JPS58102333A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS58102333A
JPS58102333A JP20220681A JP20220681A JPS58102333A JP S58102333 A JPS58102333 A JP S58102333A JP 20220681 A JP20220681 A JP 20220681A JP 20220681 A JP20220681 A JP 20220681A JP S58102333 A JPS58102333 A JP S58102333A
Authority
JP
Japan
Prior art keywords
base
substrate
film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20220681A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Toshiaki Kunieda
国枝 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20220681A priority Critical patent/JPS58102333A/en
Publication of JPS58102333A publication Critical patent/JPS58102333A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a Co-Cr vertical magnetization film easily with a device of simple structure, by vapor depositing Co and Cr to a base without bringing the part of the base being exposed to the evaporated atoms into contact with the constituents of a vacuum vapor deposition apparatus. CONSTITUTION:A base 1 is stretched between a feed roll 3 and a winding roll 4 around a rolls 7, 7 in a vacuum vapor deposition apparatus, and Co and Cr are vapor deposited through a mask 5 from an evaporation source 6 onto the part (l) of the base 1 without bringing the base 1 into contact with the constituents of the apparatus, while the base 1 is transferred.

Description

【発明の詳細な説明】 本発明は垂直記録方式に適した磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium suitable for perpendicular recording.

短波長記録特性乗優れた磁気記録方式として、垂直記録
方式がある。この方式においては磁化容易軸が膜面に対
して垂直な方向となる垂直記録媒体が必要となる。この
ような媒体に信号を記録すると、残留磁化は媒体の膜面
に垂直な方向を向く。
A perpendicular recording method is a magnetic recording method with excellent short wavelength recording characteristics. This method requires a perpendicular recording medium in which the axis of easy magnetization is perpendicular to the film surface. When a signal is recorded on such a medium, the residual magnetization is oriented perpendicular to the film surface of the medium.

そのため、信号が短波長になるほど媒体内反磁界は減少
し、優れた再生出力が得られる。
Therefore, as the wavelength of the signal becomes shorter, the demagnetizing field within the medium decreases, and superior reproduction output can be obtained.

現在用いられている垂直記録媒体は、非磁性基板上に直
接に、あるいはパーマロイ等の軟磁性薄膜を介して、C
OとOrを主成分とし垂直方向に磁化容易軸を有する磁
性層をスパッタリング法により形成したものである。C
OとOrを主成分としたスパッタ膜は、Crの量が約3
0重量%以下の範囲では結晶系が稠密六方構造であり、
そのC軸を膜面に対して垂直な方向に配向させることが
でき、かつ垂直方向の異方性磁界が反磁界より太きぐな
るまで飽和磁化を低下させることができるので、垂直磁
化膜を実現することができる。
Currently used perpendicular recording media are made by recording C on a non-magnetic substrate directly or through a soft magnetic thin film such as permalloy.
A magnetic layer containing O and Or as main components and having an axis of easy magnetization in the perpendicular direction is formed by a sputtering method. C
The sputtered film mainly composed of O and Or has an amount of Cr of about 3
In the range of 0% by weight or less, the crystal system has a close-packed hexagonal structure,
The C-axis can be oriented in a direction perpendicular to the film surface, and the saturation magnetization can be lowered until the perpendicular anisotropic magnetic field becomes thicker than the demagnetizing field, resulting in a perpendicularly magnetized film. can do.

しかし、スパッタリング法は磁性薄膜の形成速度が遅い
ので、低コストで垂直磁化膜を生産することが困難であ
る。スパッタリング法に対し、真空蒸着法(イオンブレ
ーティング法のように蒸発原子の一部をイオン化する方
法も含む)によれば、数1000人/秒という速い形成
速度でGo−Cr垂直磁化膜が得られることを、発明者
らは見出した。真空蒸着法においては、基板を円筒状キ
ヤンの周側面に沿って移動させつつ、薄膜の形成を行な
うと、テープ状の垂直記録媒体が非常に生産性よく得ら
れる。
However, since the sputtering method is slow in forming a magnetic thin film, it is difficult to produce a perpendicularly magnetized film at low cost. In contrast to the sputtering method, the vacuum evaporation method (including methods that ionize some of the evaporated atoms, such as the ion blating method) can produce a Go-Cr perpendicularly magnetized film at a high formation rate of several thousand people/second. The inventors have discovered that. In the vacuum evaporation method, a tape-shaped perpendicular recording medium can be obtained with high productivity by forming a thin film while moving the substrate along the circumferential side of a cylindrical can.

第1図にこのような真空蒸着装置の内部構造の概略を示
す。高分子材料からなる基板1は円筒状キャン2に沿っ
て矢印Aの方向へ走行する。電子ビーム蒸発源6と円筒
状キャン2との間にはマスク5が配置されており、蒸発
原子はスリットSを通って基板1に付着する。したがっ
て、近似的に図示された長さlの領域において、基板1
は蒸発原子にさらされる。3,4はそれぞれ基板1の供
給ロールおよび巻取りロールである。
FIG. 1 schematically shows the internal structure of such a vacuum evaporation apparatus. A substrate 1 made of a polymeric material runs along a cylindrical can 2 in the direction of arrow A. A mask 5 is placed between the electron beam evaporation source 6 and the cylindrical can 2, and the evaporated atoms pass through the slit S and adhere to the substrate 1. Therefore, in the approximately illustrated region of length l, the substrate 1
is exposed to evaporated atoms. 3 and 4 are a supply roll and a take-up roll for the substrate 1, respectively.

Go−Cr蒸着膜が垂直磁化膜になるためには、稠密六
方構造のC軸が膜面に垂直方向に配向し、垂直方向の異
方性磁界が反磁界よりも大きくなることが必要である。
In order for the Go-Cr vapor deposited film to become a perpendicularly magnetized film, the C-axis of the dense hexagonal structure must be oriented perpendicular to the film surface, and the anisotropic magnetic field in the perpendicular direction must be larger than the demagnetizing field. .

すなわち、膜の垂直異方性定数Knが正になることが必
要である。実験の結果、蒸着時に基板温度を約200℃
以上に保持すれば、上記の要求が満たされ、Go−Cr
垂直磁化膜が得られることが明らかになった。特に基板
温度を30o′C程度に保持すると、膜面に垂直方向の
保磁力HCが約12007エルステツド、飽和磁化Ms
が約400 emw / c c  という、非常に特
性の優れた膜が得られた。
That is, it is necessary that the perpendicular anisotropy constant Kn of the film be positive. As a result of experiments, the substrate temperature was set at approximately 200℃ during vapor deposition.
If the above is maintained, the above requirements are met and Go-Cr
It has become clear that a perpendicularly magnetized film can be obtained. In particular, when the substrate temperature is maintained at about 30o'C, the coercive force HC in the direction perpendicular to the film surface is about 12007 oersted, and the saturation magnetization Ms
A film with very excellent properties was obtained, with a value of about 400 emw/cc.

以上のように蒸着時に基板の温度を300°C程度にす
ることにより、特性の優れたC0−0r垂直磁化膜が得
られるが、第1図に示した構造の蒸着装置では、基板温
度を高めようとすると、キャン2の温度を上げなければ
ならない。しかしながら、真空蒸着装置の内部でキャン
2の温度を3oo℃程度にすることは困難であり、特に
キャンが大きくなればなるほどその困難さは増大する。
As described above, a C0-0r perpendicular magnetization film with excellent characteristics can be obtained by keeping the substrate temperature at about 300°C during vapor deposition, but in the vapor deposition apparatus with the structure shown in Figure 1, the substrate temperature is raised If you try to do this, you will have to raise the temperature of Can 2. However, it is difficult to maintain the temperature of the can 2 at about 300° C. inside the vacuum evaporation apparatus, and the difficulty increases particularly as the can becomes larger.

本発明はこのような問題を解決し、容易にGo−Cr垂
直磁化膜を形成することのできる方法を提供する。
The present invention solves these problems and provides a method for easily forming a Go-Cr perpendicular magnetization film.

以下、本発明の方法の一実施例について、第2図を用い
て説明する。この実施例では第1図に示した装置とは異
なり、基板1はキャンに沿わずに、ローラー7.7間に
張架されて、矢印入方向へ走行する。したがって、基板
1の、蒸発原子にさらされる部分βは、蒸着装置内部の
他の部分に接触せずに浮いた状態である。このような状
態でC0−0r膜を形成したところ、第1図の装置にお
いてキャン2の温度を約3oo′Cにした場合に得られ
た膜とほぼ等しい特性のGo−1Or垂直磁化膜を容易
に得ることができた。その理由としては、基板からの熱
の放散効果が考えられる。すなわち、蒸着時には、基板
表面には高温度の蒸発原子、電子ビーム蒸発源からの反
射電子や2次電子等が飛来し、その結果、基板には熱エ
ネルギーが供給されることになる。しかるに、第1図の
装置においいて、この熱エネルギーがキャン2を通じて
容易に逸散してし1つ。これに対して第2図の装置にお
いては、基板1のlの部分が他と接触していす、かつ高
分子材料は熱伝導性がよくないので、熱エネルギーが逸
散せず、基板1の温度が上昇する。
An embodiment of the method of the present invention will be described below with reference to FIG. In this embodiment, unlike the apparatus shown in FIG. 1, the substrate 1 does not run along the can, but is stretched between rollers 7, 7 and runs in the direction indicated by the arrow. Therefore, the portion β of the substrate 1 exposed to the evaporated atoms is in a floating state without contacting other portions inside the vapor deposition apparatus. When a C0-0r film was formed in this state, it was easy to form a Go-1Or perpendicularly magnetized film with properties almost the same as those obtained when the temperature of can 2 was set to about 3oo'C in the apparatus shown in Figure 1. I was able to get it. The reason for this is thought to be the effect of dissipating heat from the substrate. That is, during vapor deposition, high-temperature evaporated atoms, reflected electrons from an electron beam evaporation source, secondary electrons, etc. fly to the substrate surface, and as a result, thermal energy is supplied to the substrate. However, in the apparatus of FIG. 1, this thermal energy is easily dissipated through the can 2. On the other hand, in the device shown in FIG. 2, the portion l of the substrate 1 is in contact with other parts, and the polymer material has poor thermal conductivity, so thermal energy is not dissipated and the substrate 1 Temperature rises.

したがって、第1図の装置においては、キャン2の温度
を上昇させることにより、基板1の温度を上げる必要が
あるが、本発明によれば強制的に基板1の温度を高めな
くても、蒸着時には必然的に基板の温度が上がり、特性
のよいGo−Cr垂直磁化膜が得られる。
Therefore, in the apparatus shown in FIG. 1, it is necessary to raise the temperature of the substrate 1 by increasing the temperature of the can 2, but according to the present invention, the temperature of the substrate 1 can be deposited without forcibly increasing the temperature. Sometimes, the temperature of the substrate inevitably rises, and a Go-Cr perpendicular magnetization film with good characteristics can be obtained.

以上のように、本発明の方法によれば、基板の蒸発原子
にさらされる部分を、真空蒸着装置内の構成要素に接触
させることなく、COとOrを蒸着させているので、簡
単な構成の装置でCo−Cr垂直磁化膜を容易に得るこ
とができる。
As described above, according to the method of the present invention, CO and Or are deposited on the part of the substrate exposed to evaporated atoms without contacting the components in the vacuum evaporation apparatus, so that the method has a simple structure. A Co--Cr perpendicular magnetization film can be easily obtained using the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気記録媒体を製造するための真空蒸着装置の
内部の一例を示す図、第2図は本発明の方法を実施する
ための真空蒸着装置の内部の一例を示す図である。 1・・・・・基板、5・・・・・・マスク、6・・・・
・・蒸発源、7・・・・・・ローラー。
FIG. 1 is a diagram showing an example of the interior of a vacuum evaporation apparatus for manufacturing a magnetic recording medium, and FIG. 2 is a diagram showing an example of the interior of a vacuum evaporation apparatus for carrying out the method of the present invention. 1...Substrate, 5...Mask, 6...
...Evaporation source, 7...Roller.

Claims (1)

【特許請求の範囲】[Claims] 磁化容易軸が膜面に垂直方向にあるCOとOrを主成分
とする磁性層を電子ビーム蒸発源を用いた真空蒸着法に
より高分子材料からなる基板上に形成する際に、前記基
板において少なくとも蒸発原子にさらされる部分が蒸着
装置内部の他の部分と接触していないことを特徴とする
磁気記録媒体の製造方法。
When forming a magnetic layer mainly composed of CO and Or whose easy axis of magnetization is perpendicular to the film surface on a substrate made of a polymer material by vacuum evaporation using an electron beam evaporation source, at least A method for producing a magnetic recording medium, characterized in that a portion exposed to evaporated atoms does not come into contact with other portions inside an evaporation device.
JP20220681A 1981-12-14 1981-12-14 Manufacture of magnetic recording medium Pending JPS58102333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20220681A JPS58102333A (en) 1981-12-14 1981-12-14 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20220681A JPS58102333A (en) 1981-12-14 1981-12-14 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS58102333A true JPS58102333A (en) 1983-06-17

Family

ID=16453715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20220681A Pending JPS58102333A (en) 1981-12-14 1981-12-14 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58102333A (en)

Similar Documents

Publication Publication Date Title
JPS58102333A (en) Manufacture of magnetic recording medium
JPS59162622A (en) Vertical magnetic recording material and its production
US4547398A (en) Method for manufacturing magnetic recording medium
EP0066146B1 (en) Method for manufacturing magnetic recording medium
JPS6174143A (en) Production of magnetic recording medium
JPS58102335A (en) Manufacture of magnetic recording medium
JPS5870430A (en) Manufacture of magnetic recording medium
JPS58125236A (en) Manufacture of magnetic recording medium
JPH0219533B2 (en)
JPS58137134A (en) Manufacture of magnetic recording medium
JPS5933628A (en) Manufacture of vertical magnetic recording medium
JPS62234239A (en) Production of magnetic recording medium
JPS5814326A (en) Production for magnetic recording medium
JPH0334131B2 (en)
JPH0121535B2 (en)
JPS58137135A (en) Manufacture of magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPS58133637A (en) Manufacture for magnetic recording medium
JPH0473215B2 (en)
JPS58122618A (en) Manufacture of magnetic recording medium
JPH05159267A (en) Magnetic recording medium and production of the medium
JPH0626021B2 (en) Method of manufacturing magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPH0334614B2 (en)