JPS58104111A - Denitrifying method for disoxidized molten steel - Google Patents

Denitrifying method for disoxidized molten steel

Info

Publication number
JPS58104111A
JPS58104111A JP56201766A JP20176681A JPS58104111A JP S58104111 A JPS58104111 A JP S58104111A JP 56201766 A JP56201766 A JP 56201766A JP 20176681 A JP20176681 A JP 20176681A JP S58104111 A JPS58104111 A JP S58104111A
Authority
JP
Japan
Prior art keywords
molten steel
slag
steel
oxidative
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201766A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katayama
裕之 片山
Tadayuki Yoda
与田 忠幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56201766A priority Critical patent/JPS58104111A/en
Publication of JPS58104111A publication Critical patent/JPS58104111A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To make easy production of low nitrogen steel possible by decreasing of the content of N in molten steel by blowing Mg or Mg alloys with a non- oxidative gas into the molten steel after disoxidation treatment in the copresence of molten slag. CONSTITUTION:Molten steel is tapped into ladle from a steel making furnace such as a converter, and flux is added thereto to form non-oxidative slag at >=12kg/t ratio, by which the surface of the molten steel is coated. Thereafter, disoxidizing agents such as Al, Fe-Si, Fe-Mn or the like are added thereto to disoxidize the steel to <=40ppm (O). While the atmosphere in the ladle is maintained in a non-oxidative atmosphere, powder of metallic Mg or Mg alloys is blown into the molten steel with an immersion nozzle by using a non-oxidative gas such as Ar, H or hydrocarbon as a carrier gas. The molten steel is powerfully disoxidized by the Mg and the N contained therein is removed as Mg3N2.

Description

【発明の詳細な説明】[Detailed description of the invention]

本41明IIi憔低菫巣−を安定して製造するためにJ
lli!峨後の溶−を祝電する方法に関する。 最近、転炉が底吹、あるいは上・底吹化されたことによ
p、吹止(N)は7〜15 ppm と低くなっている
。−万、sl材材實自から見ると、窒素含*mt低下す
ると軟負化1時効性軽減などの樵々の効果がめることか
明らかにされ、低窒帛化(例えは15ppmJff下)
が費求されるfIIJ4樵が増加している。 転炉吹止(N)が15 i)pm以)でめりても、以価
凝−完了までに雰囲気からの吸窒、あるいはMn 、 
Oyなど合金元票添加に伴り加窒がおζりうるので、材
實向からの低窒素化の要求に応えるためには転炉吹止(
N)の低位安定化、吸窒防止のための努力のはかに、転
炉山−以降に必要に応じて脱wItができる方法を開発
する仁とが望まれている。 従来法では例えは溶鋼を真空脱ガス他層しても、処理前
(N)が高i場合にはるるIIImの脱窒がおこるが、
処理前(N)が20 ppm以)では祝電はほとんど進
行しな−か、あるいはかえって吸窒がおこることが知ら
れている。真空を掬いない他の城鍋IAI場方法1例え
ば6極の非酸化性ガスや7ラツクスを吹込む方法では吸
i1cを抑制する仁とがせいぜいで、実寅的な脱窒は期
待することはできない、このように低%!素域で脱窒が
困*4のは、たとえ、真空ポンプを用いても溶−表向近
傍の窒素分圧を転炉吹止時[N)に対応する見かけの平
衡窒業分圧((N)−10ppm  とすると平衡i1
素分圧はα4 Tnrr )  より大幅に低くするの
が雛かしいこと、まえ、このように低い(N)−レベル
ではm電は化学反応1i11瑞となって酸素の吸着など
によって阻害されて祝電遥屓が低下するためである。 し友がって、ll来量産工程で#l#II4を有効に脱
窒する方法としては、大気圧下あるいは減圧下を問わず
、溶−を酸化してOoガスを発生させ、その稀釈作用に
よる雰囲気Pj4の低下と攪拌強化による有効*−横の
増加に頼らざるを得なかった。これは酸化II蜘を前提
とする親電反応でめ〕、一旦合金自m、あるいは腕敵し
た溶−に通用することはa−プロセスとして効率的でな
いことは言うまでもない。 」1低電累−を効率的に溶麹しようとすれば。 取鍋内て合金@ 7jllや脱歌成分の硝カロを行った
後、(N)分析結果によシ必要とろれば所定のレベルt
″e腕窒できることが望ましい、しかし、前述のように
m咳−(しかも低NQペルで)では真空他層しても、1
&樵の非鹸化性ゲス(ムr、炭化水減。 N、  など)を吹込んでも脱窒することはできなかっ
た1本発明はこれを可能にするための方法を種々検討の
結果侍られたものであり、その要旨とする処#i、脱酸
処理後の取繭内溶−に、12kt/を以上のスラブ共存
下で、非酸化性ガスでキャリヤした金11Mg6るいは
Mg合金を吹込むことを%黴とするm酸浴−の脱窒素処
理方法でるる。 以下、具体的な実施例によって詳細に説明する。 転炉あるいは電炉で溶製し九溶銅を取鍋に出−する、低
iixmt溶製しようとした場合、この出一時の吸窒も
偏力抑制する丸めに溶−には8Iや五メなどの強脱酸剤
f:加えないで未腕鍍状励で出−することが望ましい、
なお、製鋼炉内のスラグの叡化鉄含肩量が高い場合には
、本発明の目的である睨&累他層の効率化と、#14材
に対する一般的な費累でめる清浄化の点から、1@嫡内
に流出するスラグ會他力少な(することが望ましい、−
万、後述するように脱窒゛木処理時の溶−表向での雰囲
気からの吸窒を防止“□して全体として効率的に脱窒す
る、・1゜ ために、非酸、イヒ惟のスラグを取鍋内に12kf/を
以上形成する公費がある。そのためには、出f114M
#あるいは山−後にMjt鋼内に7ラツクスを添加して
造滓する。ただし%殊な方法としては製−炉からのスラ
グを12kt/l  以上取鍋内に出し、ついて溶−に
U などの脱酸剤を縞加して攪拌しスラグO還元を行り
て所定のスラグ条件を得ることも可能である。九だし、
その場合には復リンなどの劇作崩を伴うおそれがめる。 しかしながら、#I4鋼過程に先立つ溶銑の予備処ji
lljIi権で燐の含有レベルを慎めて低いものとする
プロセスを採るような場合には、復燐が定量的に間−に
ならないこともTo?)得るから、am−過程における
スラグttIt用することは勿論可能である。 りi″″C堆鯛内の溶−にMn 、 Orなどの合金元
素。 および8−、ムlなどの脱酸剤を泳加して成分調整を行
つた俊、#I鋼のサンプリングを行い1分析を行う、そ
の結果i1累の値か1椰とする儀(これは成品の@嶺(
N)と鋳造過程での吸窒量を勘案して設定される)よシ
を高い場合には、以下に述べるような脱窒識見llを行
うことになる。 膨化水嵩などの非酸化性ガスをキャリアとして。 金楓Mg ToるいはMg合金を吹込むことによって行
われる。仁の場合、金111MgあるいはMg合金が共
存することは次の5つの効果′を持り。 (1)  気泡内のMg 蒸気が溶鋼表−の酸素t′M
g。 として固定し、溶鋼表向に吸着し良瞭累による反応速度
低下を抑制する。第1図は処理前の溶−
In order to stably manufacture this 41 Mei IIi low violet nest
lli! Concerning how to send a congratulatory telegram to Ago's death. Recently, as converters have been converted to bottom blowing or top/bottom blowing, p and end of blow (N) have become as low as 7 to 15 ppm. - From the perspective of the actual SL material, it has been revealed that lowering the nitrogen content*mt has the effect of reducing the aging property of the wood, resulting in lower nitrogen content (for example, below 15 ppm Jff).
The number of fIIJ4 woodcutter being paid is increasing. Even if the converter blow-off (N) exceeds 15 i) pm), nitrogen absorption from the atmosphere or Mn,
Addition of alloys such as Oy can reduce carnitrification, so in order to meet the demand for low nitrogen from material manufacturers, converter blow-off (
It is desired that efforts be made to stabilize the nitrogen content at a low level and to prevent nitrogen absorption, and to develop a method that can remove nitrification if necessary after the converter stage. In the conventional method, even if the molten steel is vacuum degassed and layered, denitrification of IIIm will occur if the pre-treatment (N) is high i.
It is known that if the N content (before treatment) is 20 ppm or more, congratulatory electricity will hardly progress or nitrification will occur instead. Other methods for IAI field that do not use vacuum, such as the method of blowing 6-electrode non-oxidizing gas or 7 lux, can only suppress the absorption I1c, and no practical denitrification can be expected. Not possible, such a low%! The reason why denitrification is difficult in the elementary zone*4 is that even if a vacuum pump is used, the nitrogen partial pressure near the melt surface cannot be changed to the apparent equilibrium nitrogen partial pressure (( N) -10ppm, equilibrium i1
It is important to make the elementary partial pressure much lower than α4Tnrr).At such a low (N)-level, m-electron becomes a chemical reaction, which is inhibited by oxygen adsorption, etc. This is because the scale decreases. Accordingly, the next method for effectively denitrifying #l #II4 in the mass production process is to oxidize the solution to generate Oo gas, whether under atmospheric pressure or reduced pressure, and its diluting action. Therefore, we had no choice but to rely on the decrease in the atmosphere Pj4 and the increase in the effective *- side due to the strengthening of stirring. This is an electrophilic reaction based on II oxide, and it goes without saying that it is not efficient as an a-process once it is applied to alloys or comparable melts. 1.If you try to efficiently melt koji with low electric charge. After carrying out the nitrification of the alloy @ 7jll and the decomposition component in a ladle, (N) if necessary according to the analysis results, the predetermined level t.
``It is desirable to be able to hold the arm, but as mentioned above, in the case of m cough (and with a low NQ pel), even if there is another layer of vacuum, 1
Denitrification could not be achieved even by injecting non-saponifiable gas (Mur, carbonized water, N, etc.).The present invention was developed as a result of various studies on methods to make this possible. The gist of the process #i is to blow gold-11Mg6 or Mg alloy carrier with non-oxidizing gas into the cocoon melt after deoxidation treatment in the coexistence of a slab of 12 kt/or more. This is a denitrification treatment method for an acid bath that removes mold from the mold. Hereinafter, a detailed explanation will be given using specific examples. When attempting to melt low Iixmt by melting in a converter or electric furnace and pouring it into a ladle, 8I or 5-metal are used to melt the copper in a rounded shape that suppresses the partial force of nitrogen absorption at the time of extraction. Strong deoxidizing agent f: It is preferable not to add it, but to discharge it without adding it.
In addition, when the slag in the steelmaking furnace has a high iron fluoride content, the objective of the present invention is to improve the efficiency of the glazing and other layers, and to clean the #14 material, which saves general costs. From the point of view of
1. In order to prevent nitrogen absorption from the atmosphere on the surface of the melt during denitrification and wood treatment, as will be described later, and to achieve efficient denitrification as a whole, There is public funds to form more than 12kf/slag in the ladle.
After # or peak, 7 lux is added to the Mjt steel to create slag. However, as a special method, slag of 12 kt/l or more from the furnace is poured into a ladle, and then a deoxidizing agent such as U is added to the melt and stirred to reduce the slag O. It is also possible to obtain slug conditions. It's nine,
In that case, there is a risk that the drama will be ruined, such as revenge. However, the preliminary treatment of hot metal prior to the #I4 steel process
In cases where a process is adopted in which the level of phosphorus content is carefully kept low, it is also true that rephosphorus does not become quantitatively significant. ), it is of course possible to use the slag ttIt in the am-process. Alloying elements such as Mn and Or are added to the melt inside the sea bream. And 8-, Shun, who adjusted the composition by adding a deoxidizing agent such as mul, sampled #I steel and conducted one analysis, and the result was the value of i1 or 1 (this is Finished product @ Mine (
If N) and N (which are set in consideration of the amount of nitrogen absorbed during the casting process) are higher, the following denitrification evaluation will be performed. Use non-oxidizing gas such as expanded water as a carrier. This is done by injecting gold maple MgTo or Mg alloy. In the case of gold, the coexistence of gold-111Mg or Mg alloy has the following five effects. (1) Mg in the bubbles The vapor is oxygen t'M on the surface of the molten steel
g. It adheres to the surface of the molten steel and suppresses the reduction in reaction rate due to fine build-up. Figure 1 shows the solution before treatment.

〔0〕レベルと
脱窒型の関係の1flIt−示している。
The relationship between the [0] level and the denitrification type is shown.

〔0〕レベルが高すぎるとh Mg  tm加しても脱
窒型が小さくなる理由は、 MgO被II!4Cよるマ
クロ的な脱1!ff1f*阻止の影響が出る元めである
。したがって、処理前浴−は(0) < 40 ppm
 まで脱酸されていることが望ましい。 (2)気泡内のN、を 3 Mg + Nm = Mgs Ns     (1
1の反応によって固定しW1本分圧を低下し、ガスによ
る脱窒反応の推進力(Driving force )
を大きくする。なお(1)式の反応はiiI&が低いは
ど右側に進みやすいが、 Mg f)薫尭吸熱は気泡の
温良を脱室進行に必要な温屓以下に保つことにも役立つ
ている。 (2I)スラグを強還元することによってスラグの1I
11本#l聯皺を大にする。 Mg蒸気とM自N、  を含む気旧が溶鋼中を上昇して
スラグに入ると1Mg はスラグの脱酸を行って。 スラグの窒素溶解let’上けh Mg1Nlの分解に
よる博−へのVI1本のもどシを防止する。このために
は。 九jillII!lIlのスラグ中のT 、 Fe 9
6とMg 吹込量の間にはM21Klに示すような関係
かめシ、処理前T、Fe丸か低いとと(少なくとも1.
5 X以下であること)が望ましいことがわかる。 (4)  吹込11fした気泡は、金JliMgやMg
合金を伴うと、その蒸発の影曽として溶−との間の接触
界幽横を増す、これは脱w1木速肢會大にするのに関徴
的に役立つ。 (旬 溶−中およびスラグ中を通9抜は九Mg は(1
)式により溶−およびスラグ近傍の窒素分圧を低下する
。それによりて、雰I2I]隼からのスラグ。の吸il
t抑制する。この場合、スラグ中の窒素の移ll1遍度
は比職的小さいので、上記の効果で十分吸at−抑制で
きる一万、溶鋼は雰囲気に蒸出すると上記の条件でも雰
囲気からの吸′ljt′におこす、雰囲気の窒素分圧は
、溶−中に吹込を嚢九気泡と真なり、溶−の(N)に対
応する平衡窒素分圧よシも低くすることがむづかしいか
らでめる(侵入空気などの影−で)、溶−の吸窒防止の
ためには、溶−一に存在するスラグ量tToる値以上に
し、溶−函の露出t#h止することによって行われる。 第3図はスラグ量と溶−中vjt巣羨化の114i係を
示している。吸窒上抑制して、全体として脱窒1tをふ
やすにはスラグ量ti12kf/l 以上であることが
8債なことがわかった。 以上のように本発明はムr 、 H,、炭化水嵩のよう
な非酸化性ガス、および浴−薗スラグによる脱窒を、ガ
スとともに金属Mg 6るいはMg合金を吹込むことに
よって促進・可能にしたものでるる。 この場合、 Mg  ij溶−にとけ込むことはな(、
Mg蒸気として作用す゛る0Mg  @としては各棟M
g 合”’(、。 金(蒸弗違fを保つことからmg>aoXが望ましい)
も用いられるが、共存するSt  などが溶鋼中に入る
ことが!i1ましくない場合には、金属Mg を用いる
のが通している。 ガスおよびMg  分を溶−中に吹込むには、I11火
−砿覆し九浸漬ノズルを用いることができる。 貢總例 250tf&複合吹錬転炉で溶製した低炭素−(0:α
o s X e si :αo lX s Mn : 
o、 s s X *P:αo o 8 N e 8”
α005%* N: 799m m11j[:1640
℃)を、未脱酸状態で取鋼に出−し、その際1合成7ラ
ツクス(Oao 40%。 810會  :   2SX、   AkOm   :
   1  5X、   MgO:1  0X   。 その惜Oar@ 、 Nano 、 v60 、 Mn
Oなど10%)を11$kf/l  添加する。出鋼終
了後取鍋に量をおいてAr  シールしながらh  &
j2kf/l、 7エロマンガン14呻/l 、7エ關
シリコン3神/l #A加し。 アルミナキャスタブルで2イニングし九潰漬ノズルによ
pAr バブリングして溶−の均一化をはかった俵、サ
ンプリングして分析した。O:0.15%、81:0.
15%、 Mo : L 2X、 Aj: 0.020
%、P:α009%、8:0.006%s N : 1
7ppm%O:20ppm、Temp:  1605℃
、なお。 スラグの組成はOaO3896、8+0=  2.4%
。 A^Os  16 X m  MgO1”%、T@re
α9 X、 Mn01.2%%Nx19ppmで、量t
ii9kp/l  でめり九。これに、前記の浸漬ノズ
ルによl Ar  ガスをキャリヤとして金JIiMg
(粒屓α5〜αoat)を溶−中tsmの位置に2輪/
亀 吹込む(ムr ガス1.3X、An:  0.01
8N、P:aOlGlS:α006X@ Mg : S
r%N : 1299m、0:α012%、 Temp
 : 1580℃でTo!+、  (N)は5 ppm
低下し喪、なお、この時のスラグFio、o:39N、
8愚01 : 22丸、 MgO: 16 N *  
ムj、0.:12%、 Mn00.08%%T−Feα
013%、N:αo a sXでめった。この1g;1
輌内溶−をロンダノズkを用い、ムr シール条件下で
連続鋳造し、N : 141)I)mの低w1嵩鋳片を
侍ることができ友。 以上のように1本発明は金属Mg ToるいはMg合金
を咎殊な使い方をする仁とにより、脱酸酸浴のm窒嵩l
&層を可能にし九−ので、低窒嵩−を安定して製造する
良めの方法として工業的な効果が大きい。
[0] The reason why the denitrification type becomes small even if h Mg tm is added is when the level is too high. Macro-level escape from 4C! This is the source of the influence of ff1f* blocking. Therefore, the pre-treatment bath is (0) < 40 ppm
It is desirable that it has been deoxidized to the extent of (2) N in the bubble is 3 Mg + Nm = Mgs Ns (1
The partial pressure of W1 is fixed by the reaction in step 1, and the driving force of the denitrification reaction by the gas is
Make it bigger. Note that the reaction of formula (1) tends to proceed to the right when iii& is low, but the Mg f) Kuntaka endotherm also helps to keep the temperature of the bubbles below the temperature required for escaping. (2I) 1I of slag by strongly reducing the slag
11 #l Enlarge the connective wrinkles. When gas containing Mg vapor and M-N rises through the molten steel and enters the slag, 1Mg deoxidizes the slag. Dissolving the slag with nitrogen prevents the return of one VI to the hole due to the decomposition of Mg1Nl. For this. Nine jill II! T, Fe 9 in the slag of lIl
There is a relationship between Mg 6 and Mg injection amount as shown in M21Kl, T before treatment, Fe round or low (at least 1.
5X or less) is desirable. (4) The bubbles injected at 11f are gold, JliMg, and Mg.
When an alloy is involved, the contact field between the melt and the melt increases as a result of its evaporation, which is characteristically helpful in reducing the speed of the process. (9 Mg is 9 Mg through molten and slag medium) (1
) reduces the nitrogen partial pressure near the melt and slag. With that, atmosphere I2I] Slag from Hayabusa. the suction
t suppress. In this case, since the uniformity of nitrogen transfer in the slag is relatively small, the above effect can sufficiently suppress the adsorption.However, when molten steel is evaporated into the atmosphere, even under the above conditions, the adsorption from the atmosphere can be suppressed. The partial pressure of nitrogen in the atmosphere caused by the injection into the solution is limited to nine bubbles, and it is difficult to lower the equilibrium nitrogen partial pressure corresponding to (N) in the solution. In order to prevent nitrification of the melt (in the shadow of air, etc.), the amount of slag present in the melt is increased to a value greater than or equal to the value tTo, and exposure of the melt box is prevented. Figure 3 shows the 114i relationship between the amount of slag and the amount of vjt cavities in the melt. It was found that in order to suppress nitrification and increase 1 ton of denitrification as a whole, the slag amount ti should be 12 kf/l or more. As described above, the present invention promotes and enables denitrification using non-oxidizing gases such as hydrogen, hydrogen, and hydrocarbons, and bath slag by injecting metal Mg6 or Mg alloy together with the gas. The one I made is Ruru. In this case, it will not dissolve in the Mg ij solution (,
0Mg acting as Mg vapor @ each building M
g Go"'(,. Gold (mg>aoX is desirable to maintain the vaporization difference f)
is also used, but the coexisting St etc. may enter the molten steel! If i1 is not possible, it is customary to use metal Mg. An I11 refractory submerged nozzle can be used to blow the gas and Mg into the melt. Low carbon (0: α
o s X e si :αo lX s Mn :
o, s s X *P: αo o 8 N e 8”
α005%* N: 799m m11j[:1640
°C) was sent to steel in an undeoxidized state, and at that time, 1 synthetic 7 lux (Oao 40%. 810: 2SX, AkOm:
15X, MgO:10X. That regret Oar@, Nano, v60, Mn
10% of O, etc.) was added at 11 $kf/l. After tapping the steel, place the amount in the ladle and seal it with Ar.
j2kf/l, 7 Eromangan 14 groan/l, 7E connection silicon 3 God/l #A addition. A bale was sampled and analyzed using alumina castable for two innings and pAr bubbling was carried out using a nine crushing nozzle to homogenize the solution. O: 0.15%, 81:0.
15%, Mo: L2X, Aj: 0.020
%, P: α009%, 8:0.006%s N: 1
7ppm%O: 20ppm, Temp: 1605°C
,In addition. The composition of the slag is OaO3896, 8+0=2.4%
. A^Os 16 X m MgO1”%, T@re
α9 X, Mn01.2%%Nx19ppm, amount t
ii9kp/l. Gold JIiMg was added to this using lAr gas as a carrier using the above-mentioned immersion nozzle.
(Grain size α5 ~ αoat) is melted and placed at the tsm position/
Turtle Blow in (Mur gas 1.3X, An: 0.01
8N, P:aOlGlS:α006X@Mg:S
r%N: 1299m, 0:α012%, Temp
: To at 1580℃! +, (N) is 5 ppm
In addition, the slag Fio at this time, o: 39N,
8gu01: 22 circles, MgO: 16 N *
Muj, 0. :12%, Mn00.08%%T-Feα
013%, N: αo a sX. This 1g; 1
The in-vehicle melting process is continuously cast using a Ronda nozzle under extremely sealed conditions, and low-volume slabs of N: 141) can be produced. As described above, the present invention utilizes the metal MgTo or Mg alloy in a special way to reduce the nitrogen volume of the deoxidizing bath.
Since this method enables the formation of layers, it has great industrial effects as a good method for stably producing low nitrogen bulk.

【図面の簡単な説明】 第1図は処理前1N11(0)  と1本発明による他
層時の脱窒量(△〔N〕)の関係を示す、第2因は。 縄層前スラブの酸化鉄含有量(Total Fe 3%
 )と。 Ii&電量の関係を示す、lll3図祉処虐藺に存在す
るス2ダ童と#1#中(N)の変化量の関係を示す。 代理人弁墳士秋沢政光 他 2名 1、i 11 (寸   N   も  N 、、lt(、、+ (転)  □・   0 、:賀・・−)ミ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the relationship between 1N11(0) before treatment and the amount of denitrification (Δ[N]) in another layer according to the present invention. Iron oxide content of the slab before the rope layer (Total Fe 3%
)and. It shows the relationship between the amount of change in S2 Dado and #1 #Naka (N) that exist in Ill3 Figure Welfare Treatment Abuse, which shows the relationship between Ii & electricity amount. Proxy benfuneral bureaucracy Masamitsu Akizawa and 2 others 1, i 11

Claims (1)

【特許請求の範囲】[Claims] (1)  腕鍍処廖俵の権鍋内溶−に、1214/l 
 以上のスラグ共存下で、非酸1ヒ性ガスでキャリヤし
九金勇MgあるいはMg 合金を吹込むことt%敞とす
る@gill−の脱電本処珈方法。
(1) 1214/l for the internal melting of the pot in Liaodan
In the coexistence of the above slag, @gill's main deelectrifying method involves injecting Mg or Mg alloy into a carrier with a non-acidic arsenic gas.
JP56201766A 1981-12-15 1981-12-15 Denitrifying method for disoxidized molten steel Pending JPS58104111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201766A JPS58104111A (en) 1981-12-15 1981-12-15 Denitrifying method for disoxidized molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201766A JPS58104111A (en) 1981-12-15 1981-12-15 Denitrifying method for disoxidized molten steel

Publications (1)

Publication Number Publication Date
JPS58104111A true JPS58104111A (en) 1983-06-21

Family

ID=16446579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201766A Pending JPS58104111A (en) 1981-12-15 1981-12-15 Denitrifying method for disoxidized molten steel

Country Status (1)

Country Link
JP (1) JPS58104111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201422A (en) * 2016-03-17 2017-09-26 上海梅山钢铁股份有限公司 A kind of production method of mild steel
GB2553342A (en) * 2016-09-02 2018-03-07 Materials Proc Institute Producing steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201422A (en) * 2016-03-17 2017-09-26 上海梅山钢铁股份有限公司 A kind of production method of mild steel
CN107201422B (en) * 2016-03-17 2019-05-24 上海梅山钢铁股份有限公司 A kind of production method of mild steel
GB2553342A (en) * 2016-09-02 2018-03-07 Materials Proc Institute Producing steel

Similar Documents

Publication Publication Date Title
US2144200A (en) Method of manufacturing siliconiron alloys
JP2003502504A (en) Method for recovering chromium metal from slag containing chromium oxide
US3169058A (en) Decarburization, deoxidation, and alloy addition
JPS58104111A (en) Denitrifying method for disoxidized molten steel
JP3643313B2 (en) Magnesium injection for ferrous metals
JPS6159376B2 (en)
JP3282531B2 (en) Melting method of high clean steel
JPH07207316A (en) Wire for desulfurization of molten iron having high desulfurization efficiency
JP3603513B2 (en) Method for deoxidizing low carbon steel
JP3023879B2 (en) Manufacturing method of high cleanness ultra low carbon steel
JP2616928B2 (en) Iron-rare earth metal master alloy and method for producing the same
JPH1121613A (en) Production of steel excellent in toughness at low temperature and sour resistance
SU835629A1 (en) Method of introducing modifying agent at steel casting
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel
US1992999A (en) Process of making iron
US3516819A (en) Environmental control process for gaseously removing oxygen from liquid metals
JPH062896B2 (en) Denitrification of molten steel with rare earth metals
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy
RU2124569C1 (en) Method of producing carbon steel
JP3169275B2 (en) Dephosphorization of chromium-containing steel
JPH05287360A (en) Method for melting extremely low carbon steel
JPS61223121A (en) Method for refining low nitrogen steel
JPH0372129B2 (en)
JPH05287361A (en) Method for melting extremely low carbon steel
JPH0133527B2 (en)