JPS58103793A - Method of producing panel heater - Google Patents

Method of producing panel heater

Info

Publication number
JPS58103793A
JPS58103793A JP20303781A JP20303781A JPS58103793A JP S58103793 A JPS58103793 A JP S58103793A JP 20303781 A JP20303781 A JP 20303781A JP 20303781 A JP20303781 A JP 20303781A JP S58103793 A JPS58103793 A JP S58103793A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
conductive
parts
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20303781A
Other languages
Japanese (ja)
Inventor
和夫 下村
金森 耕造
舞田 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP20303781A priority Critical patent/JPS58103793A/en
Publication of JPS58103793A publication Critical patent/JPS58103793A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は面発熱体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a surface heating element.

面発熱体の製造方法として、炭素繊維のような導電性縁
1維を熱硬化性樹脂Gこ分散させ、これをガラス繊維シ
ートに含浸させた導電性シート成形材料(以下、導電層
という。)の両側に、熱11ψ化性樹脂含浸ガラス繊維
シートからなる絶縁性シート成形材料(以下、絶縁Il
l?という。)を積1曽し、熱間加圧成形する方法が既
Gこ知られている。一般に上記のような熱硬化性樹脂含
浸ガラス繊維シートを成形材料として用いる熱間加圧成
形においては、熱金型内で成形材料をこ加圧剪断力を加
えて樹脂を適度に流動させ、これによって平滑な表面を
有する成形品を得るようにしている。しかしながら、面
発熱体の製造においては、絶縁層の内側に導電性繊維を
分散させた導電層が積層されており、熱間加圧成形に際
して絶縁層の樹脂を流動させるときは、これに伴って導
電性繊維が流動し、その間の接触が一部妨げられたり、
また絶縁層が一部導電層に浸透したりすることがあるの
で、均一な所定の電気抵抗値を有する面発熱体が得られ
ない。
As a method for manufacturing a surface heating element, a conductive sheet molding material (hereinafter referred to as a conductive layer) is prepared by dispersing a conductive edge fiber such as carbon fiber in a thermosetting resin G and impregnating a glass fiber sheet with this. An insulating sheet molding material (hereinafter referred to as an insulating Il
l? That's what it means. ) is multiplied by 1 and then hot press-formed. In general, in hot pressing using a glass fiber sheet impregnated with a thermosetting resin as the molding material as described above, the molding material is pressed in a hot mold by applying pressure shearing force to cause the resin to flow appropriately. In this way, a molded product with a smooth surface is obtained. However, in manufacturing surface heating elements, a conductive layer with conductive fibers dispersed inside the insulating layer is laminated, and when the resin of the insulating layer is flowed during hot press forming, The conductive fibers flow and the contact between them is partially blocked,
Further, since a part of the insulating layer may penetrate into the conductive layer, a surface heating element having a uniform predetermined electric resistance value cannot be obtained.

従って、面発熱体の製造Gこおいては、型内での絶縁層
の樹脂の流動を抑えるため(こ、絶縁層は型内面とほぼ
等しい面積を有するように所謂フルチャージ番こて型内
に充填される。この結果、得られる面発熱体は表面の平
滑性、微密性Gこ欠けて、絶縁性に劣るようになったり
、更には導電層の厚み分布か一様でない場合等をこけ、
絶縁層に樹脂流れか起こらないために熱間加圧成形時の
圧力が不均一に導電層に伝達され、却って導電性繊維の
分布を乱すこともあった。
Therefore, in the production of surface heating elements, in order to suppress the flow of the resin of the insulating layer within the mold (this is done in a so-called full charge iron mold so that the insulating layer has an area approximately equal to the inner surface of the mold). As a result, the resulting surface heating element lacks surface smoothness and micro-density, resulting in poor insulation properties, and furthermore, the thickness distribution of the conductive layer may be uneven. Moss,
Because only resin flow occurs in the insulating layer, the pressure during hot press molding is unevenly transmitted to the conductive layer, which may even disturb the distribution of the conductive fibers.

本発明は上記した種々の問題に鑑みてなされたものであ
って、表面の平滑性、緻密性Qこすぐれると共に、熱間
加圧成形において導電層の局部的な樹脂流れや導電性繊
維の流れを防止して、均一な発熱分布を有するようにし
た面発熱体の製造方法を提供することを目的とする。
The present invention has been made in view of the various problems described above, and it improves the surface smoothness and density of the surface. It is an object of the present invention to provide a method for manufacturing a surface heating element that prevents flow and has a uniform heat generation distribution.

本発明の面光熱体の製造方法は、熱硬化性樹脂lOO歯
量部について少な(とも50市量部の非導電性無機質充
填剤を含有する樹脂組成物をガラス繊維シートに含浸さ
せた第1の絶縁層を導電層の両面に積層し、次に上記各
絶縁層の表面に実質的に上記充填剤を含有しない熱硬化
性樹脂組成物をガラス繊維に含浸させた第2の絶縁1韓
を積層した後、熱間加E53W形することを特徴とする
ものである。
The method for manufacturing a surface photothermal body of the present invention includes a first method in which a glass fiber sheet is impregnated with a resin composition containing a non-conductive inorganic filler of a small amount (50 parts by mass) of a thermosetting resin lOO tooth part. Insulating layers are laminated on both sides of the conductive layer, and then a second insulating layer in which glass fibers are impregnated with a thermosetting resin composition that does not substantially contain the filler is formed on the surface of each insulating layer. After being laminated, it is hot-processed into an E53W shape.

以下(こ実施例を示す図面Gこ基づいて不発HJJを説
明する。
The unexploded HJJ will be explained below based on drawing G showing this embodiment.

第1図は熱間加圧成形前の各局を分離して示す。FIG. 1 shows each station separately before hot pressing.

導電層1は好ましくは導電性繊維を必要に応じ充填剤や
増粘剤と共に熱硬化性樹IIhに分散させ、ガラス耕、
維シートに含浸させて形成される。導電層は適宜に電極
2か取付けられている。導電性繊維としてはスチール繊
維、ステンレス繊維、炭禦繊維等が用いられるか、好ま
しくは炭素縁組か用いられる。導電層は面抵抗が1〜1
0000口の範囲Gこあることか望ましい。
The conductive layer 1 is preferably made by dispersing conductive fibers in a thermosetting resin IIh together with fillers and thickeners as required,
It is formed by impregnating a fiber sheet. Electrodes 2 are attached to the conductive layer as appropriate. As the conductive fibers, steel fibers, stainless steel fibers, charcoal fibers, etc. are used, and preferably carbon fibers are used. The conductive layer has a sheet resistance of 1 to 1
It is desirable to have a range G of 0000 units.

#電層の両面には、熱硬化性樹脂100市量部について
少なくとも50重量部の非導電性無機質充填剤を含有す
る樹脂組成物をガラス繊維シートに含浸させた第1の絶
121m3か積層される。上記充填剤は用いる熱硬化性
極脂よりも大きい熱伝導率を有することか望ましく、具
体的には炭酸カルシウム、アルミナ、クレー、タルク、
マイカ等が用いられる。第1の絶縁層は上記範囲の充填
剤を含有するため、導電層に積層されて熱間加圧成形さ
れた場合に樹脂の流動が抑えられ、その結果、導電1層
は導電性繊維の流動か抑えられて均一な抵抗分布を有す
る。第1の絶縁層には充填剤のほか、触媒や必要に応じ
て増粘剤か配合され、厚み1〜3朋程度に形成される。
# On both sides of the electrical layer, 121 m3 of a first layer is laminated with a glass fiber sheet impregnated with a resin composition containing at least 50 parts by weight of a non-conductive inorganic filler per 100 parts by weight of thermosetting resin. Ru. It is desirable that the above-mentioned filler has a higher thermal conductivity than the thermosetting superfat used, and specifically, calcium carbonate, alumina, clay, talc, etc.
Mica or the like is used. Since the first insulating layer contains a filler in the above range, when it is laminated on the conductive layer and hot-press molded, the flow of the resin is suppressed, and as a result, the first conductive layer It has a suppressed and uniform resistance distribution. In addition to the filler, the first insulating layer contains a catalyst and, if necessary, a thickener, and is formed to have a thickness of about 1 to 3 mm.

次に、第1の絶縁1曽のそれぞれの表面(こ第2の絶縁
層4が積層される。この第2の絶縁層は第1の絶縁層と
異なって、非電導性無機質充填剤を実質的に含有しない
熱硬化性樹脂組成物をガラス繊維シートに含浸させるこ
とによって形成され、その厚みは第1の絶縁層の厚みの
20〜50%、即ち、0.2〜1闘程度が好ましい。第
2の絶縁層は実質的に充填剤を含有しないので、第1の
絶縁層の表面に積層されて熱間加圧成形された場合に樹
脂がよ(流動し、第1の絶縁層と導電層とからなる内側
!i1層体が不均一な厚み分布を有するときにも、第2
の絶縁層を含めた積層体としての厚み分布を均一にする
。この結果、熱間加圧成形時に導電層に局部的な応力か
加わることかな(、導電層における導電性繊維に乱れが
生じないので、導電層は均一な抵抗分布を有する。また
、第2の絶縁層は充填剤を含有しない薄層であるため、
緻密で平滑であり、従って、絶縁性にすぐれた表面を形
成すると共(こ、導電層の発熱をよ(表面に伝達する。
Next, a second insulating layer 4 is laminated on each surface of the first insulating layer 4. This second insulating layer differs from the first insulating layer in that it substantially contains a non-conductive inorganic filler. The insulating layer is formed by impregnating a glass fiber sheet with a thermosetting resin composition that does not contain carbon dioxide, and its thickness is preferably about 20 to 50% of the thickness of the first insulating layer, that is, about 0.2 to 1 mm. Since the second insulating layer contains substantially no filler, when it is laminated on the surface of the first insulating layer and hot-pressed, the resin flows (flows) and the first insulating layer becomes conductive. Even when the inner !i1 layer body consisting of a layer has an uneven thickness distribution, the second
Make the thickness distribution of the laminate including the insulating layer uniform. As a result, local stress may be applied to the conductive layer during hot pressing (because the conductive fibers in the conductive layer are not disturbed, the conductive layer has a uniform resistance distribution. Since the insulating layer is a thin layer that does not contain fillers,
It is dense and smooth, and therefore forms a surface with excellent insulating properties, and also transmits heat from the conductive layer to the surface.

第2の絶縁l−か余りに薄いときは上記した内側積層体
の厚み分布を令−Gこし、平滑な表面を与える効果に乏
しくなり、−万、余りに厚いときは熱伝導性に劣ると共
に、得られる面発熱体の曲げ剛性を低下させるので好ま
しくない。
If the second insulator is too thin, the thickness distribution of the inner laminate described above will be distorted and the effect of providing a smooth surface will be poor; if it is too thick, the thermal conductivity will be poor and the This is not preferable because it reduces the bending rigidity of the surface heating element.

更に、iJ2の絶縁層は積層体の最表面層として熱金型
に直接に接し、内側層よりも速やかに高い温彦Gこ加熱
される。従って、熱間加圧成形において内側層を脱泡し
、緊密に圧縮された成形品を得るようをこ、第2の絶縁
111は第lの絶縁層よりも遅く硬化することが望まし
く、第2の絶縁rvitrs@lの絶縁層の1.5〜3
倍程度のゲルタイムを有するように配合か選ばれる。
Furthermore, the insulating layer of iJ2 is in direct contact with the hot mold as the outermost layer of the laminate, and is heated to a higher temperature G more quickly than the inner layer. Therefore, in order to degas the inner layer during hot pressing and obtain a tightly compressed molded product, it is desirable that the second insulation layer 111 hardens more slowly than the first insulation layer. Insulation rvitrs@l of insulation layer of 1.5~3
The formulation is selected to have about twice the gel time.

なお、本発明において導電層lは前記したはρ)、導電
性繊維と有機繊維との混合物を抄造したシ−ト、導電性
繊維を熱硬化性樹脂中に分散させたシート等であっても
よい。
In the present invention, the conductive layer l may be a sheet made of a mixture of conductive fibers and organic fibers, a sheet made of a mixture of conductive fibers and organic fibers, a sheet made of conductive fibers dispersed in a thermosetting resin, etc. good.

絶縁層及び場合により導電層に用いる熱硬化性樹脂には
不飽和ポリエステル樹脂やエポキシ樹脂が好ましく用い
られ、また、ガラス繊維シートには通常、ガラス繊維チ
ョツプドストランドマットか好ましく用いられるか、ガ
ラス繊維ペーパー、フィラメントマット等も必要に応じ
て用いられる。
The thermosetting resin used for the insulating layer and optionally the conductive layer is preferably an unsaturated polyester resin or an epoxy resin, and the glass fiber sheet is usually preferably a glass fiber chopped strand mat or a glass fiber sheet. Fiber paper, filament mat, etc. may also be used if necessary.

以上のよう番こして得た各粕を熱金型内に装填し、熱間
加圧成形すれば、@2図に示すような面発熱体を得る。
Each of the lees obtained by the above-mentioned straining is loaded into a hot mold and hot-press molded to obtain a surface heating element as shown in Fig. @2.

成形(こおける温度及び圧力は用いる樹脂にもよるか、
不飽和ポリエステル樹脂の場合、温度130〜160°
C1圧力5〜80KSl/Cm程度である。
Molding (temperature and pressure in the oven may depend on the resin used,
For unsaturated polyester resin, temperature 130-160°
The C1 pressure is about 5 to 80 KSl/Cm.

本発明の方法によれば、以上のように、導′醒鳩の両面
に充填剤を含有する熱硬化性樹脂組成物含浸ガラス統・
維シートからなる第1の絶縁層を積施し、この各表面(
こ実質的に充(眞剤を含有しf、rい熱硬化性樹脂組成
物含浸ガラス繊維シートからなる薄層の第2の絶縁層を
積層するので、金型内【こフルチャージにてこの積FC
1t体を装填して熱間加圧成形しても、第2絶縁層は樹
脂流れかよ(、内側積層体の厚みの不均一があってもこ
れを平滑化しで、内側積層体に局部的な応力が加わるの
を防ぎ、−万、第1絶縁層は樹脂流れを抑えられて導電
層の繊維に乱れを生じさせないから、表面が平滑美顔に
て絶縁性と熱伝導性にすぐれると共に、抵抗分布の一様
な面発熱体か得られるのである。
According to the method of the present invention, as described above, a thermosetting resin composition containing a filler is impregnated on both sides of the guiding dove.
A first insulating layer made of a fiber sheet is applied, and each surface (
Since a thin second insulating layer consisting of a glass fiber sheet impregnated with a thermosetting resin composition containing a substantially filling agent is laminated, this layer is fully charged in the mold. Product FC
Even if the 1t body is loaded and hot-pressed, the resin may flow in the second insulating layer (even if there is uneven thickness of the inner laminate, this should be smoothed and the inner laminate may have localized areas). The first insulating layer suppresses the resin flow and does not cause any disturbance to the fibers of the conductive layer, resulting in a smooth and beautiful surface with excellent insulation and thermal conductivity, as well as high resistance. A surface heating element with uniform distribution can be obtained.

以下に本発明の詳細な説明する。なお、以下において部
は重量部を意味する。
The present invention will be explained in detail below. In addition, in the following, parts mean parts by weight.

実施例 不飽、和ポリエステル樹脂100部に触媒1部、重。Example 100 parts of unsaturated, Japanese polyester resin and 1 part of catalyst.

合禁止剤0.03部、増粘剤0.5部、及び炭酸カルシ
ウム100部を加えて攪拌し、ざら【こ、炭素繊維(繊
維長6朋、繊維径12μ)1部を加えて攪拌し、導電性
樹脂組成物を調製した。この極脂組成物をポリエチレン
フィルム上に厚さ1Mに塗布し、この−Lにガラス繊維
チョツプドストランドマット(目付ff145o f/
m” )とポリエチレンフィルムをこの順に市ね、ロー
ル加圧によってガラス繊維マットに導電性樹脂組成物を
含浸させた。これを巻取ってロール状となし、ポリエス
テルフィルムで密封して、40°Cで3日間熟成して導
電層を得た。
Add 0.03 part of inhibitor, 0.5 part of thickener, and 100 parts of calcium carbonate and stir. Add 1 part of carbon fiber (fiber length: 6 mm, fiber diameter: 12 μm) and stir. , a conductive resin composition was prepared. This extremely fat composition was applied to a thickness of 1M on a polyethylene film, and a glass fiber chopped strand mat (fabric weight ff 145 o f/
m") and polyethylene film were placed in this order, and the glass fiber mat was impregnated with the conductive resin composition by roll pressure. This was wound into a roll, sealed with a polyester film, and heated at 40°C. A conductive layer was obtained by aging for 3 days.

次に、炭素繊維を含有しないほかは上記と同じ不飽和ポ
リエステル極脂組成物を一ヒ記と同様にしてポリエチレ
ンフィルム上に厚み2朋に塗布し、この上にガラス繊維
チョツプドストランドマット(目付量900 f/m’
 )とポリエチレンフィルムを重ね、上記と同様昏こ処
理して第1の絶縁層を得た。
Next, the same unsaturated polyester superfat composition as above except that it does not contain carbon fibers was applied to a thickness of 2 mm on a polyethylene film in the same manner as described above, and a glass fiber chopped strand mat ( Area weight 900 f/m'
) and a polyethylene film were stacked together and treated in the same manner as above to obtain a first insulating layer.

別に前記導を層において炭素繊維及び炭酸カルシウムを
含有せず、かつ触媒を1.8部及び重合禁止剤を0.0
6部として、そのlを変えて配合した以外は同じM脂組
成物をポリエチレンフィルム上に厚さ0.3 tTrt
n&こ塗布し、この上にガラス線維チョツプドストラン
ドマット(目付1123097m’ )とポリエチレン
フィルムを重ね、同様の処理により第2の絶縁層を得た
Separately, the conductive layer does not contain carbon fiber or calcium carbonate, and contains 1.8 parts of catalyst and 0.0 part of polymerization inhibitor.
The same M fat composition was prepared on a polyethylene film to a thickness of 0.3 tTrt, except that 6 parts were mixed and the l was changed.
A glass fiber chopped strand mat (fabric weight: 1123097 m') and a polyethylene film were layered on top of this, and a second insulating layer was obtained by the same treatment.

次に、導電層じ35CtllX 75部m )の短辺焔
昏こ適宜に電極を固定し、第1図に示すようにこの両面
(こ第lの絶縁層(4部cm×89cm )を重ね、更
に各絶縁層の表面に第2の絶縁層(40部mX80Cm
 )を重ねて積層体となし、フルチャージGこて金型に
装J−し、温度145°C1圧力40Kl//c++t
の条件で10分間成形した。同様にして10枚の面発熱
体を得た。
Next, electrodes were appropriately fixed on the short sides of the conductive layer (35 parts cm x 75 parts m), and as shown in FIG. Furthermore, a second insulating layer (40 parts m x 80 cm
) are stacked to form a laminate, placed in a fully charged G trowel mold, and heated at a temperature of 145°C and a pressure of 40Kl//c++t.
It was molded for 10 minutes under the following conditions. Ten sheet heating elements were obtained in the same manner.

比較例 実施例1の第1絶縁層において、樹脂組成物のポリエチ
レンフィルムへの塗布厚さを2.3 rnとした以外は
全く同様Gこて絶縁層を得た。実施例1と同じ導電層の
両面にこの絶縁層を重ね、実施例1と同様にして■1発
熱体10 枚を得た。
Comparative Example A G trowel insulating layer was obtained in exactly the same manner as in Example 1, except that the coating thickness of the resin composition on the polyethylene film was changed to 2.3 rn. This insulating layer was laminated on both sides of the same conductive layer as in Example 1, and 10 (1) heating elements were obtained in the same manner as in Example 1.

以上のようGこして得た各10枚の面発熱体の性能を表
に示す。本発明の方法により得た面発熱体が表面平滑性
、絶縁性にすぐれていると共Gこ、温度分布が均一であ
ることか明らかである。
The performance of each of the 10 surface heating elements obtained through the G-filtering process as described above is shown in the table. It is clear that the surface heating element obtained by the method of the present invention has excellent surface smoothness and insulation properties, as well as uniform temperature distribution.

(注) 温度分布:各面発熱体に10分間通電(100
v)した後、表面の温度を10 箇所で測定し、最高温度−最低 温度で評価しfこ。
(Note) Temperature distribution: energize the heating element on each side for 10 minutes (100
v) After that, the surface temperature was measured at 10 points and evaluated as maximum temperature - minimum temperature.

表面性状二東の有無は肉眼観察による。光沢度は光沢計
による測定価の平 均値である。
The presence or absence of surface texture is determined by visual observation. The glossiness is the average value measured by a glossmeter.

絶縁抵抗:常温の水中に10000時間浸漬後、500
 Vメガテスターをこで絶縁抵 抗を測定した。
Insulation resistance: 500 after immersed in water at room temperature for 10,000 hours
Insulation resistance was measured using a V mega tester.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって熱間加圧成形する前の各
層を分離して示す各層の断面図、第2図は第1図(こ示
す各層を熱間加圧成形して得られる面発熱体の断面図で
ある。 l・・・尋電層、2・・・電極、3・・・第1の絶縁層
、4・・・第2の絶U層。 特許出願人   積水化学工業株式会社代表者藤沼基利 第1図 ム
Figure 1 is a cross-sectional view of each layer before being hot-pressed by the method of the present invention, and Figure 2 is a cross-sectional view of each layer shown in Figure 1. It is a sectional view of a heating element. 1... Hydraulic layer, 2... Electrode, 3... First insulating layer, 4... Second absolute U layer. Patent applicant Sekisui Chemical Co., Ltd. Company representative Mototoshi Fujinuma Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂100重量部について少なくとも5
0重量部の非導電性無機質充填剤を含有する樹脂組成物
をガラス繊維シートに含浸させた第1の絶縁層を導電層
の両面に積層し、次(こ上記各絶縁層の表面に実質的を
二上記充填剤を含有しない熱硬化性樹脂酸物をガラス繊
維(こ含浸させた第2の絶縁層を積層した後、熱間加圧
成形することを特徴とする面発熱体の製造方法。
(1) At least 5 parts per 100 parts by weight of thermosetting resin
A first insulating layer made by impregnating a glass fiber sheet with a resin composition containing 0 parts by weight of a non-conductive inorganic filler is laminated on both sides of the conductive layer, and then (substantially on the surface of each of the above insulating layers) (2) A method for producing a surface heating element, which comprises laminating a second insulating layer impregnated with glass fibers (glass fibers) and then hot-press molding the thermosetting resin acid containing no filler.
(2)第2の絶縁層の厚みが第1の絶縁層の厚みの20
〜50%であることを特徴とする特許請求の範囲第1項
記載の面発熱体の製造方法。
(2) The thickness of the second insulating layer is 20 times the thickness of the first insulating layer.
The method for manufacturing a surface heating element according to claim 1, wherein the heating value is 50%.
JP20303781A 1981-12-15 1981-12-15 Method of producing panel heater Pending JPS58103793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20303781A JPS58103793A (en) 1981-12-15 1981-12-15 Method of producing panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20303781A JPS58103793A (en) 1981-12-15 1981-12-15 Method of producing panel heater

Publications (1)

Publication Number Publication Date
JPS58103793A true JPS58103793A (en) 1983-06-20

Family

ID=16467298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20303781A Pending JPS58103793A (en) 1981-12-15 1981-12-15 Method of producing panel heater

Country Status (1)

Country Link
JP (1) JPS58103793A (en)

Similar Documents

Publication Publication Date Title
US4434023A (en) Method for producing plate heater
US3774299A (en) Method for production of panel heater
JPS60122711A (en) Manufacture of porous carbon board
JPS6240806B2 (en)
DE2148191B2 (en) Wireless panel heating elements and processes for their manufacture
CN101150891B (en) Nano carbon crystal material and its method for making electric heating plate
JPS58103793A (en) Method of producing panel heater
JPS585988A (en) Method of producing panel heater
JPS6311757B2 (en)
JPS585989A (en) Method of producing panel heater
JPS6311758B2 (en)
JPS5857285A (en) Method of producing sectional different shape heater
JPS6312356B2 (en)
JPS587785A (en) Method of producing panel heater
RU1802917C (en) Process of manufacture of heating device
JPS6052553B2 (en) Method for manufacturing sheet heating element
JPS6230107B2 (en)
JPH11200522A (en) Heat insulation panel and heater panel
SU598271A1 (en) Method of manufacturing polymer electric heater
JPS58213493A (en) Electrically insulating board
JPH02199010A (en) Production of thin sheetlike carbon material
JP2745039B2 (en) Manufacturing method of sheet heating element
JPH0248466A (en) Production of thin sheetlike carbon material
JPS6213161B2 (en)
JPS59138449A (en) Composite resin sheet-shaped molding material