JPS58100745A - Measuring method for nuclear magnetic resonance - Google Patents

Measuring method for nuclear magnetic resonance

Info

Publication number
JPS58100745A
JPS58100745A JP19970381A JP19970381A JPS58100745A JP S58100745 A JPS58100745 A JP S58100745A JP 19970381 A JP19970381 A JP 19970381A JP 19970381 A JP19970381 A JP 19970381A JP S58100745 A JPS58100745 A JP S58100745A
Authority
JP
Japan
Prior art keywords
nucleus
frequency
sample
observation
decoupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19970381A
Other languages
Japanese (ja)
Other versions
JPS6258455B2 (en
Inventor
Teruaki Fujito
藤戸 輝昭
Muneshiro Oouchi
宗城 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP19970381A priority Critical patent/JPS58100745A/en
Publication of JPS58100745A publication Critical patent/JPS58100745A/en
Publication of JPS6258455B2 publication Critical patent/JPS6258455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a sufficiently strong resonance signal even if a sample hard to measure with CP method, by irradiating repeatedly a 90 deg. pulse of a nucleus to be decoupled in a period except observing time of a FID signal. CONSTITUTION:High-frequency waves for observation and decoupling generated from oscillators 1, 2, are sent to an irradiation coil for boservation 7 and an irradiation coil for decoupling 8 arranged in a static magnetic field through gates 3, 4 and amplifiers 5, 6 and these are irradiated to a sample in a sample tube 9. Now, regarding an observation nucleus as <13>C and a nucleus to be decupled as <1>H, the frequency of the oscillator 1 is set to the resonance frequency of <13>C and the frequency of the oscillator 2 is set to the resonace frequency of <1>H. ON-OFF timing of the gates 3, 4 is controlled by a controlling circuit 10. A signal is enlarged by a NOE when the observation is started after irradiating a 90 deg. pulse of the <1>H nucleus to be decoupled to the sample repeatedly previous to the irradiation of a high frequency pulse for the obsevation and making into a staturated state and then, a strong resonance line can be obtained.

Description

【発明の詳細な説明】 本発明は固体と液体の中間の性質を持つ試料の測定に用
いて好適な核磁気共鳴測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear magnetic resonance measurement method suitable for use in measuring samples with properties intermediate between solid and liquid.

多重核磁気共鳴装置では観測IIC(例えば C)憂ζ
共鳴を起こさせると同時身ζ他の特定核(例えばIn 
)についても共鳴状態となし、観測核と特定核との間の
スピン−スピン結合を切断する所謂デカップリングが行
われるが、近時このデカップリング法の一つとしてクロ
スボラリゼーションデカップリング法(CP法)が提案
されている0このCP法はデカップリングrる核を前も
って分極させこれを観測核にトランスファーするもので
、特に固体試料の測定薯ζ用いて感度陶土の点から有効
であり現在では固体の物性研究に不可欠なものとなって
きている。
With multiple nuclear magnetic resonance equipment, observation IIC (e.g. C)
When resonance is caused, the same body ζ other specific nuclei (for example, In
) is also placed in a resonant state, and so-called decoupling is performed to break the spin-spin coupling between the observed nucleus and the specific nucleus. CP method) has been proposed. This CP method polarizes the decoupled nucleus in advance and transfers this to the observation nucleus. It is effective from the viewpoint of sensitivity, particularly when measuring solid samples. It has become indispensable for research on the physical properties of solids.

本発明者が(のCP法を用いて各種試料について測定を
行ったところ、OF法では非常に弱い共鳴信号しか得ら
れない試料があることが見出された0それは加硫ゴム類
、高分子の非晶成分等であり、これらの試料は固体と液
体の中間的な性質を持つ0これらの試料では1H核から
5DC核へのクロスボラリゼーションの移動に要する時
間T2 CHdζ比べ SHの回転系5csiける縦緩
和時間T1pが十九くないという共通点があり、そのた
めtal )Iの分極が”Cヘトランスフアされないう
ら疹ζ Hのスピンが減衰してしまう、(ロ)数KHz
もの高速回転を行っているので H系のエネルギーが回
転運動を通して格子へ逃げてしまって Hので1ρが短
(なり、結果的暑ζfilと同じlこなってしまう等の
原因により非常−こ弱い共鳴信号しか得られないものと
思われる。
When the inventor conducted measurements on various samples using the CP method, it was found that there were samples for which only a very weak resonance signal could be obtained using the OF method. These samples have properties intermediate between solid and liquid. In these samples, the time required for cross-volatile movement from 1H nucleus to 5DC nucleus is T2 compared to CHdζ Rotation system of SH There is a common feature that the longitudinal relaxation time T1p in 5csi is not 19, so the polarization of tal) I is not transferred to C, and the spin of H is attenuated, (b) several KHz.
Since the object is rotating at high speed, the energy of the H system escapes to the lattice through rotational motion, and 1ρ becomes short (as a result, the heat is the same as ζfil), which causes a very weak resonance. It seems that only a signal can be obtained.

従ってこれらの試料lζ対してはCP法屈こ代って溶液
試料で行われている完全デカップリング法(デカップリ
ング用高周波を連続的に試料−こ照射する)か、FID
信号観測時(データサンプリングかtいが、前者は固体
試料の場&極めて大きな強度のデカップリング用高周波
を照射しなければならず発熱の面で採用できず、後者は
デカップリングの目的はf分遣せられるが信号観副時以
外lζデカップリング用高局波が照射されないので、ニ
ュークリアへ−バー八ウザー効果(NuclearOv
erhoaser  gffect = NOg) l
こよるFID信号の増強(約3倍)が得られず、感度が
十分でないという欠点がある0 本発明は上述した諸点lζ鑑みてなされたものであり、
デカップリングすべき核の9Q/’e/レスをFID信
号観測時以外の期間にくり返し照射することにより、C
P法で測定しIζくい試料であってもsonによる感度
の向上のため十分強い共鳴信号を得ることができしかも
検出器の発熱をさけることのできる核磁気共鳴測定方法
を提供するものである。
Therefore, for these samples lζ, either the complete decoupling method (continuously irradiating the sample with high-frequency waves for decoupling), which is performed on solution samples instead of the CP method, or the FID method.
During signal observation (data sampling), the former requires irradiation of the solid sample field and extremely high-intensity decoupling high frequency waves, which cannot be used due to heat generation, and the latter cannot be used for decoupling purpose. However, since the lζ decoupling high frequency wave is not irradiated except when the signal is being viewed, the bar eighter effect (NuclearOv
erhoaser geffect = NOg) l
This has disadvantages in that the FID signal cannot be enhanced (approximately 3 times) and the sensitivity is not sufficient.
C
To provide a nuclear magnetic resonance measurement method that can obtain a sufficiently strong resonance signal to improve the sensitivity due to son even if the sample is measured by the P method and has a low Iζ value, and can avoid heat generation in the detector.

以下図面を用いて本発明を詳説する0 第1図は本発dAIζかかる方法を実施するための装置
の一例を示し、同図において1は観測用2はデカップリ
ング用の高周波発振器である0該発振器1,2から発生
した観測用高周波及びデカップリング用高周波は、デー
ト3,4及び増幅器5゜6を介して靜磁場中奢こ配置さ
れた観測用照射コイル7、デカップリング用照射コイル
8へ夫々送られ、試料管9中の試料1ζ照射されるol
oは上記デート3.4を任意に0N−OFFするための
制御    ・回路である〇 今観測核を 01デカツプリングする核を Hとすると
、発振器1の周波数は Cの共鳴周波数に設定され、発
振器2の周波数はHの共鳴周波数に設定される。第2図
+1)、向は制御回路10によって0N−OFFされる
デート4.ゲート6のタイミング図を夫々示す。同図1
bl lこおけるtw2は C核の90’″/くシス(
磁化を90回転させる一fルシスとなる時間幅が与えら
れ、この C核の90パルスの後に現れるT42図(e
l l(示す様な自由誘導減衰信号(FID信号)が1
示しない受信系1ζよって観測され、サンプリングされ
てフーリエ変換される。このサンプリング期間をカバー
する様Iこデート4はONとなり発振器2から発生した
デカップリング用il#1tIR波が試料lζ照射され
る。
The present invention will be explained in detail below with reference to the drawings. Figure 1 shows an example of an apparatus for carrying out the method of the present invention, in which 1 is a high-frequency oscillator for observation and 2 is a high-frequency oscillator for decoupling. The high frequency waves for observation and the high frequency waves for decoupling generated from the oscillators 1 and 2 are sent to the observation irradiation coil 7 and the decoupling irradiation coil 8, which are arranged in a quiet magnetic field, via the dates 3 and 4 and the amplifier 5゜6. The sample 1ζ in the sample tube 9 is sent to each
o is a control circuit for arbitrarily turning the above date 3.4 ON-OFF. If the nucleus to be decoupled by 01 from the observed nucleus is H, then the frequency of oscillator 1 is set to the resonant frequency of C, and oscillator 2 The frequency of is set to the resonant frequency of H. +1) in FIG. 2, the date 4. is turned ON-OFF by the control circuit 10. A timing diagram of gate 6 is shown respectively. Figure 1
tw2 in bl l is 90'''/ccis of C nucleus (
A time width of 1f lucis, which rotates the magnetization 90 times, is given, and the T42 diagram (e
l l (free induction decay signal (FID signal) as shown is 1
It is observed by a receiving system 1ζ (not shown), sampled, and Fourier transformed. The Icodate 4 is turned on so as to cover this sampling period, and the sample lζ is irradiated with the decoupling IR wave generated from the oscillator 2.

ここまではGD法と同じであるが、本発明では@2図<
1)lのタイミングでの観測用高周波/寸シス照射に先
立らデカップリングすべきH核の90パルスを繰返し試
料lζ照射することを特徴としている〇即ち縞2 dQ
 l帽Cおけるt町は1H核の90°−寸シスとなる時
間幅が与えられ、それ身ζより H核の90−イシスが
繰返し照射されるため、この9QI(シスにより1Hの
磁化は常に900倒された状態(所曙飽和状1M)Jζ
保たれる。この様に観測用高周波パルスの照射Iζ先立
らH核の90パルスをくり返し照射して飽和状態として
いる本発明では紡速したNOg+こより信号の増大を得
ることができ、しかも、その照射が間歇的であるため連
続的に照射される完全デカップリング法に比べ照射電力
が桁違いに少なくて良いのでプローブにおける発熱を大
幅に減少させることが可能となる0尚、H核の90Iく
シスの間隔t1はH核の縦緩和時間If tと横緩和時
間T2の間(TI < tx <TI ) iごあるよ
うに設定する必要がある。即ち最初の90パルスで90
倒れた磁化は縦磁化と横磁化に分けて考えれば夫々T 
1 e T Rで元IC戻ってゆくが、次の90パルス
はT2が経過して横磁化がランダムな方向を向いて存在
し、且つ縦磁化が元に戻る前(Ttが経過しないうち)
に照射する必要がある。畳通固体ではT1は数l¥tB
secからsecオーr−XTzはμsecオーダーで
あり%11はその間のamsecli度Cζ設定すれば
良い〇 第5cIiIは加硫した天然ゴムEζついて測定した 
Cスペクトルを示し、(a)はCP法、(b)はデーテ
ッドデカップル法、(C)は本発明を夫々用いている。
The steps up to this point are the same as the GD method, but in the present invention @2 Fig.
1) It is characterized by repeatedly irradiating the sample lζ with 90 pulses of the H nucleus to be decoupled prior to irradiation with high frequency/dimensions for observation at timing l〇, that is, stripe 2 dQ
The t town in the l cap C is given a time width in which the 90-isis of the 1H nucleus is given, and since the 90-isis of the H nucleus is repeatedly irradiated from ζ, the magnetization of 1H is always 900 defeated state (Akebono saturation state 1M) Jζ
It is maintained. As described above, in the present invention, in which 90 pulses of the H nucleus are repeatedly irradiated to reach a saturated state before the irradiation of high-frequency pulses for observation Iζ, it is possible to obtain an increase in the signal from the spun NOg Since the irradiation power is orders of magnitude lower than that of the complete decoupling method in which irradiation is performed continuously, it is possible to significantly reduce heat generation in the probe. It is necessary to set t1 so that it is between the longitudinal relaxation time If t and the transverse relaxation time T2 (TI < tx < TI) i of the H nucleus. i.e. 90 in the first 90 pulses
If we divide the fallen magnetization into longitudinal magnetization and transverse magnetization, each becomes T.
1 e T R returns to the original IC, but in the next 90 pulses, after T2 has elapsed, the transverse magnetization exists in a random direction, and before the longitudinal magnetization returns to its original state (before Tt has elapsed)
need to be irradiated. In Tatami Dori solid state, T1 is several l\tB
sec to sec or-XTz is on the μsec order, and %11 can be set by setting the amsecli degree Cζ in between. 5th cIiI was measured on vulcanized natural rubber Eζ
C spectra are shown in which (a) uses the CP method, (b) uses the dated decoupled method, and (C) uses the present invention.

いずれも繰返しは10秒、観測局波数は25MHzであ
り、積算回数はia)が2000回、 tb) 、 l
clが400回である。本発明を用いて得られたスペク
トルはCP法iこよるものよりも桁違いIこ強度が大き
く、父、デーテッドデカップリング法と比べても2倍程
度の強度が得られていることがわかる。
In each case, the repetition time was 10 seconds, the observation station wave number was 25 MHz, and the cumulative number of times was 2000 for ia), tb), and l.
cl is 400 times. It can be seen that the spectrum obtained using the present invention has an order of magnitude higher intensity than that obtained using the CP method, and is about twice as strong as that obtained using the dated decoupling method. .

尚と述した実施例は観測用高周波パルスが単一の場合で
あうなか%TI測定のように複数の/寸シスを組会わせ
て照射する場合擾ζも適用することができ、その時もF
ID信号をサンプリングする期間を除(期間−こデカッ
プリングする核の90パルスをくり返し照射するようE
ζすることに変わりない〇又90パルスの間隔t1はT
2<ti<T’1の関係さえ満足すれば常蚤ζ一定であ
る必要は必ずしもないO 以上詳述した如く本発明によればCP法で検出し憂ζく
い試料であっても、デーテッドデカップル法よりも感度
良く簡単lζ測定することが可能となるO
Although the above-mentioned embodiments are applicable to the case where a single high-frequency pulse is used for observation, it is also possible to apply ξ when irradiating a plurality of pulses in combination, such as in %TI measurement.
Excluding the period during which the ID signal is sampled (period - 90 pulses of the decoupled nucleus are repeatedly irradiated).
ζ 〇Also, the interval t1 of 90 pulses is T
As long as the relationship 2<ti<T'1 is satisfied, it is not necessarily necessary that ζ is always constant. It is possible to measure lζ more sensitively and easily than the decoupling method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の一列を示す図、
第2図はその動作を説明するためのタイミング図、第3
図は本発明と他法を用いた測定結果の比較を示す図であ
る。 1.2:高周波発振器、6.4:デート、7:観測用照
射コイル、8:デカップリング用照射コイル、10:制
御回路0 特許出願人 日本電子株式会社 代表者 加 勢 忠 雄 「 r3図
FIG. 1 is a diagram showing a line of equipment for carrying out the invention;
Figure 2 is a timing diagram to explain its operation, and Figure 3 is a timing diagram to explain its operation.
The figure is a diagram showing a comparison of measurement results using the present invention and other methods. 1.2: High frequency oscillator, 6.4: Date, 7: Observation irradiation coil, 8: Decoupling irradiation coil, 10: Control circuit 0 Patent applicant JEOL Ltd. Representative Tadao Kasei "r3 diagram

Claims (1)

【特許請求の範囲】 L 試料に観測用高周波と共−ζデカップリング用高周
波を照射する核磁気共鳴測定方法1こおいて、FID信
号観測期間以外の期間デカップルする核gこついでの9
0パルスを繰返し照射するようlζしたことを特徴とす
る核磁気共鳴測定方法。 jiLeij記907ずシス照射の間隔tが試料中のデ
カップルする核の縦緩和時間TIより短かく、横緩和時
間T2よりも長くなるように設定した特許請求の範囲第
1項記載の核磁気共鳴測定方法。
[Scope of Claims] L Nuclear magnetic resonance measurement method 1 in which a sample is irradiated with high frequency waves for observation and high frequency waves for decoupling 1, in which the nucleus g is decoupled for a period other than the FID signal observation period.
A nuclear magnetic resonance measurement method characterized in that 0 pulses are repeatedly irradiated. Nuclear magnetic resonance measurement according to claim 1, wherein the interval t of cis irradiation is set to be shorter than the longitudinal relaxation time TI and longer than the transverse relaxation time T2 of decoupled nuclei in the sample. Method.
JP19970381A 1981-12-11 1981-12-11 Measuring method for nuclear magnetic resonance Granted JPS58100745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19970381A JPS58100745A (en) 1981-12-11 1981-12-11 Measuring method for nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19970381A JPS58100745A (en) 1981-12-11 1981-12-11 Measuring method for nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS58100745A true JPS58100745A (en) 1983-06-15
JPS6258455B2 JPS6258455B2 (en) 1987-12-05

Family

ID=16412203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19970381A Granted JPS58100745A (en) 1981-12-11 1981-12-11 Measuring method for nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS58100745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095890A1 (en) * 2018-11-09 2020-05-14 Thk株式会社 Guiding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454044U (en) * 1987-09-30 1989-04-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095890A1 (en) * 2018-11-09 2020-05-14 Thk株式会社 Guiding device

Also Published As

Publication number Publication date
JPS6258455B2 (en) 1987-12-05

Similar Documents

Publication Publication Date Title
Agnello et al. Instantaneous diffusion effect on spin-echo decay: Experimental investigation by spectral selective excitation
Demco et al. Phase-shifted pulse sequence for measurement of spin-lattice relaxation in complex systems
JPH0350535B2 (en)
JPS58100745A (en) Measuring method for nuclear magnetic resonance
GB1319461A (en) Method for measuring nuclear magnetic resonance relaxation times
US8134364B1 (en) Magnetic resonance imaging using modified bessel functions
US3133243A (en) Enhanced polarization nuclear free precession magnetometer
Leisure et al. Temperature Dependence of Ultrasonic Paramagnetic Resonance in MgO: Fe 2+
Goto et al. Proton Spin-Lattice Relaxation in the Quasi-One-Dimensional S= 1 Heisenberg Antiferromagnet Ni (C2H8N2) 2NO2 (ClO4)
US5189370A (en) Chemical shift imaging
Cheng et al. Electron spin-echo experiments of a ground organic triplet state in a single crystal, diphenylmethylene in benzophenone
JPS614952A (en) Method of mapping nuclear magnetic characteristic of body tobe inspected
JPS6029685A (en) Inspecting method by nuclear magnetic resonance
Barkhuijsen et al. Observation of potassium hyperfine interactions in x-irradiated KH2AsO4 through the method of electron spin echo envelope modulation
JPS61114150A (en) Measuring method of two-dimensional nuclear magnetic resonance
Grechishkin et al. Two-frequency effects in nuclear quadrupole resonance
Hiyama et al. Nitrogen 14 Nuclear Quadrupole Resonance Study of Several Condensed Ring Compounds
Williams Determination of nuclear magnetic moments by super-regenerative techniques
JPS59182352A (en) Method for measuring nuclear magnetic resonance
JPS5957146A (en) Method and apparatus for inspection utilizing nuclear magnetic resonance
JPH01502723A (en) Equipment for high-speed imaging using nuclear magnetic resonance
Henstra et al. Muon spin rotation (μSR) detected electron spin echo envelope modulation (ESEEM)
JPS62106353A (en) Apparatus for forming nuclear magnetic resonance tomographic image
萬本義徳 et al. A Study of Multiple Quantum Transitions by Rotary Saturation of Nuclear Magnetic Resonance
GB1522056A (en) Method for viewing nuclear magnetic resonance