatus
JPH0345038Y2 (en)
JPS6034938Y2 (en) Heat pipe heat exchanger