JPS581043B2 - Manufacturing method of graphite base material - Google Patents

Manufacturing method of graphite base material

Info

Publication number
JPS581043B2
JPS581043B2 JP54048319A JP4831979A JPS581043B2 JP S581043 B2 JPS581043 B2 JP S581043B2 JP 54048319 A JP54048319 A JP 54048319A JP 4831979 A JP4831979 A JP 4831979A JP S581043 B2 JPS581043 B2 JP S581043B2
Authority
JP
Japan
Prior art keywords
base material
graphite
thermal expansion
coefficient
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54048319A
Other languages
Japanese (ja)
Other versions
JPS55140708A (en
Inventor
松尾寛二
大槻真一
藤井禄郎
堀昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP54048319A priority Critical patent/JPS581043B2/en
Publication of JPS55140708A publication Critical patent/JPS55140708A/en
Publication of JPS581043B2 publication Critical patent/JPS581043B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は黒鉛基材の製造方法に関し、より詳細には調整
された熱膨脹係数を有する黒鉛基材の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a graphite substrate, and more particularly to a method of manufacturing a graphite substrate having a tailored coefficient of thermal expansion.

従来から黒鉛は熱的に安定なこと、高温強度が大きいこ
と、熱および電気の良導体であること等によって極めて
優れた高温材料であることが知られている。
Graphite has been known to be an extremely excellent high-temperature material because it is thermally stable, has high high-temperature strength, and is a good conductor of heat and electricity.

しかし、高温の酸化雰囲気中では容易に酸化されて揮発
性の酸化物を生じ、消耗してしまう致命的な欠陥があり
、黒鉛を発熱体等に使用する場合は、SiCやNbCの
ような耐酸化性物質の皮膜で表面を被覆し、保護するこ
とが必要とされている。
However, in a high-temperature oxidizing atmosphere, it is easily oxidized to produce volatile oxides, which has the fatal flaw of being consumed. It is necessary to protect the surface by coating it with a film of chemical substances.

ところが黒鉛は炭素六員環の網平面が層状に重なった構
造であるために異方性を示し、かつ黒鉛製造過程で生ず
る気泡、クラツク等が熱膨脹を一部吸収するので、黒鉛
全体の熱膨脹係数は黒鉛結晶から予測される平均熱膨脹
係数よりかなり低くなり、SiCやNbCのような皮膜
材料の熱膨脹係数と一致しない。
However, graphite exhibits anisotropy because it has a structure in which network planes of six-membered carbon rings overlap in layers, and bubbles and cracks generated during the graphite manufacturing process absorb some of the thermal expansion, so the thermal expansion coefficient of graphite as a whole is is much lower than the average coefficient of thermal expansion expected from graphite crystals and does not match the coefficient of thermal expansion of coating materials such as SiC and NbC.

その結果、黒鉛基材を皮膜材料で被覆し、加熱すると黒
鉛の異方性に起因する異方的な応力と共に、皮膜が黒鉛
基材よりも大きく膨脹するので黒鉛一皮膜間に引張り応
力を生じ、皮膜が破損し、黒鉛基材が露出して容易に酸
化されてしまう。
As a result, when a graphite base material is coated with a film material and heated, the film expands more than the graphite base material and generates tensile stress between the graphite film and the anisotropic stress caused by the anisotropy of graphite. , the coating is damaged and the graphite base material is exposed and easily oxidized.

そこで本発明者らはかかる欠陥を排除するため、出来る
限り等方性でかつ均質性にすぐれ、皮膜材料の熱膨脹係
数に対応して巾広い範囲で熱膨脹係数を調節できる黒鉛
基材の開発について鋭意検討を行ない、本発明を完成し
た。
Therefore, in order to eliminate such defects, the present inventors have worked hard to develop a graphite base material that is as isotropic and homogeneous as possible, and whose thermal expansion coefficient can be adjusted over a wide range in response to the thermal expansion coefficient of the coating material. After conducting studies, the present invention was completed.

本発明はSiCやNbCのような耐酸化性、耐蝕性皮膜
を表面に被覆して性能を高めるのに適した黒鋭基材の製
造方法を目的とし、耐酸化性、耐蝕性皮膜の熱膨脹係数
にあわせて調整し得る熱膨脹係数を有する黒鉛基材の製
造方法を提供するものである。
The purpose of the present invention is to provide a method for producing a black sharp base material suitable for improving performance by coating the surface with an oxidation-resistant and corrosion-resistant film such as SiC or NbC, and to improve the thermal expansion coefficient of the oxidation-resistant and corrosion-resistant film. The present invention provides a method for producing a graphite base material having a coefficient of thermal expansion that can be adjusted to suit.

すなわち、本発明の黒鉛基材の製造方法は、焼成により
光学的異方性領域が20ミクロン以下のコークスを与え
る有機物質(A)と、焼成により光学的異方性領域が2
0ミクロン以上のコークスを与える有機物質(B)とを
混合して焼成し、得られたコークスに等方質炭素組織を
与えるタールピッチ系バインダーを加えて混練し、次い
でこの混練物を黒鉛化することを特徴とするものである
That is, the method for producing a graphite base material of the present invention uses an organic substance (A) that provides coke with an optical anisotropy region of 20 microns or less upon firing, and
An organic substance (B) that gives a coke of 0 micron or more is mixed and fired, a tar pitch binder that gives an isotropic carbon structure is added to the obtained coke and kneaded, and then this kneaded product is graphitized. It is characterized by this.

ここで本発明の黒鉛基材の製造方法を用いる有機物質(
A)はナフタリン、フエナンスレン、クマリンの如き芳
香族炭化水素、カルバゾール、アクリジンの如きヘテロ
環状化合物、ポリスチレン、ポリ塩化ビニル、および溶
剤不溶成分を多量に含むコールタールや蒸留残査油など
である。
Here, the organic material (
A) includes aromatic hydrocarbons such as naphthalene, phenanthrene, and coumarin, heterocyclic compounds such as carbazole and acridine, polystyrene, polyvinyl chloride, and coal tar and distillation residue oil containing large amounts of solvent-insoluble components.

かかる有機物質(A)は焼成によって微晶質のモザイク
組織を有するコークスを与えるものであり、その光学的
異方性領域は、通常では20ミクロン以下、好ましくは
1〜10ミクロンである。
Such an organic substance (A) gives coke having a microcrystalline mosaic structure when fired, and its optically anisotropic region is usually 20 microns or less, preferably 1 to 10 microns.

次に本発明で用いる有機物質(B)は、アントラセン、
ピレン、アセナフチレン、アセナフテンの如き芳香族炭
化水素、ポリビニルアルコール、ポリ酢酸ビニル、溶剤
不溶成分の少ないコールタールや蒸留残査油なとである
Next, the organic substance (B) used in the present invention is anthracene,
These include aromatic hydrocarbons such as pyrene, acenaphthylene, and acenaphthene, polyvinyl alcohol, polyvinyl acetate, and coal tar and distillation residue oil that have few solvent-insoluble components.

これら有機物質(B)は焼成によってモザイク組織コー
クス、または流動縞模様組織コークスを与え、そのコー
クスの光学異方性領域は一般的には20ミクロン以上、
好ましくは50ミクロン程度である。
These organic substances (B) give coke with a mosaic structure or fluidized striped structure when fired, and the optical anisotropy region of the coke is generally 20 microns or more.
Preferably it is about 50 microns.

有機物質(A)と有機物質(B)との混合は液相または
溶融状態で行なうことが好ましく、この処理によって黒
鉛基材の均質性の向上がはかられる。
The organic substance (A) and the organic substance (B) are preferably mixed in a liquid phase or molten state, and this treatment improves the homogeneity of the graphite base material.

また、有機物質(A)と有機物質(B)との混合比は、
混合物の焼成、バインダー添加後の黒鉛化によって得ら
れた黒鉛基材の熱膨脹係数が、黒鉛基材の表面に被覆さ
れる皮膜材料の熱膨脹係数に合致するように配慮して決
定されるものであり、使用する皮膜材料の種類に対応し
て適宜混合比を決定することができる。
Moreover, the mixing ratio of the organic substance (A) and the organic substance (B) is
The coefficient of thermal expansion of the graphite base material obtained by firing the mixture and graphitizing after adding a binder is determined so that it matches the coefficient of thermal expansion of the coating material coated on the surface of the graphite base material. The mixing ratio can be determined as appropriate depending on the type of coating material used.

有機物質(5)と(B)との混合物の焼成は空気を遮断
し、不活性ガスの存在下に、通常は550〜850℃、
好ましくは750〜850℃で行なう。
The mixture of organic substances (5) and (B) is calcined at 550-850°C, with exclusion of air and in the presence of an inert gas.
Preferably it is carried out at 750 to 850°C.

焼成時間は有機物質(5)および(B)の種類、および
それぞれの混合量にもよるが、一般には4〜6時間、好
ましくは5〜6時間である。
The firing time depends on the types of organic substances (5) and (B) and the amount of each mixed, but is generally 4 to 6 hours, preferably 5 to 6 hours.

焼成後、得られたコークスは1000℃に仮焼し200
メッシュを通過する程度に粉砕し、バインダーを加えて
混練りする。
After firing, the obtained coke was calcined at 1000°C and heated to 200°C.
Grind it to the extent that it can pass through a mesh, add a binder, and knead.

バインダーは通常の黒鉛化に使用されるピッチ、タール
等であり、その添加量はコークス重量に対して通常25
〜50重量%、好ましくは35〜45重量%である。
Binder is pitch, tar, etc. used in normal graphitization, and the amount added is usually 25% based on the weight of coke.
-50% by weight, preferably 35-45% by weight.

混練物の黒鉛化は、同様に空気を遮断し、不活性ガスの
存在下で行ない、黒鉛化温度は一般的には2500℃以
上であり、黒鉛化時間は通常では2.5〜3.0時間で
ある。
Graphitization of the kneaded material is similarly carried out in the presence of an inert gas with air excluded, the graphitization temperature is generally 2500°C or higher, and the graphitization time is usually 2.5 to 3.0°C. It's time.

なお、黒鉛化に先立って混練物を目的に応じて一定の形
状に成形し、しかる後に黒鉛化することもできる。
Note that prior to graphitization, the kneaded material may be formed into a certain shape depending on the purpose, and then graphitized.

また、混練物を黒鉛化温度に昇温する以前に、前述の焼
成温度に保持して焼成を行ない、次いで黒鉛化温度まで
昇温しても良い。
Furthermore, before heating the kneaded material to the graphitization temperature, the kneaded material may be fired while being maintained at the above-mentioned firing temperature, and then the temperature may be raised to the graphitization temperature.

かかる本発明の黒鉛基材の製造方法によれば、微細なク
ラツクや気泡が発生し易い有機物質(A)および(B)
)に由来する光学的異方性の炭素組織が、バインダーに
由来する等方質炭素組織で包囲されて、黒鉛製造過程で
生ずる気泡、クラツクが熱膨脹を吸収することがなくな
り、全体としてほぼ等方性となり、かつ比較的大きな熱
膨脹係数の黒鉛を与える有機物質(A)と、比較的小さ
な熱膨脹係数の黒鉛を与える有機物質(Bノとを任意の
割合で混合することによって、種々の皮膜材料の熱膨脹
係数に合致した熱膨脹係数を有する黒鉛基材を容易に得
ることができる。
According to the method for producing a graphite base material of the present invention, organic substances (A) and (B) that tend to generate fine cracks and bubbles can be used.
) is surrounded by an isotropic carbon structure derived from the binder, and bubbles and cracks generated in the graphite manufacturing process no longer absorb thermal expansion, resulting in an almost isotropic carbon structure as a whole. By mixing an organic substance (A) which gives graphite with a relatively large coefficient of thermal expansion and an organic substance (B) which gives graphite with a relatively small coefficient of thermal expansion in an arbitrary ratio, various coating materials can be formed. A graphite substrate having a coefficient of thermal expansion that matches the coefficient of thermal expansion can be easily obtained.

したがって、本発明の製造方法にかかる黒鉛基材を、膨
脹係数が合致した皮膜材料で被覆すれば加熱による皮膜
の破損もなく、高温材料としての黒鉛の特性を十分に発
揮することができる。
Therefore, if the graphite base material according to the production method of the present invention is coated with a coating material having a matching coefficient of expansion, the coating will not be damaged by heating, and the characteristics of graphite as a high-temperature material can be fully exhibited.

また、本発明では、有機物質(A)および(B)を焼成
する以前に混合し、しかる後に焼成しているので、混合
が極めて容易であり、粉砕、混合などの特別の操作や手
間を全く必要としない。
In addition, in the present invention, the organic substances (A) and (B) are mixed before firing and then fired, so mixing is extremely easy and there is no need for special operations such as crushing and mixing. do not need.

有機物質(5)と(B)は加熱しただけで容易に溶融、
液化し、簡単に混合することができる。
Organic substances (5) and (B) can be easily melted just by heating.
Can be liquefied and easily mixed.

従って、焼成、黒鉛化によって得られた黒鉛基材の熱膨
脹率を均一化することができる。
Therefore, the coefficient of thermal expansion of the graphite base material obtained by firing and graphitization can be made uniform.

このように、粉砕、混合のための操作、手間を必要とし
ないことは、工程の減少と生産コストの低減をはかるう
えでも有利である。
In this way, the fact that operations and labor for grinding and mixing are not required is advantageous in reducing the number of steps and production costs.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

なお、本発明はかかる実施例によって限定されるもので
はなく、本発明の技術的思想の及ぶ範囲内において自由
に変更できるものである。
Note that the present invention is not limited to these embodiments, and can be freely modified within the scope of the technical idea of the present invention.

実施例 1 容量5lのオートクレープにフェナンスレンおよびアン
トラセンを混合比を変えて合計30kgを仕込み、オー
トクレープを密閉後、窒素ガスを50kg/cm2まで
封入して空気を排除した。
Example 1 A total of 30 kg of phenanthrene and anthracene were charged at different mixing ratios into an autoclave with a capacity of 5 liters, and after the autoclave was sealed, nitrogen gas was filled up to 50 kg/cm2 to exclude air.

して半時間保ち、炭化した。and kept for half an hour to carbonize.

このときの炭化率は69〜72%であった。The carbonization rate at this time was 69 to 72%.

得られたコークスを1000℃に加熱したときの熱膨脹
係数および加熱時の寸法収縮を第1表に示す。
Table 1 shows the thermal expansion coefficient when the obtained coke was heated to 1000°C and the dimensional shrinkage upon heating.

第1表からフエナンスレンとアントラセンの混合比を変
えることによってコークスの熱膨脹係数を変化させ得る
ことが明らかである。
It is clear from Table 1 that by changing the mixing ratio of phenanthrene and anthracene, the coefficient of thermal expansion of the coke can be changed.

次に、これら混合比の異なるコークスを200メッシュ
に粉砕し、26重量%のコールタールピッチをバインダ
ーとして加え、混練りしたのち、100×100×30
mmの角材に型込め、成型し、1100℃まで焼成し、
さらに2500℃で黒鉛化した。
Next, these cokes with different mixing ratios were crushed to 200 mesh, 26% by weight coal tar pitch was added as a binder, and after kneading, 100×100×30
It is molded into a square piece of mm in size, molded, and fired to 1100℃.
Furthermore, it was graphitized at 2500°C.

かくして得られた黒鉛基材の熱膨脹係数と原料組成との
関係を図に示す。
The relationship between the thermal expansion coefficient of the graphite base material obtained in this way and the raw material composition is shown in the figure.

図から明らかなように、原料組成を変えることによって
、熱膨脹係数がほぼ3. 5 × 1 0 −6/℃か
ら7. 5 × 1 0−6/’Cまでの任意の値を持
つ黒鉛基材が得られる。
As is clear from the figure, by changing the raw material composition, the coefficient of thermal expansion is approximately 3. 5 × 10-6/℃ to 7. Graphite substrates with arbitrary values up to 5 x 10-6/'C are obtained.

したがって、たとえば、耐酸化皮膜としてSiC(熱膨
脹係数5.O X 1 0−6/℃)を選ぶならば、フ
エナンスレン40部、アントラセン60部の混合物を原
料として得られるコークスを黒鉛化すれば良いことがわ
かる。
Therefore, for example, if SiC (coefficient of thermal expansion 5.0 x 10-6/°C) is selected as the oxidation-resistant film, it is sufficient to graphitize coke obtained from a mixture of 40 parts of phenanthrene and 60 parts of anthracene. I understand.

実施例 2 ナフタリンとアセナフチレンの混合物を混合比を変えて
実施例1と同様に炭化し、バインダーを加えたのち、1
000℃に焼成し、さらに2500℃で黒鉛化した。
Example 2 A mixture of naphthalene and acenaphthylene was carbonized in the same manner as in Example 1 by changing the mixing ratio, and a binder was added.
It was fired at 000°C and further graphitized at 2500°C.

得られた黒鉛基材の組成と熱膨脹係数との関係を第2表
に示す。
Table 2 shows the relationship between the composition and thermal expansion coefficient of the graphite base material obtained.

第2表からも明らかなように、SiCを皮膜材料として
使用するときは、ナフタリン/アセナフチレンの混合比
がほぼ3/1の原料を用いれば良いことがわかる。
As is clear from Table 2, when using SiC as a coating material, it is sufficient to use a raw material with a naphthalene/acenaphthylene mixing ratio of approximately 3/1.

【図面の簡単な説明】[Brief explanation of drawings]

図は黒鉛基材の原料組成と熱膨脹係数との関係を示すグ
ラフである。 なお図においてPh.はフェナンスレン、An.はアン
トラセンを示す。
The figure is a graph showing the relationship between the raw material composition of the graphite base material and the coefficient of thermal expansion. In the figure, Ph. is phenanthrene, An. indicates anthracene.

Claims (1)

【特許請求の範囲】[Claims] 1 焼成により光学的異方性領域が20ミクロン以下の
コークスを与える有機物質(A)と、焼成により光学的
異方性領域が20ミクロン以上のコークスを与える有機
物質の(B)とを混合して焼成し、得られたコークスに
等方質炭素組織を与えるタールピッチ系バインダーを加
えて混練し、次いでこの混練物を黒鉛化することを特徴
とする黒鉛基材の製造方法。
1. Mixing an organic substance (A) that gives coke with an optical anisotropy area of 20 microns or less when fired and an organic substance (B) that gives coke with an optical anisotropy area of 20 microns or more when fired. A method for producing a graphite base material, which comprises adding a tar pitch binder that gives an isotropic carbon structure to the coke obtained and kneading the coke, and then graphitizing the kneaded product.
JP54048319A 1979-04-18 1979-04-18 Manufacturing method of graphite base material Expired JPS581043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54048319A JPS581043B2 (en) 1979-04-18 1979-04-18 Manufacturing method of graphite base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54048319A JPS581043B2 (en) 1979-04-18 1979-04-18 Manufacturing method of graphite base material

Publications (2)

Publication Number Publication Date
JPS55140708A JPS55140708A (en) 1980-11-04
JPS581043B2 true JPS581043B2 (en) 1983-01-10

Family

ID=12800083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54048319A Expired JPS581043B2 (en) 1979-04-18 1979-04-18 Manufacturing method of graphite base material

Country Status (1)

Country Link
JP (1) JPS581043B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358496A (en) * 1976-11-05 1978-05-26 Agency Of Ind Science & Technol Production of graphite substrate for oxidation resistant coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358496A (en) * 1976-11-05 1978-05-26 Agency Of Ind Science & Technol Production of graphite substrate for oxidation resistant coating

Also Published As

Publication number Publication date
JPS55140708A (en) 1980-11-04

Similar Documents

Publication Publication Date Title
Fitzer et al. Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995)
CA2661927C (en) Low cte highly isotropic graphite
CA2661950C (en) High purity nuclear graphite
US3812240A (en) Production of highly ordered graphite particles
JPS605523B2 (en) Manufacturing method of graphite base material for oxidation-resistant coating
Delport et al. Production of a self-adhering mesophase powder from anthracene oil for low pressure forming of graphite artefacts
US3567808A (en) Production of low density-high strength carbon
JPS581043B2 (en) Manufacturing method of graphite base material
DE102006032636A1 (en) Method for producing a ceramic substrate and ceramic substrate
JPH07165467A (en) Production of isotropic graphite material
JP2000007436A (en) Graphite material and its production
CN105712343A (en) Method for baking fine-particle-structure graphite product with open ring type furnace and graphite product obtained by method
US3035989A (en) Preparation of high purity coke and graphite
CN110803693A (en) Anthracene oil-based mesocarbon microbeads and preparation method and application thereof
JPS60239358A (en) Carbonaceous thin plate and manufacture
JP4208218B2 (en) Method for producing isotropic graphite material having high thermal expansion coefficient, graphite jig comprising the isotropic graphite material, and graphite substrate
JPS6016806A (en) Manufacture of formed carbon
KR102124427B1 (en) Fabrication method for porous alpha-phase silicon carbide
Neubert et al. The structure and properties of artificial and natural graphite
JPH0735299B2 (en) Method for producing isotropic high strength carbon material having low coefficient of thermal expansion
Bokros et al. Irradiation-induced dimensional changes in co-deposited carbon-silicon coatings
JPH0580405B2 (en)
US3260614A (en) Graphitised carbon articles containing rare earths
CN117383553A (en) Preparation method of isotropic coke for nuclear graphite
JPH07206415A (en) Carbon cluster producing raw material