JPS58101453A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58101453A
JPS58101453A JP56200038A JP20003881A JPS58101453A JP S58101453 A JPS58101453 A JP S58101453A JP 56200038 A JP56200038 A JP 56200038A JP 20003881 A JP20003881 A JP 20003881A JP S58101453 A JPS58101453 A JP S58101453A
Authority
JP
Japan
Prior art keywords
core material
semiconductor element
semiconductor device
thermal expansion
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56200038A
Other languages
Japanese (ja)
Inventor
Koichiro Inomata
浩一郎 猪俣
Taketoshi Kato
加藤 健敏
Masakatsu Haga
羽賀 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56200038A priority Critical patent/JPS58101453A/en
Publication of JPS58101453A publication Critical patent/JPS58101453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Die Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a semiconductor element from cracking or slacking by covering the positions of the element, onto which lead wirings or electrodes are fixed, with amorphous alloy which has thermal expansion coefficient equivalent to or lower than the element and particularly a core material of the prescribed composition coated with a high electric conductivity material. CONSTITUTION:An n<+> type layer 53 and a p<+> type layer 54 are diffused in a p type Si 51, an electrode 55 is soldered onto the entire back surface, a grid 56 and a bus line 57 are formed on the surface, and lead wirings 58 are soldered onto the bus line 57. The wirings 58 are formed by covering an amorphous alloy ribbon as a core material 581 with an Ag-plating film 582 having approx. 50um of thickness through an Ni-plating. The alloy 581 has thermal expansion coefficient similar to or smaller than Si, is represented by atomic% as FeaXbBc, where X represents Si, P, C, Al or Ge; 80<=a<=90, 0<=b<=10, 5<=c<=20, and; a+b+c=100 in composition. Or, part of the Fe may be less than 10 atomic%, and may be replaced by at least one of Ti, V, Cr, Mn, Ni, Ze or rare earth elements. According to this configuration, a photoelectric converter has no slack nor crack, its series resistance can be extremely reduced, thereby obtaining a semiconductor device having high efficiency and high reliability.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は半導体装置に係り、特に半導体素子にこの半導
体装置表面に固着されたリード線または電極とを具備す
る半導体装置に関するものである。
TECHNICAL FIELD The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a semiconductor element and a lead wire or electrode fixed to the surface of the semiconductor device.

従来技術とその問題点 半導体装置としてはダイオード、トランジスタ、IC,
L8I、レーザー、充電変換装置など種々なものかあ妙
、固体装置として小型7eあり効率が嵐いなどの利点が
あり、現在極めて広範囲O分野に使用されている。
Conventional technology and its problems Semiconductor devices include diodes, transistors, ICs,
It has various advantages such as L8I, laser, charge conversion device, etc. As a solid-state device, it is small 7e and has the advantage of high efficiency, and is currently used in a very wide range of O fields.

次にこの半導体装置の一例としての光電変換装置(太陽
電池)を第1図(平1図)及び第2図(断面1!I)K
より説明する。
Next, a photoelectric conversion device (solar cell) as an example of this semiconductor device is shown in Fig. 1 (Fig. 1) and Fig. 2 (cross section 1!I)
I will explain further.

即ち、pWiシリコン基板(1)の表面から拡散、イオ
ン注入などの方法でn土層(2)を浅く作ヤ、表面かか
ら1声以下の位置K n”p 171合(萄を形成し、
裏面gFip十層(土層介してほぼ全面に裏電極(娘を
ム1.Agなどの蒸着や鍍金などで形成しである。を九
表面即ちn土層(田土には光起電tILを集める黴編集
東電極(以下グリッドと云う) (6)と、主集電電1
i(以下パスラインと云う)(ηを表面の開孔率が全面
積のほぼ90〜99sになるように局部的に鍍金、蒸着
、シンターなどで形成し、このパスライン(ηの端部し くa)は次の光電変換装置にリード線などKよ抄接続△ 得るようになっていると共にグリッド(輸とパスライン
(η上を含む表面には絶縁膜(鴫を介して反射防止膜(
9)を設は矢印(10)方向からの光を効率曳く光電変
換し得るようKなっている。
That is, a shallow soil layer (2) is formed from the surface of the pWi silicon substrate (1) by a method such as diffusion or ion implantation, and a layer (2) is formed at a position less than one tone from the surface.
The back side gFip has 10 layers (a back electrode (layer) is formed on almost the entire surface through the soil layer by vapor deposition or plating of Ag, etc.). The mold editing east electrode (hereinafter referred to as the grid) (6) and the main current collector 1
i (hereinafter referred to as pass line) (η) is formed locally by plating, vapor deposition, sintering, etc. so that the surface porosity is approximately 90 to 99 s of the total area, and a) is designed to connect lead wires etc. to the next photoelectric conversion device, and the surface including the grid (transport) and pass line (η) is coated with an insulating film (through an anti-reflection film).
9) is set so that light from the direction of arrow (10) can be efficiently captured and photoelectrically converted.

然るにこのような光電変換装置においては、グリッド(
6)とパスライン(ηとは高電気伝導度を有する例えば
λg(電気伝導度1.6X1G−0国)により形成され
ているが、表面の開孔率が全面積のほぼ90〜99−と
なるよう幅を狭くしなければならず、必然的に厚さKよ
り直列抵抗をおさえなければならない。この場合厚みが
薄いと直列抵抗が大きくな抄、充電変換装置としての出
力効率が低下するし、逆に直列抵抗を下げる目的で厚さ
を例えば約15声以上に厚くすると、通常光電変換装置
は直射青光に置かれ夜は低温下に置かれるし、を九、製
造工種中の加熱工程で特に幅の広いパスライン(ηと8
iからなる光電変換素子とお熱膨張係数差のため光電変
換素子にそりが生じたり、割れた卦する欠点がある。
However, in such a photoelectric conversion device, the grid (
6) and the pass line (η is formed by, for example, λg (electrical conductivity 1.6 x 1G-0 country) having high electrical conductivity, but the surface porosity is approximately 90 to 99 - of the total area. The width must be narrowed so that the thickness K is smaller than the thickness K. In this case, if the thickness is thin, the series resistance will be large, and the output efficiency as a charging conversion device will decrease. On the other hand, if the thickness is increased to, for example, about 15 tones or more in order to lower the series resistance, the photoelectric conversion device is usually placed in direct blue light and kept at low temperatures at night, and 9. The heating process during manufacturing. especially wide pass lines (η and 8
Due to the difference in thermal expansion coefficient between the photoelectric conversion element and the photoelectric conversion element made of i, there is a drawback that the photoelectric conversion element may warp or crack.

この欠点を除去または軽減するため、グリッドとパスラ
インの構造を変えた種々の光電変換装置が考えられてい
る。
In order to eliminate or reduce this drawback, various photoelectric conversion devices with different grid and pass line structures have been considered.

その第1の例は第3図に示すようにパスラインをfmせ
ず環状のグリッド(161)と放射状のグリッド(16
g)を形成し、この放射状のグリッド(162)により
光電1[流を中央の端子(17) K集め、この端子(
17)から例えばAgO網状のリード線(18)で外部
に取り出す構造を有している。
The first example is a circular grid (161) and a radial grid (161) without fm path lines, as shown in Figure 3.
g), and this radial grid (162) collects the photoelectric current 1[K] to the central terminal (17), and this terminal (
17) to the outside using, for example, an AgO net-like lead wire (18).

然るにこの構造においては網状のリード線(18)は端
子(17)に同着されているのみでリードil! (1
8)の位置が一定されていない九め、光電変換装置とし
ての各種特性の測定や次の工程の治具への挿入に不便で
あるばかりでなく、網状OIJ−ド纏(18)で影にな
った部分の発電能力が低下するなどの欠点がある。
However, in this structure, the net-like lead wire (18) is only attached to the terminal (17) at the same time, and the lead il! (1
8) The position of 9 is not constant, which is not only inconvenient for measuring various characteristics of the photoelectric conversion device and inserting it into the jig for the next process, but also because it is in the shadow due to the mesh OIJ-do mat (18). There are disadvantages such as a decrease in the power generation capacity of the affected parts.

第2の例は第4図に示すように光電変換素子の表面上に
並列されたグリッド(26)に少さな集電端子(26a
)やボンディングパラl’ (26b)を形成し、この
集電端子(26a)やボンディングパラ) (26b)
上に厚さ100μ程度の薄いCu IJ−ド線(27)
 tろう付などKより固層する構造である。この場合第
1図及び第2図のパスライン(ηの直列抵抗t−Cuリ
ード1m (27)で下げ光電変換素子を構成するSl
と(’l IJ−ド繍(27)との熱膨張係数差は集電
端子(26a)やボンディングパット(26b)とCu
リード線(27)との固着を局部的に行なうことにより
逃げるようにしている。
In the second example, as shown in FIG. 4, a small number of current collecting terminals (26a
) and bonding para l' (26b), and this current collector terminal (26a) and bonding para) (26b) are formed.
A thin Cu IJ wire (27) with a thickness of about 100μ is placed on top.
It has a structure that is more solid than K, such as T brazing. In this case, the pass line shown in FIGS. 1 and 2 (series resistance of
The difference in thermal expansion coefficient between the current collector terminal (26a), bonding pad (26b) and Cu
It is made to escape by locally fixing it to the lead wire (27).

然るに1この様な光電変換装置には後の工程で保賎用の
ガラスパネルに有機物シートを介して熱圧着する時、歪
が光電変換素子に対し集電端子(26a)?ボンディン
グパット(26b) cD位置に集中し、この光電変換
素子を破損したり、熱疲労の原因になる欠点がある。ま
た熱圧着する時Cu IJ−ド線(27)と光電変換素
子の表面は集電端子(26a)やボンディングバラ) 
(26b)4/ζより離間しているので気泡残貿の原因
ともなり、また部分的にCu リード線(27)が光電
変換素子の表面に当接し易くなり、その結果表面を佛る
ことにな9%性の劣化金招く欠点があっ′fcO また、サイリスタ、トランジスタ、ダイオード、などの
轡に電流の大きい半導体素子をステムなどにろう材など
を介して載置固定する場合、これら半導体素子の熱膨張
係数とステムなどを形成するCuなどの導電性導熱性の
良好な部材の熱膨張係数では数倍の差があり、製造工程
や稼動中に両者を加熱、冷却すること熱疲労などにより
、ろう材の剥離や半導体素子の歪による特性不良や破損
を招くことになるため、通常半導体素子が例えば8iの
場合には熱膨張係数がこのSiとほぼ等しいW。
However, 1. When such a photoelectric conversion device is thermocompression bonded to a glass panel for preservation via an organic sheet in a later process, distortion may occur to the photoelectric conversion element to the current collecting terminal (26a). Bonding pad (26b) Concentrates on the cD position, which has the disadvantage of damaging this photoelectric conversion element and causing thermal fatigue. Also, when bonding by thermocompression, the surface of the Cu IJ-wire (27) and the photoelectric conversion element should be connected to the current collector terminal (26a) or bonding rose).
(26b) Since it is spaced apart from 4/ζ, it may cause residual air bubbles, and it also makes it easier for the Cu lead wire (27) to come into contact with the surface of the photoelectric conversion element in some areas, resulting in it bending over the surface. In addition, when mounting and fixing semiconductor elements with a large current such as thyristors, transistors, diodes, etc. on stems etc. through brazing material, there is a drawback that this leads to 9% deterioration. There is a several-fold difference between the coefficient of thermal expansion and that of materials with good conductivity and heat conductivity such as Cu that form stems, etc., and heating and cooling of both during the manufacturing process and operation may cause heat fatigue, etc. Since this may lead to defective characteristics or damage due to peeling of the brazing material or distortion of the semiconductor element, if the semiconductor element is, for example, 8i, W is used, which has a coefficient of thermal expansion almost equal to that of Si.

Moなどの電極を介在させる手段が取られているが、こ
れらW、Mo などは高価でありまた電気抵抗もCuの
3倍近く高くなり、このような半導体装置で特性の問題
点の一つとされている接合温[(Tj)の最高値(Si
では通常150C)を満足させるためKは電流容tt−
減少しなければならない欠点がある。
Measures have been taken to interpose electrodes such as Mo, but these W, Mo, etc. are expensive and have an electrical resistance nearly three times higher than that of Cu, which is considered to be one of the problems in the characteristics of such semiconductor devices. The maximum value of junction temperature [(Tj) (Si
(usually 150C), K is the current capacity tt-
There are drawbacks that must be reduced.

このことは半導体素子としてGa、Asなどを使用する
レーザ(発光ダイオードを含む)などにおいても同様で
ある。
This also applies to lasers (including light emitting diodes) that use Ga, As, etc. as semiconductor elements.

更にIC,L8Iなどは通常リードフレームの一個の電
極に載置され他のリードフレームとIC,LSIなどの
ボンディングバットを接続後モールドなどの手段により
シールするが、この場合Cuの250μ厚のリードフレ
ームの電極の上に固定した場合、ベレットの大きさ約3
.5X3.51118A度で破損する丸め、比較的大型
の例えば8x8sIsのL8I(42ビン)では例えば
N1(42% )とFeの合金などが使用されているが
、この合金は銅などく比較し電気抵抗が桁違いに大きく
、また熱抵抗もCuの約400/W K比較し約100
C/Wと大きくやはり接合温度の最高値を満足させるた
めKは電流容量を減少しなければならない欠点があった
Furthermore, ICs, L8Is, etc. are usually mounted on one electrode of a lead frame, and after connecting the bonding butts of other lead frames and ICs, LSIs, etc., they are sealed by means such as molding, but in this case, a 250μ thick Cu lead frame is used. When fixed on top of the electrode, the size of the pellet is about 3
.. For example, an alloy of N1 (42%) and Fe is used in the relatively large L8I (42 bins) of 8x8sIs, which breaks at 5x3.51118A degrees, but this alloy has a lower electrical resistance than copper. is an order of magnitude higher, and the thermal resistance is approximately 100/W compared to Cu's approximately 400/WK.
Since the C/W is large, K has the disadvantage that the current capacity must be reduced in order to satisfy the maximum value of the junction temperature.

発明の目的 本発明は前述した諸欠点KI!みなされたものであり、
半導体素子に直接または他の部材を介して固着されたリ
ード線または電極とからなる半導体装置において、リー
ド線または電極を変えることにより半導体素子にそりが
生じ九抄割れが発生することなく、かつ光電変換装置で
は直列抵抗を極めて少なくすることが可能であり、他の
半導体装置では、電気伝導度、熱抵抗を良好とし、共に
効率の良好な高信頼性のある半導体装置を提供すること
を目的としている。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks KI! It is considered as
In a semiconductor device consisting of lead wires or electrodes fixed to a semiconductor element directly or through another member, changing the lead wires or electrodes can prevent the semiconductor element from warping and cause cracking, and can be used for photoelectronics. In converter devices, it is possible to extremely reduce series resistance, and in other semiconductor devices, we aim to provide highly reliable semiconductor devices that have good electrical conductivity and thermal resistance, and both have good efficiency. There is.

発明の概要 この様な本発明の目的は、半導体素子と、この半導体素
子に直接または他の部材を介して固着され九リード線ま
えは電1mを具備する半導体装置において、藺配り一ド
線または電極の少なくとも前記半導体素子に固着される
部位を前記半導体素子の熱11*係数と同等或いは小さ
い熱膨張係数を有する非晶質合金、特に以下に示す如■
組成からなる芯材と、この芯材を被檄する高電気伝導度
を有する被橿材とすることにより達せられる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a semiconductor element and a length of 1m in front of a 9-lead wire fixed to the semiconductor element directly or through another member. At least the portion of the electrode fixed to the semiconductor element is made of an amorphous alloy having a coefficient of thermal expansion equal to or smaller than the thermal 11* coefficient of the semiconductor element, particularly as shown below.
This can be achieved by using a core material consisting of a composition and a material to be coated with high electrical conductivity to which this core material is coated.

本発明に有効な非晶質合金としては原子憾で(1) P
eaxbBc t X =8 i r P e Ceム
1.Goo少くとも1種80くa<90,0くbくIO
5くcく2G、a+b+c=100あるいは(1)にお
いて (ω(1)においてFeの一部を10原子−以下のTi
Examples of amorphous alloys effective in the present invention include (1) P
eaxbBc t X =8 i r P e Ce m1. Goo at least one type 80kua<90,0kubIO
5x2G, a+b+c=100 or in (1) (ω(1), some of the Fe is replaced with less than 10 atoms of Ti
.

V、Cr 、Mn sNi 、Zr 、Nb 、Mo 
、Ru+Rh、Pd 、Hf sTa 、W+RePt
、Au、Ag、Y、R(希土類元素)から選ばれる少な
くと4一種の元素で置換したものである。
V, Cr, Mn sNi, Zr, Nb, Mo
, Ru+Rh, Pd , Hf sTa , W+RePt
, Au, Ag, Y, and R (rare earth elements).

上記組成に限定し九理由はFeが80s未満では熱膨張
係数がSiのそれに比べて著しく大きくなるため半導体
素子のそりや割れ防止に有効でなく、reがeo*を越
えると非晶質化が困−になる。またXは1091會越え
ると熱膨張係数が昔しく大きくなる。Bは5Is未満で
は非晶質合金の作11に困難になり20*を越えると熱
膨張係数が大きくなる。
The reason for limiting the composition to the above is that if Fe is less than 80 s, the coefficient of thermal expansion will be significantly larger than that of Si, so it will not be effective in preventing warping or cracking of semiconductor devices, and if re exceeds eo*, it will become amorphous. I get in trouble. Also, when X exceeds 1091 degrees, the coefficient of thermal expansion increases as before. When B is less than 5Is, it becomes difficult to produce an amorphous alloy, and when it exceeds 20*, the coefficient of thermal expansion increases.

また、Faの一部を上記元素で置換することにより耐食
性が向上あるいは結晶化温度が増大するが1〇−を越え
るとキ、り一点が低下して実用温度鳴囲での熱膨張係数
が大きくなるので好ましくない。
In addition, by replacing a part of Fa with the above elements, corrosion resistance is improved or the crystallization temperature is increased, but if the temperature exceeds 10, the temperature decreases by one point and the coefficient of thermal expansion increases in the practical temperature range. This is not desirable.

発明の実施例 次に本発明の第10奥施例としてO光電変換装置を第5
図乃至第7図により説明する。
Embodiment of the Invention Next, as a tenth embodiment of the present invention, an O photoelectric conversion device is used as a fifth embodiment.
This will be explained with reference to FIGS. 7 to 7.

即ち、pellシリコン基板(51)の表面から拡散、
イオン注入などの方法でn土層(52)を浅く作り、表
面から1μ以下の位置K Hip接合(53)を形成し
、裏WJK#′ip土層(54)を介してほぼ全面に裏
電f&(&S)をAI、Agなどの蒸着や鍍金などで形
成しである。
That is, diffusion from the surface of the Pell silicon substrate (51),
A shallow n-soil layer (52) is created using a method such as ion implantation, a K-Hip junction (53) is formed at a position of 1μ or less from the surface, and a back voltage is applied to almost the entire surface via the back WJK#'ip soil layer (54). f&(&S) is formed by vapor deposition or plating of AI, Ag, etc.

ま九表面即ちn土層(52)上には光起電流を集めるグ
リッド(56)及びバスツイン(57)を表面の開孔率
が全面積Oはぼ90〜99−になるように局部的に鍍金
、蒸着、シンターなどで形成し、このパスツイン(57
)上には、このパスライン(57)の幅に等しいが狭い
後述する本発明の特徴とするリード# (58)がろう
付などにより固着されている。図において(59)は反
射防止膜である。
On the top surface, that is, the soil layer (52), a grid (56) and bath twin (57) for collecting photovoltaic current are placed locally so that the surface porosity is approximately 90 to 99. This path twin (57
), a lead # (58), which is a feature of the present invention and will be described later, is fixed to the pass line (57) by brazing or the like and has a width equal to but narrower than the pass line (57). In the figure, (59) is an antireflection film.

このリードII(58)は第7図に示すように81の熱
膨張係数と同等或いは小さい熱膨張係数食前する芯# 
(581)とこの芯材會被覆する高電気伝導度禽有する
被機材(58z)とからなることを特徴としている。
As shown in Fig. 7, this lead II (58) has a thermal expansion coefficient equal to or smaller than that of 81.
(581) and a covering material (58z) having a highly electrically conductive material covering the core material.

次K リード線(S8)の第1の例を示すと、厚さ旬μ
の第1表に示す非晶質合金のリボンを芯材(58t)と
し、この非晶質合金に0.1声程[ONi鍍金を行ない
、被機材(58*)としてのAg (電気伝導度1.6
 X 10(0国)鍍金を片面15μづつ針30声行な
い、リード線(58)が得られる。
To show the first example of the next K lead wire (S8), the thickness is μ
The amorphous alloy ribbon shown in Table 1 was used as the core material (58t), and this amorphous alloy was plated with 0.1 tone [ONi], and Ag (electrical conductivity 1.6
A lead wire (58) is obtained by applying X10 (Country 0) plating to 15 μm on each side with 30 needle strokes.

このようにして形成されたり−ドII (58)を具備
する第5図及び第6図に示す光電変換装置は第1図及び
第2図に示し九充電変換装置のパスライン厚さを20μ
にしたものでは直列抵抗と光電変換素子の歪に依る暗電
流の増加に起因して13.5−の効率しか示さなかっ九
が、本実施例ではパスライン(57)の厚さを3μに減
らし、前記し九製造方法によるリード線(58) t−
このパスライン(57)上Km着した場合、リード# 
(58) C)熱膨張係数は81の約2倍で6つ九が1
51の効率を示し、組立収率490.5%から95−に
向上させることができ友。
The photoelectric conversion device shown in FIG. 5 and FIG.
However, in this example, the thickness of the pass line (57) was reduced to 3 μm. , lead wire (58) according to the above manufacturing method t-
If you arrive Km above this pass line (57), lead #
(58) C) The coefficient of thermal expansion is approximately twice that of 81, and 69 is 1.
It showed an efficiency of 51% and was able to improve the assembly yield from 490.5% to 95%.

以下余白 第   1   表 4) 100〜200Cにおける値 次にリード線(58)の第2の例を示すと第2表に示す
非晶質合金の厚さ45μのシートからの芯材(58t)
を使用し、Nlストライク鍍金後片fa12.5戸づつ
針25声の被機材(58s)としての〜鍍金を行ったり
−ド# (5B)はStとほぼ同じ熱膨張係数を示し、
このリードII(58)を用いて組立て九光電変換装置
は13.9囁の効率と組立収率9996を示した。この
り−ドm (3B)の強磁性転移点は第2の例のリード
が約1501:’であったのに対し約200 t・ド向
上させることができ、その結果熱疲労試験にお゛いて大
きな温度差を採ることが出来るようKなりこの熱疲労に
対する耐量が増加した。
Table 4) Values at 100-200C The second example of the lead wire (58) is shown in Table 2.The core material (58t) is made from a 45μ thick sheet of amorphous alloy shown in Table 2.
After Nl strike plating, plating was performed on each piece (58s) with 25 needles (58s) after Nl strike plating.
Nine photoelectric conversion devices assembled using this lead II (58) showed an efficiency of 13.9 hissas and an assembly yield of 9996. The ferromagnetic transition point of this lead m (3B) can be improved by about 200 t·do compared to the second example lead which was about 1501:', and as a result, the thermal fatigue test is improved. The ability to withstand this thermal fatigue has increased because it can handle large temperature differences.

以下余白 第   2   表 骨100〜200Cにおける値 第2表続き * 100〜200 t:’ I’Cおける値以下金白 上述のリード線(58)では芯材(ssl)としテ第1
表および第21!に示す非晶質合金からなる所定厚さの
ものを用い被覆材(58z)として表裏にそれぞれ同厚
である所定厚さのものを鍍金、によ抄形成したが、これ
に限定されるものではなく、被覆材(5h)としてはA
u(電気伝導度24xlO−’Qaw ) AI(−′
電気伝4度2.8X10”6ΩcI11)などが使用し
得る。
Below is the margin 2 Values at surface bone 100-200C 2nd table continuation * 100-200 t:' Value at I'C Below gold white In the above lead wire (58), the core material (ssl) is used as Te 1
Table and 21st! The covering material (58z) was made of an amorphous alloy shown in Figure 1, and was plated and formed into a sheet with the same thickness on the front and back sides, but the present invention is not limited to this. No, the covering material (5h) is A.
u(electrical conductivity 24xlO-'Qaw) AI(-'
Electric conductor 4 degree 2.8×10”6ΩcI11) etc. can be used.

この場合芯材(581)は、できればSlより熱膨張係
数の小さなものを使用することにより良好なリード線(
58)が得られる。この理由は被覆材(582)に使用
するAg、 Cuなどは8量よりも一桁大きな熱膨張係
数をもっているのでリードm (58)とした時両者の
厚さを、それぞれ定められた厚さにすることにより、実
質的に81に似た熱1張係数を有するものが出来るから
である。
In this case, the core material (581) should preferably be made of a material with a smaller coefficient of thermal expansion than Sl.
58) is obtained. The reason for this is that the Ag, Cu, etc. used for the coating material (582) have a coefficient of thermal expansion that is one order of magnitude larger than that of 8. This is because by doing so, a material having a thermal tensile coefficient substantially similar to 81 can be obtained.

前述したリード線(58)はパスライン上に固着するも
のについて述べたが、一本のリード線で他の光電変換装
置に接続するものでは引に固着される部位のみ芯材と、
被覆材とから構成すればよいことは勿論である。
The above-mentioned lead wire (58) was described as being fixed on the pass line, but in the case of a single lead wire that is connected to another photoelectric conversion device, only the part that is fixed to the core is connected to the core material.
Of course, it may be constructed from a covering material.

この様な構造にすることにより第4図のグリッド(26
)などの゛複雑なパターンやこれを作るフオ・トレジス
ト用のマスクは必要でなくなるし、また第1図及び第2
図のパスライン(ηの如く20声以上に厚くする為の長
時間の蒸着や鍍金が不要になり、かつ充電変換素子の反
りによる破損、この反りが原因で発生する暗電流の増加
と云う特性劣化もなくなり、組立収率、光電変換効率及
び品位の喪好な光電変換装置を得ることが出来九。
By creating such a structure, the grid (26
) and other complex patterns and photoresist masks to create them are no longer necessary, and
The pass line in the figure (η) eliminates the need for long-term vapor deposition or plating to make it thicker than 20 tones, and also eliminates the need for damage due to warping of the charging conversion element and the increase in dark current caused by this warping. There is no deterioration, and a photoelectric conversion device with good assembly yield, photoelectric conversion efficiency, and quality can be obtained.

t 7’t リード線(58)は第4図の従来例に使用
し九Cuす・−ド# (27)より硬いのでグリッド(
26)に集電端子(26a)やボンディングパラ) (
261))を介するか、または介することなくグリッド
(26)にろう付などの方法により固定しても後の工程
で保−用のガラスパネルに有機物シートを熱圧着して電
光電変換素子を破損や熱疲労が発生や気泡残留や特性の
劣化を招くことがない。
t 7't The lead wire (58) used in the conventional example shown in Fig. 4 is harder than the 9Cu wire (27), so the grid (
26) to the current collector terminal (26a) or bonding terminal (
Even if it is fixed to the grid (26) by brazing or other methods with or without using the 261)), the organic material sheet may be thermocompressed onto the glass panel for preservation in a later process, causing damage to the electro-optical conversion element. It does not cause thermal fatigue, residual bubbles, or deterioration of properties.

上述した実施例は背景と共に光電変換素子の表面に形成
するパスラインに相応するリード線について述べたが光
電変換素子の裏面に形成する裏電極などKもそのit適
用されること唸勿論である。
In the above-mentioned embodiments, the lead wires corresponding to the pass lines formed on the surface of the photoelectric conversion element were described as well as the background, but it goes without saying that it is also applicable to the back electrode etc. formed on the back surface of the photoelectric conversion element.

次に本発明の第2の実施例としての大容量のダイオード
を第8図反び第9図により説明する。
Next, a large capacity diode as a second embodiment of the present invention will be explained with reference to FIG. 8 and FIG. 9.

即ち大容量のダイオード装置(61)は内部に接合を有
する例えば81半導体素子(62’)の上下面1fCA
u合金やAIなどを介して電極(63)が固定されこの
電極(63)に圧接するように放熱板(64)を具備す
るステム(65)が設けられているが、この電極(0)
は第9@に拡大して示すように芯材(63t)と被覆材
(632)とから成り、芯材は前述「た光電変換装置の
第2の例のように第2表に示す非晶質合金がらなり、こ
の芯材(631) KCuストライク蹴金後金後材(6
3z)としてのAg鍍金を行ない、電極(63)として
ほぼ81半導体素子(62)の熱膨張係数に等しいよう
に形成されている。この場合芯材(631)の厚さと被
覆材(63g)との厚さは両者の熱膨張係数によって簡
単に定めることが可能であるが、接合温度変化の激しい
もの、少ない4の、雰囲気温度などを考慮してきめるこ
とが望ましい。
That is, the large capacity diode device (61) has a junction inside, for example, the upper and lower surfaces 1fCA of the 81 semiconductor element (62').
An electrode (63) is fixed via u-alloy, AI, etc., and a stem (65) equipped with a heat sink (64) is provided so as to be in pressure contact with this electrode (63), but this electrode (0)
consists of a core material (63t) and a covering material (632) as shown in the enlarged view in No. 9@, and the core material is an amorphous material shown in Table 2 as in the second example of the photoelectric conversion device mentioned above. Made of quality alloy, this core material (631) KCu strike kick metal back metal (6
The electrode (63) is formed to have a thermal expansion coefficient approximately equal to that of the 81 semiconductor element (62). In this case, the thickness of the core material (631) and the thickness of the sheathing material (63 g) can be easily determined based on the thermal expansion coefficients of both materials, but the thickness of the core material (631) and the thickness of the covering material (63 g) can be easily determined by the coefficient of thermal expansion of both materials. It is desirable to make a decision taking this into account.

このような芯材(631)と被覆材(63m) Kより
電1[(sa)を形成することにより、従来使用されて
き丸部やWなど高価な屯のが不要となり、安価で品位の
棗好な半導体装置を得る仁とが可能となった。
By forming the core material (631) and the sheathing material (63m) K into an electric conductor (sa), the expensive round parts and W used in the past are no longer necessary, and an inexpensive and high-quality jujube can be produced. It has now become possible to obtain a semiconductor device with excellent quality.

次に410図及び第11図により本発明の第3の実施例
を説明する。
Next, a third embodiment of the present invention will be described with reference to FIG. 410 and FIG. 11.

即ち実施例はLSI装置の一例を示すものであり、L8
I装置(71)は例えば図に示すように左右に各21本
のリード線(72)を有するリードフレームの1本のり
−ド#(721)に連接され丸形大部(73)上にリー
ド* (72)と同数のポンディングパッドを有するL
8I素子(74)を載置固定し、各パッドと各リード線
(72)’を接続し、このリード線(72)の一部、電
極(73)、L8I素子(74)をモールドし丸もので
あるが、本実施例においては少くともこの形大部(73
)を芯材(731)と被横材(73りから構成し、との
8質(73r)をLSI素子(通常81) O熱膨張係
数より小さい部材で形成すると共に被覆材(73りを高
電気伝導層を有する部材で形成し、形大部(73)とし
ては実質的KLSI木子と同等な熱膨張係数としたこと
を41mとしている。
That is, the embodiment shows an example of an LSI device, and the L8
For example, as shown in the figure, the I device (71) is connected to one lead # (721) of a lead frame having 21 lead wires (72) on each side, and is connected to a lead wire on the round main portion (73). * L with the same number of pounding pads as (72)
The 8I element (74) is mounted and fixed, each pad and each lead wire (72)' are connected, and a part of this lead wire (72), the electrode (73), and the L8I element (74) are molded into a round shape. However, in this example, at least most of this shape (73
) is composed of a core material (731) and a cross material (73), and the eight materials (73r) and are made of a material with a coefficient of thermal expansion smaller than that of the LSI element (usually 81), and the covering material (73) is made of a material with a higher coefficient of thermal expansion. It is made of a member having an electrically conductive layer, and the size portion (73) has a coefficient of thermal expansion substantially equivalent to that of KLSI wood, which is 41 m.

具体例としてはL8I素子を別とした場合、芯材(73
里)を第1表に示した非晶質合金とし、この芯材(73
1) K Ntストライク鍍金後被覆材(73g)とし
ての 人itたはCu鍍金を行ない形大部(73)とし
くてほぼL8I素子の熱膨張係数に等しいようKしてい
る。この場合芯材(731)の厚さを60μとし、ヒの
芯材(,731)の両面にそれぞれ25μずっCu鍍金
したものでは801:’/Wの熱抵抗となり、形大5(
73)上には約10mx 10w、OLSI素子まで載
置することが可能である。これに比較し約424Niと
Feの合金のみの250μ厚の電1ではL8I素子の大
きさはほぼ同様であるが、熱抵抗が100C/W とな
りL8I′素子の冷却が不良となるし、約42tlb 
N!とFeの合金の200μの4のを芯材とし両面に各
25μずつCuを鍍金したもので社熱抵抗は80C/W
で6つたが3.5X3.5111のL8I素子までしか
載置することが不可であり、LSI装置として小型のも
のしか出来なかった。
As a specific example, if the L8I element is not included, the core material (73
The core material (73
1) After KNt strike plating, the coating material (73 g) was plated with copper or Cu to form a large part (73), and the K was approximately equal to the coefficient of thermal expansion of the L8I element. In this case, if the thickness of the core material (731) is 60μ and both sides of the core material (,731) are plated with Cu to a thickness of 25μ, the thermal resistance will be 801:'/W, and the size will be 5 (
73) It is possible to place up to about 10m x 10w OLSI device on top. In comparison, the size of the L8I element is almost the same for the 250μ thick electrode 1 made of only an alloy of about 424Ni and Fe, but the thermal resistance is 100C/W, resulting in poor cooling of the L8I' element, and about 42tlb.
N! The core material is made of 200μ 4 of alloy of
However, it was only possible to mount up to a 3.5 x 3.5111 L8I element, and only a small LSI device could be produced.

@述した各実施例の他に半導体装置としては8Mを使用
するトランク・スタ、サイリスタ各装置、C鳳。
@In addition to the above-mentioned embodiments, semiconductor devices include trunk/star and thyristor devices using 8M, and C-Otori.

A畠を使用するレーザ装置(発光ダイオードも含む)な
どがありそれぞれ装置の特性に応じて非晶質合金芯材と
被覆材の種類、厚さを変えリード線、電極として本発明
の要旨内に含まれるようにすることにより特性、内命、
製造歩留の良好な半導体装置を得ることが出来る。
There are laser devices (including light-emitting diodes) that use A-hatake, and the type and thickness of the amorphous alloy core material and coating material can be changed according to the characteristics of the device to be used as lead wires and electrodes within the scope of the present invention. Characteristics, inner meanings,
A semiconductor device with a good manufacturing yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換装置を示す平面図、第2図は第
1図t−A−A線に沿って切断して見た断面図、第3図
及び@4図は従来の充電変換装置のそれぞれ他の例を示
す平面図、第5図乃至第7図は本発明の第1の実施例を
示す図であり、第5図は平面図、第6図は第5図t−B
−B線に沿って切断して見た断面図、第7図は第九図及
び第6図に使用するリード線の説明用斜視図、第8図及
び第9図は本発明の第2の実施例を示す図であり、第8
図は断面図、第9図は電極の断面図、第10図及び第1
1図は本発明の第3の実施例を示す図であり、第10図
は平面図、第11図は電極とLSIとを示す説明図であ
る。 3.53・・・接合 5.55・・・裏電極 6.161.162*26+56・・・微細集束電極?
、27.57・・・主集束電極 17・・・端子 58 ・・・ リ − ド運−− 581+631.731・・・芯材 582 e632.732・・・被機材62・・・ダイ
オード 74・・・LSI
Fig. 1 is a plan view showing a conventional photoelectric conversion device, Fig. 2 is a sectional view taken along line t-A-A in Fig. 1, and Figs. 3 and @4 are conventional charging conversion devices. FIGS. 5 to 7 are plan views showing other examples of the apparatus, and FIGS. 5 to 7 are views showing the first embodiment of the present invention. FIG. 5 is a plan view, and FIG.
7 is an explanatory perspective view of the lead wire used in FIGS. 9 and 6, and FIGS. 8 and 9 are sectional views taken along line B. FIG. 8 is a diagram showing an example;
The figure is a cross-sectional view, Figure 9 is a cross-sectional view of the electrode, Figures 10 and 1
FIG. 1 is a diagram showing a third embodiment of the present invention, FIG. 10 is a plan view, and FIG. 11 is an explanatory diagram showing electrodes and an LSI. 3.53... Junction 5.55... Back electrode 6.161.162*26+56... Fine focusing electrode?
, 27.57...Main focusing electrode 17...Terminal 58...Lead port-- 581+631.731...Core material 582 e632.732...Subject material 62...Diode 74...・LSI

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子と、この半導体素子に直接または他の
部材を介して固着されたリード線または電極を具備する
半導体装置において、前記リード線まえは電極の少なく
とも一部が前記半導体素子の熱膨張係数と同等或いは小
さい熱膨張係数を有する非晶質合金芯材とこの芯材を被
覆する高電気伝導V食前する被債材とからなることを特
徴とする半導体装置。
(1) In a semiconductor device comprising a semiconductor element and a lead wire or electrode fixed to the semiconductor element directly or through another member, at least a part of the electrode in front of the lead wire is caused by thermal expansion of the semiconductor element. 1. A semiconductor device comprising an amorphous alloy core material having a coefficient of thermal expansion equal to or smaller than the coefficient of thermal expansion, and a highly electrically conductive material covering the core material.
(2)半導体素子がp−n接合を有する光電変換素子で
あり、リード線が光起電流を集める主集電電極であるこ
とt−特徴とする特許請求の範囲第1項記載の半導体装
置。 (■半導体素子と、この半導体素子に1直ss*mたは
電極の少なくとも前記半導体素子に固着される部位が前
記半導体素子の熱膨張係数より小さ■熱膨張係数を有す
る非晶質合金から成る芯材と、ζO芯材O少なくとも対
設面をほぼ同一厚さで被橿する高電気伝導度を有する被
a材とからなり、この芯材と被覆材とにより実質的に前
記半導体素子O熱膨張係数と同等な部材とし九ことを特
徴とする半導体装置。 (4リード線がLSI、ICなどを載するリードフレー
ムであり、電極がダイオード、トランジスタ、サイリス
タ、レーザ素子などに固定される電極であることを特徴
とする特許請求の範囲第3項記載の半導体装置。 (り非晶質合金として下肥の組成(at 1)を有する
4のを用い九ことをIF#黴とする特許請求の範囲第1
乃至第4項いずれかの記載の半導体装置。 (d FeaXbBc、 Xは81.Ge、C,P、ム
10少くと41種80くaく90t Oくbく10+’
 5<C<20.a+b+c=100(b) (a)に
おいてreの一部’1−10Jl(子−以下のTi。 V、Cr 、Mn 、Ni eZr 、Nb 、Mo、
au ekeed lHf +Wi 、w。 几e、Pi、人u、Ag、Y、R(希土類元素)から選
ばれる少くとも1種の元素で置換。
(2) The semiconductor device according to claim 1, wherein the semiconductor element is a photoelectric conversion element having a pn junction, and the lead wire is a main current collecting electrode that collects a photovoltaic current. (■ A semiconductor element, and at least a portion of the semiconductor element or electrode fixed to the semiconductor element is made of an amorphous alloy having a coefficient of thermal expansion smaller than that of the semiconductor element. It consists of a core material and a material having high electrical conductivity that covers at least the facing surface of the ζO core material O with approximately the same thickness, and the core material and the coating material substantially reduce the heat of the semiconductor element O. A semiconductor device characterized by having nine characteristics as a member having an expansion coefficient. (The four lead wires are lead frames on which LSIs, ICs, etc. are mounted, and the electrodes are electrodes fixed to diodes, transistors, thyristors, laser elements, etc.) A semiconductor device according to claim 3, characterized in that the semiconductor device according to claim 3 is characterized in that: Range 1
5. The semiconductor device according to any one of items 4 to 4. (d FeaXbBc,
5<C<20. a+b+c=100(b) In (a) part of re'1-10Jl (Child-below Ti. V, Cr, Mn, NieZr, Nb, Mo,
au ekeed lHf +Wi, w. Substituted with at least one element selected from 几e, Pi, 人u, Ag, Y, and R (rare earth elements).
JP56200038A 1981-12-14 1981-12-14 Semiconductor device Pending JPS58101453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200038A JPS58101453A (en) 1981-12-14 1981-12-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200038A JPS58101453A (en) 1981-12-14 1981-12-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58101453A true JPS58101453A (en) 1983-06-16

Family

ID=16417787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200038A Pending JPS58101453A (en) 1981-12-14 1981-12-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58101453A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190477A (en) * 1984-10-09 1986-05-08 Mitsubishi Electric Corp Thin plate body
JPS63119274A (en) * 1986-11-06 1988-05-23 Sharp Corp Solar cell element
JP2012028806A (en) * 2011-09-28 2012-02-09 Sanyo Electric Co Ltd Solar cell module
CN102354710A (en) * 2006-01-24 2012-02-15 三洋电机株式会社 Photovoltaic module
JP2013118223A (en) * 2011-12-01 2013-06-13 Ulvac Japan Ltd Manufacturing method for crystal solar cell and crystal solar cell
JP2017533596A (en) * 2014-10-31 2017-11-09 ビーワイディー カンパニー リミテッドByd Company Limited Solar cell unit, solar cell array, solar cell module, and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190477A (en) * 1984-10-09 1986-05-08 Mitsubishi Electric Corp Thin plate body
JPH0556670B2 (en) * 1984-10-09 1993-08-20 Mitsubishi Electric Corp
JPS63119274A (en) * 1986-11-06 1988-05-23 Sharp Corp Solar cell element
CN102354710A (en) * 2006-01-24 2012-02-15 三洋电机株式会社 Photovoltaic module
US9515200B2 (en) 2006-01-24 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic module
US10056504B2 (en) 2006-01-24 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic module
JP2012028806A (en) * 2011-09-28 2012-02-09 Sanyo Electric Co Ltd Solar cell module
JP2013118223A (en) * 2011-12-01 2013-06-13 Ulvac Japan Ltd Manufacturing method for crystal solar cell and crystal solar cell
JP2017533596A (en) * 2014-10-31 2017-11-09 ビーワイディー カンパニー リミテッドByd Company Limited Solar cell unit, solar cell array, solar cell module, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JPS5861677A (en) Semiconductor device
US3778684A (en) Semiconductor element and method of making it
FR2786655A1 (en) ELECTRONIC POWER DEVICE
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
US3212160A (en) Method of manufacturing semiconductive devices
JPS58101453A (en) Semiconductor device
JPH034030Y2 (en)
JP6619661B2 (en) Semiconductor device and method for manufacturing semiconductor device
KR20170012927A (en) Clip for semiconductor package and method for fabricating the same, semiconductor package having the clip
US6404066B1 (en) Semiconductor device and process for manufacturing the same
EP2362432A1 (en) Solar cell assembly II
JPS5936426B2 (en) IC lead frame
JP5565519B1 (en) Solar cell module
JPS5936425B2 (en) Lead frame structure with intermediate layer
JP2003203932A (en) Semiconductor device and manufacturing method thereof
US3769694A (en) Ohmic contact for group iii-v p-type semiconductors
GB2074793A (en) Thin film circuit assembly
JP2608658B2 (en) Semiconductor device and manufacturing method thereof
US6391758B1 (en) Method of forming solder areas over a lead frame
JPH0786484A (en) Resin-sealed semiconductor device
EP3971993A1 (en) Manufacturing method for back structure of double-sided p-type sollar cell
US20200328092A1 (en) Lead frame, chip package structure, and manufacturing method thereof
JPS586307B2 (en) semiconductor equipment
JP3077361B2 (en) Method for manufacturing semiconductor device