JPS58102105A - Optical fiber sensor - Google Patents

Optical fiber sensor

Info

Publication number
JPS58102105A
JPS58102105A JP56200168A JP20016881A JPS58102105A JP S58102105 A JPS58102105 A JP S58102105A JP 56200168 A JP56200168 A JP 56200168A JP 20016881 A JP20016881 A JP 20016881A JP S58102105 A JPS58102105 A JP S58102105A
Authority
JP
Japan
Prior art keywords
fiber
light
displacement
optical fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56200168A
Other languages
Japanese (ja)
Inventor
Tosaku Kojima
東作 小島
Kunio Matsumoto
邦夫 松本
Yoshihisa Suzuki
喜久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56200168A priority Critical patent/JPS58102105A/en
Publication of JPS58102105A publication Critical patent/JPS58102105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To improve the linearity of a light output with respect to displacement, by using a clad material for the optical fiber, and making the ratio of a core diameter with respect to the fiber diameter including the clad material 0.55- 0.65. CONSTITUTION:Light emitted from a light projecting part is inputted to the light receiving part fiber 10 at the rectangular surface of the light receiving multiple fiber 11 and transduced into a voltage by a light receiving element 12. As for light receiving part fiber 10, a single fiber having the clad part, which has a diameter of 0.55-0.65 times the fiber diameter, most desirably 0.596 times the fiber diameter, is used in a bundled shape.

Description

【発明の詳細な説明】 本発明はシート状、帯状物体のエツジ変位。[Detailed description of the invention] The present invention relates to edge displacement of sheet-like or band-like objects.

幅測定、イメージ検出用の光ファイバセンナに関するも
のである。
This invention relates to an optical fiber sensor for width measurement and image detection.

連続するシート状物体、特に高精度の寸法精度が要求さ
れる磁気テープ類の走行特性等を測定する方法は従来は
#11図に示すように、光源1からレンズ2を通して、
平行光線を単−入射光ファイバ3に入れて、単一受光フ
ァイバ4に投光し、受光は光電導素子6と電気囲路(図
示せず)Kよりて電圧に変換される。/−)状物体5が
変動すると、センナの開口部の変位が検出される方法で
ある。円形光ファイバと座標系を第2(6)図に示す。
Conventionally, the method of measuring the running characteristics of continuous sheet-like objects, especially magnetic tapes that require high dimensional accuracy, is to emit light from a light source 1 through a lens 2, as shown in Figure #11.
A parallel beam of light is input into a single-incidence optical fiber 3 and projected onto a single receiving fiber 4, and the received light is converted into voltage by a photoconductive element 6 and an electric circuit (not shown) K. In this method, when the /-)-shaped object 5 moves, the displacement of the opening of the senna is detected. The circular optical fiber and coordinate system are shown in Figure 2 (6).

半径Reの光ファイバにおいて、センナの開口部の変位
なXとし、変位による光出力なYとして、ファイバに入
射した光が一無損失、かつ均一に光電素子で受光された
とすると、偽西Jo  の範囲で。
In an optical fiber with radius Re, let X be the displacement of the senna aperture, and Y be the optical output due to the displacement, and if the light incident on the fiber is uniformly received by the photoelectric element with no loss, then the pseudo Nishi Jo In a range.

となシ、これを積分すると。Tonashi, if we integrate this.

一−→2) となる。1-→2) becomes.

従って、 R55m1のときの変位Xと光出力の関係は
、第2(b)図となる。よりて、変位に対する光出力は
非直線的であることがわかる。このように、従来方法は
、変位に対して、光出力が非直線的である欠点があった
Therefore, the relationship between the displacement X and the optical output when R55m1 is as shown in FIG. 2(b). Therefore, it can be seen that the optical output with respect to displacement is non-linear. As described above, the conventional method has the disadvantage that the optical output is non-linear with respect to displacement.

本発明の目的は、上記した従来技術の欠点に鑑み発明さ
れたもので、その目的は変位に対する光出力が極めて直
線性の良い光フアイバ変位センtを提供するにある。
The object of the present invention was invented in view of the above-mentioned drawbacks of the prior art, and the object is to provide an optical fiber displacement center whose optical output with respect to displacement has extremely good linearity.

本発明の特徴をするところは、光ファイバにタララド(
被覆)材を使用し、かつ俵積みにする。そして、最適の
コア中地を0.55〜0.65にし。
The feature of the present invention is that the optical fiber is
(covering) material and stacked in bales. Then, set the optimal core medium to 0.55 to 0.65.

変位に対して光出力の直線性を極めて嵐〈シたことであ
る。ただし、コア半径比にけ、クラツド材を含めた光フ
ァイバ半径lieに対するコア半径(光フアイバ芯材)
Rの比である。
The linearity of the optical output with respect to displacement has been extremely improved. However, according to the core radius ratio, the core radius (optical fiber core material) with respect to the optical fiber radius ie including the cladding material.
It is the ratio of R.

以下本発明を図面を参照して詳at/C説明するJII
5図は1本発明に使用されるクラツド材の光ファイバを
俵積みしたマルチファイバの配列を示したものである。
Hereinafter, the present invention will be explained in detail with reference to the drawings.JII
FIG. 5 shows a multi-fiber arrangement in which optical fibers made of clad material used in the present invention are piled up in bales.

マルチファイバの開口部の変位なXとして。As the displacement of the multi-fiber aperture, x.

77421個を俵積みし、2段積をN−1とするファイ
バ半径なlloとして、コア半径をRとする絡4図は、
ファイバ3個(n−5)を2段(#−1)に俵積みした
マルチファイバにおいて、ファイバ半径floが一定で
9コア半径Rが異なる場合の変位量Xと光量の関係を(
2)式をもとに求めたものゼある。これから、コア半径
Rによって、光量と変位の関係は変化することが分かる
。第4図から、光入力に一定のとき、R−1では、変位
に対する光出力は大きいが、 R−0,6の方が変位に
対する光量変化の直線性が良いことが分かる。
77421 pieces are piled up in bales, the two-stage stack is N-1, the fiber radius is llo, the core radius is R, and the diagram 4 is as follows:
In a multi-fiber in which 3 fibers (n-5) are piled up in two stages (#-1), the relationship between the displacement amount X and the light amount when the fiber radius flo is constant and the 9-core radius R is different is expressed as (
2) There are some results obtained based on the formula. From this, it can be seen that the relationship between the amount of light and the displacement changes depending on the core radius R. From FIG. 4, it can be seen that when the optical input is constant, the optical output with respect to displacement is large in R-1, but the linearity of the change in light amount with respect to displacement is better in R-0 and R-6.

今、光量変化の直線性を表わす指標として。Now, as an indicator to express the linearity of changes in light intensity.

誤差″4Cを(5)式のように定義する。The error "4C" is defined as in equation (5).

’−Yt   ・・・・・・・・・・・・・−・・・(
51但し、Ytはマルチファイバの全光量であり。
'-Yt ・・・・・・・・・・・・・・・(
51 However, Yt is the total light amount of the multi-fiber.

dは変位Xにおける光量Yと、0からYtK向って、変
位Xに比例して、直線的に増加するILI的光量との差
である。
d is the difference between the light amount Y at the displacement X and the ILI light amount, which increases linearly in proportion to the displacement X from 0 to YtK.

誤差率−の計算法を第5図によって詳述する俵積みされ
たーマルチファイバの一部は第5図に示すように、規則
的に配列されている。従りてその中の任意のファイバの
組1h 、F麿における基本的誤差率8′を計算すると
とKよシ、マルチ7フイバ全体の誤差率蔓が求められる
。基本的誤差率8′を計算するには、マルチファイバ開
口部の考察範囲をファイバFlの中心から7テイfiF
Iの中心まで考えればよく、ファイバF1の中心を原点
Oとする。マルチファイバの開口部変位Xは、コア半径
比Kwa75と同様、ファイバ半@R―で、(4)式の
ように無次元化して L −−・・・、、、、−・−・・−・・・・・・・−
(4)e 開口比りと呼ぶ。上記の考察範囲においては。
A method for calculating the error rate will be explained in detail with reference to FIG. 5. As shown in FIG. 5, a part of the stacked multi-fibers is regularly arranged. Therefore, if we calculate the basic error rate 8' for an arbitrary fiber set 1h among them, the error rate curve for the entire multi-7 fibers can be found. To calculate the fundamental error rate 8', the range of consideration for the multifiber aperture is 7 points fiF from the center of fiber Fl.
It is sufficient to consider up to the center of I, and let the center of fiber F1 be the origin O. Similarly to the core radius ratio Kwa75, the multi-fiber opening displacement・・・・・・・・・−
(4)e It is called the aperture ratio. Within the scope of the above consideration.

コア半径比X及び開口比りは、1よシ小さい正数値な堆
る。
The core radius ratio X and the aperture ratio are positive values smaller than 1.

光量がファイバコアの開口面積に比例するとすれば、光
量変化の直線性を表わす基本的誤差率C′は開口比LK
対するファイバコアの開口面積の直線性に置換できる。
If the amount of light is proportional to the aperture area of the fiber core, the basic error rate C' representing the linearity of the change in the amount of light is the aperture ratio LK
This can be replaced by the linearity of the opening area of the fiber core.

考察範囲全体のファイバコア開口面積5tけSt−πに
3   ・・・・・・・・・・・・・・・・・・・・・
・−(5)であ−る。従りて、任意の開口比りのときの
理想的ファイバコア開口面積5rti sr −st@t   ・−・・・−・−・・−”−=
= (++s)となる。一方、実際のファイバコア開口
面積はファイ/(l? 1とFmの開口されたファイバ
コア面積の和になるが、これらをそれぞれS>、Smと
する5s−a00≦≦1−f(9) 1−[α≦1(10) となる。基本的誤差率ε′は(5)〜(10)式を使り
てSI+S*−5r I・−(11) St として計算できる。その計算結果を第6図に示した。
The fiber core aperture area of the entire consideration range is 5t and St-π is 3.
-(5). Therefore, the ideal fiber core aperture area 5rti sr −st@t ・−・−・−・・−”−=
= (++s). On the other hand, the actual fiber core aperture area is the sum of the apertured fiber core areas of phi/(l? 1 and Fm, but 5s-a00≦≦1-f (9) where these are S> and Sm, respectively. 1-[α≦1(10).The basic error rate ε' can be calculated as SI+S*-5r I・-(11) St using equations (5) to (10).The calculation result is It is shown in Figure 6.

基本的−差″48′は、コア牛囁比Kをパラメータとし
、開口比りで示したが、考察範囲全体を通して大きなも
のがない方がよい。よって、開口比LK対して、最適の
コア半径比Kを求めると、第7図に示すように、には0
.5 ? 4であυ、このときの基本的誤差率C′はg
′#0.95 dである。
The basic difference "48' is expressed as the aperture ratio using the core ratio K as a parameter, but it is better not to have a large value throughout the entire consideration range. Therefore, the optimum core radius for the aperture ratio LK is When calculating the ratio K, as shown in Figure 7, it is 0.
.. 5? 4 and υ, then the basic error rate C' is g
'#0.95 d.

ところで1俵積みの数N、及び−列のファイバ数Mを考
慮した誤差率Iは(12)式のように。
By the way, the error rate I considering the number N of one bale stack and the number M of fibers in the - row is as shown in equation (12).

俵積みの数NlICは関係な(、M分の1に減少させる
ことができる。
The number of bales NlIC can be reduced by a factor of M.

なお9俵積みの数NFi光量を増す働きをする。In addition, the number NFi of nine bales stacked works to increase the amount of light.

NSs+N5z−NSr  St+5t−5r  rε
−一−]訂−”  MSt   ”M   (12)誤
差率Iを所定の値に押えるためには、−列のファイバ数
Mを増加する必要があるが、基本的誤差率1′を最小に
設計しておけば、ファイバ数Mを少なくすることができ
る。
NSs+N5z-NSr St+5t-5r rε
-1-]Revision-"MSt"M (12) In order to suppress the error rate I to a predetermined value, it is necessary to increase the number M of fibers in the - row, but the basic error rate 1' is designed to be the minimum. By doing so, the number M of fibers can be reduced.

以上の原理のもとに1本発明の一実施例を第8図に示す
、#18図にシいて、(g)のように投光部(図示せず
)から出た受光マルチファイバ11の矩形面の受光部7
アイパ10に入シ、受光素子12によって電圧に変換さ
れる。受光部ファイバ10はクラッド部を有する単一フ
ァイバ、最も望ましくはファイバ半径(R−)の0.5
96倍の半径(イ)か−らなるファイバを俵積した亀の
である。
Based on the above principle, an embodiment of the present invention is shown in FIG. 8. As shown in FIG. Rectangular surface light receiving section 7
The light enters the eyeper 10 and is converted into a voltage by the light receiving element 12. The receiver fiber 10 is a single fiber with a cladding, most preferably a fiber radius (R-) of 0.5.
It is a tortoise made of fibers with a radius (A) 96 times larger than that of the previous one.

この実施例では誤差率8を0.1%以下にするため、M
−10に設計した。
In this example, in order to make the error rate 8 0.1% or less, M
-10.

なお、光電素子はフォトトランジスタ又はフォトダイオ
一ド又はフォトマルチプライヤ等。
Note that the photoelectric element is a phototransistor, photodiode, photomultiplier, etc.

所定の性能を有するものなら良い。It is fine as long as it has the specified performance.

このように本発明によれば、動作中又は静止中のシート
状物体5の変位量を光透過式又は光反射式で光ファイバ
を利用した変位センナによシ、検出するため、小形変位
センナ又はリモート変位センナとして使用できる。マル
チファイバの本原理で光量変化によ)検出するため、実
施例では分解能0.5μ罵という高精度で非接触の測定
ができる。
As described above, according to the present invention, in order to detect the amount of displacement of the sheet-like object 5 during operation or at rest using a displacement sensor using a light transmission type or light reflection type and using an optical fiber, a small displacement sensor or a light reflection type displacement sensor is used. Can be used as a remote displacement sensor. Since the multi-fiber principle detects the light intensity by changing the amount of light, non-contact measurement can be performed with high precision at a resolution of 0.5 μm in the embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、単一ファイバによるシート状物体の変位量を
検出する従来例の概略図、第2図は単一ファイバの場合
の座標系、第S図はマルチファイバと変位の関係を示す
図、第4図はファイバコア径の異なるマルチファイバの
変位と光量の関係、第5図はマルチファイバと変位の関
係を求めるための詳細図**6図は開口比りと基本的誤
差率の関係、第7図は最適コア半径比を求めるための関
係図、第8図は本発明によるマルチファイバの実施例を
示す図である。 1:光源、      2:レンズ。 S:単−入射光コアイノ(。 4:単一受光ファイ、バ、 5:シート状物体、 6:光電素子。 10;本発明の単一り2ツドフアイノ(。 11;本発明の受光マルチファイバ(,12:本発明の
光電素子。 ′f−1胆 才3 図 焚惧へ 才5図 ?6 記 開口比 し 才 7 図 開口比 し lf’8 図 (久) (b) 手続補正書(方式) %式% 発明の名称 光フアイバセンサ 補正をする者 ”’ l’t −(’、 ’;l 41   日  立
  装  作  所パi・  弓  生   1) 勝
  茂代   理   人 補正のχ、を象 図面の第6図 第37
Figure 1 is a schematic diagram of a conventional example of detecting the amount of displacement of a sheet-like object using a single fiber, Figure 2 is a coordinate system for a single fiber, and Figure S is a diagram showing the relationship between multi-fibers and displacement. , Figure 4 is the relationship between displacement and light intensity for multi-fibers with different fiber core diameters, Figure 5 is a detailed diagram for determining the relationship between multi-fibers and displacement** Figure 6 is the relationship between aperture ratio and basic error rate , FIG. 7 is a relational diagram for determining the optimum core radius ratio, and FIG. 8 is a diagram showing an embodiment of a multi-fiber according to the present invention. 1: light source, 2: lens. S: Single incident light core (. 4: Single light receiving fiber, bar, 5: Sheet-like object, 6: Photoelectric element. , 12: Photoelectric device of the present invention. ) % formula % Name of the invention Person who performs optical fiber sensor correction "'l't - (', '; l 41 Hitachi Sosakusho Pai Yumi 1) Shigeyo Katsu Osamu Drawing illustrating χ of human correction Figure 6, Figure 37

Claims (1)

【特許請求の範囲】[Claims] 変位光フアイバセンナにおいて、光ファイバにクラッド
(被覆)材を使用し、かつ俵積みにする際に、コア半径
比、すなわち、クラット材を含めた光フアイバ半径に対
するコア(芯材)半径の比を明5〜0.65にすること
を特徴とする光フアイバセンナ。
In a displacement optical fiber senna, when using a cladding material for the optical fiber and stacking it in bales, it is necessary to clarify the core radius ratio, that is, the ratio of the core radius to the optical fiber radius including the cladding material. An optical fiber senna characterized by having a thickness of 5 to 0.65.
JP56200168A 1981-12-14 1981-12-14 Optical fiber sensor Pending JPS58102105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200168A JPS58102105A (en) 1981-12-14 1981-12-14 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200168A JPS58102105A (en) 1981-12-14 1981-12-14 Optical fiber sensor

Publications (1)

Publication Number Publication Date
JPS58102105A true JPS58102105A (en) 1983-06-17

Family

ID=16419919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200168A Pending JPS58102105A (en) 1981-12-14 1981-12-14 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPS58102105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428519A (en) * 1987-07-23 1989-01-31 Fujikura Ltd Method of measuring physical quantity
JPS6428518A (en) * 1987-07-23 1989-01-31 Fujikura Ltd Method of measuring physical quantity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428519A (en) * 1987-07-23 1989-01-31 Fujikura Ltd Method of measuring physical quantity
JPS6428518A (en) * 1987-07-23 1989-01-31 Fujikura Ltd Method of measuring physical quantity
JPH0583125B2 (en) * 1987-07-23 1993-11-24 Fujikura Kk

Similar Documents

Publication Publication Date Title
EP0749023A1 (en) Fiber optical plate for reading a fingerprint
EP0813165A2 (en) Fiber-optic block and fingerprint detector using the same
US4818861A (en) Film image reading out device
GB2224353A (en) Radiation detector
JPS58102105A (en) Optical fiber sensor
US4349276A (en) Method of and system for determining refractive-index profiles of optical fibers
JPH08334636A (en) Fiber optical plate
Srinath et al. Determination of integral fringe order in photoelasticity: Integral fringe orders associated with measured fractional fringe values can be determined using two different wavelengths of light; a ready-reckoner table for them can also be constructed
JPS6330739A (en) Method for measuring back scattering of optical fiber
JPS59116505A (en) Optical fiber sensor
JPH063756A (en) Photodetector
JPS55155204A (en) Measuring instrument for thickness of film
JP2842241B2 (en) Film thickness measurement method
JPS61231422A (en) Radiation thermometer
JPH0258575B2 (en)
JPH0348530B2 (en)
JPH05203568A (en) Method of analyzing various material, especially liquid
Ramsey-Bell et al. Comparison of three methods for measuring light absorption by collected aerosols
JPS6049206A (en) Body displacement detector
JP2004170218A (en) Refractometer
JPS60117121A (en) Tension measuring apparatus
JPH0426422B2 (en)
JPS6230939A (en) Optical fiber sensor
JPH049704A (en) Optical interference film thickness measuring apparatus
JP2773921B2 (en) Contact type optical sensor