JPS58100704A - Measuring apparatus of gas-liquid two phase flow - Google Patents

Measuring apparatus of gas-liquid two phase flow

Info

Publication number
JPS58100704A
JPS58100704A JP20058981A JP20058981A JPS58100704A JP S58100704 A JPS58100704 A JP S58100704A JP 20058981 A JP20058981 A JP 20058981A JP 20058981 A JP20058981 A JP 20058981A JP S58100704 A JPS58100704 A JP S58100704A
Authority
JP
Japan
Prior art keywords
light
liquid
bubble
gas
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20058981A
Other languages
Japanese (ja)
Other versions
JPS6258441B2 (en
Inventor
Katsuji Hironaga
勝治 広永
Masaki Nishiura
賢亀 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Original Assignee
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK, Nippon Chemical Industrial Co Ltd filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP20058981A priority Critical patent/JPS58100704A/en
Publication of JPS58100704A publication Critical patent/JPS58100704A/en
Publication of JPS6258441B2 publication Critical patent/JPS6258441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the speed, diameter etc. of an air bubble at the same time, by detecting the variation of a reflection state at the tip end of an optical fiber at the time of penetrating the tip end of the optical fiber inserted into a gas-liquid two phases flow into the bubble as the intensity variation of reflected light and Doppler shift. CONSTITUTION:Light having a single oscillation frequency and single polarized light face from a light source 4 is made incident to an optical fiber 1 passing through a beam splitter 5 and a focusing lens 6. A tip face 7a of a focusing lens 7 of the tip end of the fiber 1 is inserted into a gas-liquid two phase flow perpendicularly to a flow direction. The light returning from the fiber 1 is divided by the splitter 5 and is converted into an electric signal by a photoelectric converter 8. Beat part of a reflected wave by the face 7a and a reflected wave by the surface of a bubble is taken out by a by-pass filter 9 and the signal expressing the necessary time of penetration of the bubble is taken out by a low- pass filter 10. The speed and diameter etc. of the air bubble are calculated by a signal processing circuit 13.

Description

【発明の詳細な説明】 本発明は気液二相流における気泡速度、気泡径等を同時
に計測するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for simultaneously measuring bubble velocity, bubble diameter, etc. in a gas-liquid two-phase flow.

従来気液二相流の気泡を計測する手段としては一般に次
のものが知られている。その一方法は電気抵抗の変化を
利用するものであって、被服した針状の金属線の先端に
微細な点電極を設け、先端部を除いて該金属線を金属細
管によって包んで対電極とし、ξれらの一対の電極にl
圧を与え検出部として気液二相流の流路中に挿入する。
Conventionally, the following methods are generally known as means for measuring bubbles in a gas-liquid two-phase flow. One method utilizes changes in electrical resistance; a fine point electrode is provided at the tip of a covered needle-shaped metal wire, and the metal wire, except for the tip, is wrapped in a thin metal tube to serve as a counter electrode. , ξ on these pair of electrodes
Apply pressure and insert it into the flow path of gas-liquid two-phase flow as a detection part.

検出部カリ諷相中にあるときは両電極間の抵抗は液体の
、物性に対応したある仏を示すが、点Qmが気相に接す
ると両電極間の抵抗値は極めて大きく絶縁状態となる。
When the detection part is in the phase phase, the resistance between the two electrodes shows a certain resistance corresponding to the physical properties of the liquid, but when the point Qm touches the gas phase, the resistance value between the two electrodes is extremely large and becomes an insulating state. .

従って抵抗値の変化を検出することによシ気液二相流の
計測を行なうことができる。しかしながらこの方法によ
って計測を行ないうるのは導電性を有する液体に限られ
、例えば油やアルコール等の非導電性液体の場合、電極
面は常に絶縁状態にあるため計測が不可能であるという
欠点があった。又導電性を有する液体であっても1通電
によって化学変化が生ずるおそれのある液体の場合には
使用に適さないという欠点があった。
Therefore, the gas-liquid two-phase flow can be measured by detecting the change in resistance value. However, this method can only be used to measure conductive liquids; for example, in the case of non-conductive liquids such as oil or alcohol, the electrode surface is always in an insulated state, making measurement impossible. there were. Furthermore, even if the liquid is electrically conductive, there is a drawback that it is not suitable for use if it is likely to undergo a chemical change with a single application of electricity.

又他の一方法として光ファイバを用い、適宜箇所をU字
吠に曲げて構成した検出部に光を導き業気液二相流の流
路中に挿入して計測を行なう方法が知られている。即ち
光ファイバの一端から光を入射すると検出部が液相中に
ある場合は液体とガラスの屈折率の差が微小であるため
光が液中に漏れて光ファイバの他端からの出射光強度が
減少し、検出部が気泡中に入ると光は光ファイバと気相
の境界面で全反則されて外に漏れないので出射光強度が
減少しない。従って出射光強度の変化を検出することに
よシ気液二相流の計測を行いうる。しかし該方法は光フ
ァイバの曲げ部分を検出部としているため′検出部を極
小化することが極めて困難であシ、微小な気泡は検出で
きず信頼性の高い測定結果を期待できないという欠点が
あった。
Another known method is to use an optical fiber and conduct measurements by guiding the light to a detection section formed by bending it into a U-shape at appropriate points and inserting it into the flow path of the gas-liquid two-phase flow. There is. In other words, when light is input from one end of the optical fiber, if the detection part is in the liquid phase, the difference in refractive index between the liquid and the glass is minute, so the light leaks into the liquid and the intensity of the light emitted from the other end of the optical fiber increases. decreases, and when the detection unit enters the bubble, the light is completely reflected at the interface between the optical fiber and the gas phase and does not leak outside, so the intensity of the emitted light does not decrease. Therefore, the gas-liquid two-phase flow can be measured by detecting changes in the intensity of the emitted light. However, since this method uses the bent part of the optical fiber as the detection part, it is extremely difficult to minimize the detection part, and it has the disadvantage that it cannot detect minute bubbles and cannot expect highly reliable measurement results. Ta.

本発明は前記の如き従来の欠点を解消することを目的と
するものであって、液相の物性や気泡の大きさにかかわ
少なく、気泡の速度や気泡径を精度よく測定することの
できる計測装誼を提供するものである。
The present invention aims to solve the above-mentioned conventional drawbacks, and is a measurement method that can accurately measure the speed and diameter of bubbles regardless of the physical properties of the liquid phase or the size of bubbles. It provides decoration.

以下本発明の原理を図面を参照しつつμ明する。The principle of the present invention will be explained below with reference to the drawings.

第1図(a) 、 (b) 、 (c)は本発明の原理
図である。これらの図において、光ファイバ1が気液二
相流の流路中に挿入され、且その端面1aが気液二相流
に対して垂直になるように固定されているものとす “
る。ここで2は液相、8は気泡を表すものとし、第1図
G)は光ファイバ1の端面1aが接近した気泡8と対向
している状態、第1図ら)は、気泡8足接触した端面1
aが気泡80表面を貫いてその中に含まれた状態、第1
図伝)は気泡8が端面1aを通スムし終えた状態を示す
。尚矢印は気液二相流の方向を示すものとする。さて光
源よシ光が光ファイバ真に供給されると、光の大部分は
端面1aを透過するがその一部は端面1aで反射し、光
ファイバ1を通って光源側に戻る。その場合に反射光強
度は端面1aが接する媒質の屈折率によって異なるが、
今光ファイバのコア部の屈折率nQを1.5゜液相例え
ば水の屈折率n1を1.8.気泡、例えば空気の屈折率
n1を1とすると、第1図(a) 、 (c)の如く端
面1aが波相と接している場合の反射光強度は約0.5
%、第1図(b)の如く端面1aが気泡8と接している
場合の反射光強度は約4%となる。従って第1図ら)〜
(C)に例示した如く、光ファイバの端面1aに向って
接近してきた気泡8が端面1aに接し該端面に貫かれる
状態で通過していった場合の端面1mからの反射光の強
度変化は第2図ら)に示されるものとなる。ここで時刻
1.は気泡8が端面laに接した時点を示し、時刻t4
は端面1aが気泡8を通過し終って再び液相に接し始め
た時点を示しておシ、時刻t1から時刻−に至る間は端
面1aは気相に接しているためその間だけ反射光強度が
強くなっていることを示し°Cいる。
FIGS. 1(a), (b), and (c) are diagrams of the principle of the present invention. In these figures, it is assumed that the optical fiber 1 is inserted into a flow path of a gas-liquid two-phase flow and is fixed such that its end surface 1a is perpendicular to the gas-liquid two-phase flow.
Ru. Here, 2 represents a liquid phase, and 8 represents a bubble. Fig. 1G) shows a state in which the end surface 1a of the optical fiber 1 is facing a close bubble 8, and Fig. 1 et al.) shows a state in which 8 bubbles are in contact. End face 1
The state in which a penetrates the surface of the bubble 80 and is contained therein, the first
(Illustrated biography) shows the state in which the bubble 8 has finished passing through the end surface 1a. Note that the arrow indicates the direction of the gas-liquid two-phase flow. Now, when light is supplied from the light source to the optical fiber, most of the light is transmitted through the end face 1a, but a part of it is reflected by the end face 1a and returns through the optical fiber 1 to the light source side. In that case, the intensity of the reflected light varies depending on the refractive index of the medium with which the end surface 1a is in contact, but
Now, the refractive index nQ of the core part of the optical fiber is 1.5°, and the refractive index n1 of the liquid phase, for example, of water, is 1.8. Assuming that the refractive index n1 of a bubble, for example air, is 1, the reflected light intensity when the end face 1a is in contact with the wave phase as shown in FIGS. 1(a) and (c) is approximately 0.5.
%, and when the end surface 1a is in contact with the bubble 8 as shown in FIG. 1(b), the reflected light intensity is about 4%. Therefore, Figure 1 et al.) ~
As illustrated in (C), when the bubble 8 approaching the end face 1a of the optical fiber touches the end face 1a and passes through the end face 1a, the intensity change of the reflected light from the end face 1m is The result will be as shown in Figure 2, etc.). Here time 1. indicates the time when the bubble 8 comes into contact with the end surface la, and time t4
indicates the point in time when the end surface 1a finishes passing through the bubble 8 and starts contacting the liquid phase again. Since the end surface 1a is in contact with the gas phase from time t1 to time -, the intensity of reflected light decreases only during that time. It shows that it is getting stronger.

ところで第1図(a)又は第1図(b)において、光フ
ァイバ1の端面1aを透過した光は夫々気泡8の外面及
び内面、即ち二相の境界面で反射し再び光ファイバーに
入射する。ここで気泡8は矢印方向に速度Vで動いてい
るため、この気泡面からの反射光はドツプラー効果によ
シわずかに周波数が高くなる。金入射光の周波数をfl
、気泡接近時のドツプラー効果による周波数偏移量、即
ちドツプラーシフト周波数をΔfi、光速をCとすると
、c/nl+V      、   2nlV    
  2nlVΔfi=(c/nよ−■−1)f1=コ一
−fi=下・・・・・・(13となる。
By the way, in FIG. 1(a) or FIG. 1(b), the light transmitted through the end face 1a of the optical fiber 1 is reflected by the outer surface and inner surface of the bubble 8, that is, the interface between the two phases, and enters the optical fiber again. Here, since the bubble 8 is moving at a speed V in the direction of the arrow, the frequency of the reflected light from the bubble surface becomes slightly higher due to the Doppler effect. The frequency of the gold incident light is fl
, the amount of frequency shift due to the Doppler effect when a bubble approaches, that is, the Doppler shift frequency is Δfi, and the speed of light is C, c/nl+V, 2nlV
2nlVΔfi=(c/nyo−■−1) f1=koichi−fi=lower (13).

又気泡が端面1aを通過し終える前のドツプラー効果に
よるドツプラーシフ÷周波数をΔfo とすると、第(
1)式と同様にして naV Δf、=□  @+骨−e(2) λ となる。而して光フアイバ端面1aの反射光は、その周
波数が光源の光の周波数fiと等しいので、気泡面反射
光との光ビートをとることによって、ドツプラー効果に
よるドツプラーシフト周波数波数を検出することができ
る。第2図Φ)は気泡面からの反射光の光強度の特開的
変化を示すものであって、第21J(a)と時間軸をそ
ろえている。本図に示す如く気泡8が光ファイバ1の端
fT1aに接する直前の時刻t1から端面1aに接した
時刻t2までの間、及び気泡8が光ファイバlの端面1
aを通過し終える直前の時刻ムから通過し終える時刻t
4までの間で気泡面即ち二相境界面からの反射光が得ら
れる。
Also, if the Doppler shift due to the Doppler effect before the bubble finishes passing through the end surface 1a divided by the frequency is Δfo, then the (
Similarly to equation 1), naV Δf, =□ @+bone−e(2) λ is obtained. Since the frequency of the light reflected from the optical fiber end face 1a is equal to the frequency fi of the light from the light source, the Doppler shift frequency wave number due to the Doppler effect can be detected by taking the optical beat with the light reflected from the bubble surface. I can do it. FIG. 2 Φ) shows the change in the light intensity of the reflected light from the bubble surface, which is aligned with the time axis of FIG. 21J(a). As shown in this figure, from time t1 immediately before the bubble 8 contacts the end fT1a of the optical fiber 1 to time t2 when the bubble 8 contacts the end face 1a, and when the bubble 8 contacts the end face 1 of the optical fiber 1,
From the time m just before passing through a to the time t when passing through
4, reflected light from the bubble surface, that is, the two-phase boundary surface can be obtained.

これらの反射光の有する周波数はいずれもドツプラー効
果による周波数偏移があるので光ファイバ1の端面1a
からの反射光を参照光とするヘテロダイン検波を行なう
ことによって得られるドツプラーシフト周波数を測定す
れば前述した式(1) 、 (2)よ多気泡速度を計測
することができる。又第2図軸)、0)に示す如く時刻
1.とt4の時同間隔を検出する仁とによ多気泡通過時
間が測定できる。更に又気泡速度と気泡通過時間から気
泡径を計測することも可能である。
The frequencies of these reflected lights all have a frequency shift due to the Doppler effect, so the end face 1a of the optical fiber 1
By measuring the Doppler shift frequency obtained by performing heterodyne detection using the reflected light from as reference light, the multi-bubble velocity can be measured according to the above-mentioned equations (1) and (2). Also, as shown in Fig. 2 axes) and 0), at time 1. By detecting the same interval at the time of t4 and t4, the passage time of multiple bubbles can be measured. Furthermore, it is also possible to measure the bubble diameter from the bubble velocity and bubble passage time.

次に本発明の構成を実施例に基づき図面を参照しつつ説
明する。第8図は本発明の一実施例を示すブロック図で
ある。本図において、4は単一の振動数を有するレーザ
発振器である。そのレーザビームの偏光面t−偏光ビー
ムスプリッタ5を通過する方向(例えば水平方向)に設
定しておく。そうすればレーザ発振器Aから出射された
レーザ光は偏光ビームスプリッタ5を通過しレンズ6に
よって集束され光ファイバlの一端に導かれる。該レー
ザ光の偏光面は光ファイバ1を伝わる過程でランダムと
なる。この光ファイバ1の他端を第1図に示す如く気液
二相流の流路中に挿入し、光フアイバ端面1aを流入方
向に対して垂直となる位置に固定する。光フアイバ端面
1aには図示の如く出射光を集束させ、信号の質を向上
させるためにセルフォックレンズや球レンズ等の集束レ
ンズ   [7を設けることが好ましい。以上の如く光
学系を構成配備することによシレーザ発振器4から伝送
されたレーザ光の一部は原末レンズ端面7aで反射し、
端面7aが液相中にあるか気相中にあるかによシ異なる
強度を有する反射光となって光ファイバ1に戻シ、又光
ファイバ1からの出射光も気液二相の境界面でその一部
が反射されて光ファイバに戻る。これらの反射光の偏光
面はいずれもランダムであるため、反射光の一部(垂直
偏光成分)は偏光ビームスプリッタ5で反射され光電変
換滞日に供給される。光電変換器8は例えばアバランシ
ェ型のフォトダイオードから成シ、集束レンズ7の端面
7aよシ得られる反射光の光強度に対応する電気信号を
発生すると共に、該反射光と気液二相の境界面からの反
射光とが同時に与えられた場合は光ビートを取シ、両反
射光の周波数の差であるドツプラーシフト周波数(気相
突入時にはΔfie液相突入時にはΔfo  )の電気
信号を発生するものである。第2図(c)はこの光電変
換器8の出力信号の一例を示すものであって、図におい
て時刻t!〜t4間は気泡の通過時間であシ1時刻tl
 ’−tm間と時刻ts−t4間に夫々ドツプラーシフ
ト周波数ΔfitΔfoが含まれている。この光電変換
器8の出力はバイパスフィルタ9.及びローパスフィル
タ10に与えられ、それらを通過する過程で気泡通過時
間に関する情報と、気泡速度に関する情報とが分iされ
る。即ちバイパスフィルタ9は同波数の高いドツプラー
シフト周波数ΔfteΔfOの電気信号を次段の周波数
測定器10に供給し、ローパスフィルタ1は周波数の低
い光フアイバ端面からの反射光の信号を次段の時間間隔
測定器12に供給する。
Next, the configuration of the present invention will be explained based on embodiments with reference to the drawings. FIG. 8 is a block diagram showing one embodiment of the present invention. In this figure, 4 is a laser oscillator having a single frequency. The polarization plane of the laser beam is set to the direction (for example, horizontal direction) in which it passes through the polarization beam splitter 5. Then, the laser beam emitted from the laser oscillator A passes through the polarizing beam splitter 5, is focused by the lens 6, and is guided to one end of the optical fiber l. The polarization plane of the laser beam becomes random during the process of propagating through the optical fiber 1. The other end of this optical fiber 1 is inserted into a gas-liquid two-phase flow path as shown in FIG. 1, and the optical fiber end face 1a is fixed at a position perpendicular to the inflow direction. It is preferable to provide a focusing lens [7] such as a selfoc lens or a ball lens on the optical fiber end face 1a to focus the emitted light and improve the quality of the signal as shown in the figure. By configuring and arranging the optical system as described above, a part of the laser light transmitted from the laser oscillator 4 is reflected by the end face 7a of the original lens,
Depending on whether the end face 7a is in the liquid phase or the gas phase, the reflected light returns to the optical fiber 1 with different intensities, and the light emitted from the optical fiber 1 also returns to the boundary between the gas and liquid phases. A portion of it is reflected back into the optical fiber. Since the polarization planes of these reflected lights are all random, a part of the reflected light (vertical polarization component) is reflected by the polarizing beam splitter 5 and supplied to the photoelectric conversion station. The photoelectric converter 8 is composed of, for example, an avalanche type photodiode, and generates an electric signal corresponding to the light intensity of the reflected light obtained from the end surface 7a of the focusing lens 7, and also generates an electric signal corresponding to the light intensity of the reflected light obtained from the end surface 7a of the focusing lens 7, and also generates an electrical signal corresponding to the light intensity of the reflected light and the gas-liquid two-phase boundary. When reflected light from a surface is given at the same time, the optical beat is taken and an electrical signal with a Doppler shift frequency (Δfi when entering the gas phase and Δfo when entering the liquid phase) is generated, which is the difference in frequency between the two reflected lights. It is something. FIG. 2(c) shows an example of the output signal of this photoelectric converter 8, and in the figure, time t! The period between t4 and t4 is the bubble passage time, and time tl
A Doppler shift frequency ΔfitΔfo is included between '-tm and time ts-t4, respectively. The output of this photoelectric converter 8 is filtered through a bypass filter 9. and the low-pass filter 10, and in the process of passing through them, information regarding the bubble passage time and information regarding the bubble velocity are separated. That is, the bypass filter 9 supplies an electrical signal with the same high wave number and a Doppler shift frequency ΔfteΔfO to the next stage frequency measuring device 10, and the low pass filter 1 supplies a low frequency signal of the reflected light from the end face of the optical fiber to the next stage time signal. It is supplied to the distance measuring device 12.

周波数測定器11は入力されたドツプラーシフト周波数
Δfl、Δf0についてのデータを信号処理回路18に
与え1時間間隔測定器1慮第2図(a)に示す時刻t、
〜hの時間間隔についてのデータを信号処理回路18に
与える。而して信号処理回路1猷周波数測定器11及び
時間間隔測定器12′b)ら供給された姫データに基づ
いて気泡速度、気泡通過時間、更にこれらに基づき気泡
径及びボイド率(気体と液体の体積率)を演算によシ求
めて1表示器14によシ表示する。尚武(1) 、 (
2)よシ知られるように、ドツプラーシフト周波数Δf
i、Δf、の比は液相と気相の屈折率n1tnaの比に
等しい。従って液相又は気相の一方の屈折率が既知であ
れば、他方の屈折率はドツプラーシフト周波数の比よシ
求めることも可能である。
The frequency measuring device 11 supplies data regarding the input Doppler shift frequencies Δfl and Δf0 to the signal processing circuit 18, and the time t shown in FIG.
Data regarding the time interval ~h is provided to the signal processing circuit 18. Based on the data supplied from the signal processing circuit 1, the frequency measuring device 11, and the time interval measuring device 12'b), the bubble velocity, bubble passing time, and based on these, the bubble diameter and void ratio (gas and liquid (volume ratio) is calculated and displayed on the 1 display 14. Naotake (1), (
2) As is well known, Doppler shift frequency Δf
The ratio of i and Δf is equal to the ratio of the refractive index n1tna of the liquid phase and the gas phase. Therefore, if the refractive index of either the liquid phase or the gas phase is known, the other refractive index can be determined from the ratio of the Doppler shift frequency.

本実施例では液相中を気泡が通過する気液二相流につい
て説明したが、気相中を液滴が通過する気液二相流に対
しても気相と液相が交互に通過する気液二相流に対して
も本発明の装置を適用しうろことはいうまでもない。
In this example, a gas-liquid two-phase flow in which air bubbles pass through a liquid phase was explained, but in a gas-liquid two-phase flow in which droplets pass through a gas phase, the gas phase and liquid phase alternately pass through. It goes without saying that the apparatus of the present invention can also be applied to gas-liquid two-phase flows.

以上詳細に説明した如く本発明においては、光フアイバ
端面における反射光と気泡表面における反射光とを利用
し、気泡速度と気泡通過時間を求め、更にそれらに基づ
いて気泡径とボイド率とを求めている。従って本発明の
顕著な特徴は、液体の性質の如何にかかわらず全ての気
液二相流について計測が可能であるばかシでなく、微細
な光ファイバの端面を検知部分として使用しているとこ
ろからとシわけ空間分解能に優れ、微小な気泡に至るま
で洩れなく計測することが可能であるため、極めて信頼
性の高い測定精度を維持し得るところにあるということ
ができる。
As explained in detail above, in the present invention, the bubble velocity and bubble passage time are determined by using the reflected light at the end face of the optical fiber and the reflected light at the bubble surface, and based on these, the bubble diameter and void ratio are determined. ing. Therefore, the remarkable feature of the present invention is that it is not only possible to measure all gas-liquid two-phase flows regardless of the properties of the liquid, but also that the end face of a minute optical fiber is used as the detection part. It has excellent spatial resolution and can measure even the smallest bubbles without leaking, so it can be said that extremely reliable measurement accuracy can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 Cb) 、 (c)は本発明の詳細
な説明する原理図、第2図(a) 、 (b)は夫々光
フアイバ端面及び気泡端面の反射光の強度変化を示すグ
ラフ、第2図(c)は光電変換器8の出力波形図、@8
図は本発明の気液二相流の計測装置の一実施例を示すブ
ロック図である。 1・・・光ファイバ、1−a・・・端面、8・・・気泡
、4・・・レーザ発振器、5・・・偏光ビームスプリッ
タ、7・・・集束レンズ、8・・・光冠変換器、11・
・・周波数測定器、12・・・時間間隔測定器、IJ−
・・信号処理回路代理人 弁理士  岡本官喜 (ほか
1名)第1図 (a)         (b)         (
c)第2図
Figures 1 (a), Cb) and (c) are diagrams explaining the detailed principle of the present invention, and Figures 2 (a) and (b) show changes in the intensity of reflected light from the end face of the optical fiber and the end face of the bubble, respectively. Graph, Figure 2(c) is the output waveform diagram of photoelectric converter 8, @8
The figure is a block diagram showing an embodiment of the gas-liquid two-phase flow measuring device of the present invention. DESCRIPTION OF SYMBOLS 1... Optical fiber, 1-a... End face, 8... Bubble, 4... Laser oscillator, 5... Polarizing beam splitter, 7... Focusing lens, 8... Light crown conversion Vessel, 11.
... Frequency measuring device, 12... Time interval measuring device, IJ-
...Signal processing circuit agent Patent attorney Kanyoshi Okamoto (and 1 other person) Figure 1 (a) (b) (
c) Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)単一の振動数で一定の偏光面を有する光を発生さ
せる光源と、 前記光源よシ与えられる光を透過させる偏光ビームスプ
リッタと、 前記偏光ビームスプリフタを透過する前記光源からの光
が一方の端面に与えられ、かつ他方の端面が気液二相流
の流れ方向に対して垂直になるように配置された光ファ
イバと、 前記光ファイバを通じて前記偏光ビームスプリッタに与
えられる光ファイバの他方の端面からの反射光及び気液
二相の境界面からの反射光のうち、前記偏光ビームスプ
リッタで再び反射される。光が与えられるように配設さ
れた光電変換器と、前記光電変換器の発する高周波成分
から気泡速度を求める手段と、 前記光電変換器の発する低周波成分から気泡通過時間を
求める手段と、を具備してなることを特徴とする気液二
相流の計測装置。
(1) a light source that generates light with a single frequency and a constant plane of polarization; a polarizing beam splitter that transmits the light provided by the light source; and light from the light source that transmits the polarizing beam splitter. is provided on one end face and the other end face is arranged perpendicular to the flow direction of the gas-liquid two-phase flow; and an optical fiber that is provided to the polarizing beam splitter through the optical fiber. Of the light reflected from the other end face and the light reflected from the gas-liquid two-phase interface, the light is reflected again by the polarizing beam splitter. a photoelectric converter disposed so as to provide light; means for determining bubble velocity from a high frequency component emitted by the photoelectric converter; and means for determining bubble transit time from a low frequency component emitted by the photoelectric converter. A gas-liquid two-phase flow measuring device comprising:
(2)前記光源はレーザ発振器であることを特徴とする
特許請求の範囲第1項記載の気液二相流の計測装置。
(2) The gas-liquid two-phase flow measuring device according to claim 1, wherein the light source is a laser oscillator.
(3)前記光ファイバの一方の端面に前記光源の光を集
光する集束レンズを設けたことを特徴とする特許請求の
範囲第1項記載の気液二相流の計測装置。
(3) The gas-liquid two-phase flow measuring device according to claim 1, further comprising a focusing lens provided on one end surface of the optical fiber to condense the light from the light source.
JP20058981A 1981-12-11 1981-12-11 Measuring apparatus of gas-liquid two phase flow Granted JPS58100704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20058981A JPS58100704A (en) 1981-12-11 1981-12-11 Measuring apparatus of gas-liquid two phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20058981A JPS58100704A (en) 1981-12-11 1981-12-11 Measuring apparatus of gas-liquid two phase flow

Publications (2)

Publication Number Publication Date
JPS58100704A true JPS58100704A (en) 1983-06-15
JPS6258441B2 JPS6258441B2 (en) 1987-12-05

Family

ID=16426854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20058981A Granted JPS58100704A (en) 1981-12-11 1981-12-11 Measuring apparatus of gas-liquid two phase flow

Country Status (1)

Country Link
JP (1) JPS58100704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198328A (en) * 2014-09-09 2014-12-10 深圳市奥电高压电气有限公司 Equipment and method for measuring volume occupancy of steam bubbles in two-phase fluid
CN109188016A (en) * 2018-08-28 2019-01-11 天津大学 Oil-gas-water three-phase flow split-phase flow velocity acoustic-electric bimodal measurement method
CN110470221A (en) * 2019-08-30 2019-11-19 佛山市顺德区美的饮水机制造有限公司 For measuring the device, drinking equipment and method of the physical size of object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198328A (en) * 2014-09-09 2014-12-10 深圳市奥电高压电气有限公司 Equipment and method for measuring volume occupancy of steam bubbles in two-phase fluid
CN109188016A (en) * 2018-08-28 2019-01-11 天津大学 Oil-gas-water three-phase flow split-phase flow velocity acoustic-electric bimodal measurement method
CN109188016B (en) * 2018-08-28 2020-05-05 天津大学 Acoustic-electric bimodal measurement method for phase-splitting flow velocity of oil-gas-water three-phase flow
CN110470221A (en) * 2019-08-30 2019-11-19 佛山市顺德区美的饮水机制造有限公司 For measuring the device, drinking equipment and method of the physical size of object
CN110470221B (en) * 2019-08-30 2021-10-26 佛山市顺德区美的饮水机制造有限公司 Device, water drinking apparatus and method for measuring physical dimensions of an object

Also Published As

Publication number Publication date
JPS6258441B2 (en) 1987-12-05

Similar Documents

Publication Publication Date Title
Damsohn et al. High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance
US4516432A (en) Apparatus for measuring two-phase flow
US20070166763A1 (en) Surface plasmon resonance sensors and method for detecting samples using the same
EP0085981B1 (en) Method of and apparatus for determining the refractive-index profile of optical fibres and optical-fibre preforms
Brayton et al. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal readout
JPS6135495B2 (en)
EP0091826A2 (en) Improved fiber optic sensor for detecting very small displacements of a surface
CN110207733B (en) Optical fiber interferometer arm length difference measuring device and method based on sweep frequency laser
US6563588B2 (en) Apparatus and method for measurement of fluid viscosity
Lim et al. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer
JPS58100704A (en) Measuring apparatus of gas-liquid two phase flow
CN107389154A (en) The continuous liquid level sensing device of hollow optic fibre and measuring method based on OFDR
JP2009216476A (en) Optical fiber probe bubble measuring device and method
JPH0518981A (en) Gas-liquid two phase flow measurement device
Ma et al. Measurement of bubble flow frequency in chemical processes using an optical fiber sensor
GB2196112A (en) Optical fibre measurement apparatus and method
CN112747682B (en) Liquid film thickness measurement system based on light carries microwave interference
US3457419A (en) Fluid flow meter in which laser light scattered by the fluid and by a stationary scattering center is heterodyned
VINCE Flow regime identification and void fraction measurement techniques in two-phase flow
JPH0445068B2 (en)
JPH0617841B2 (en) Optical fiber pressure / velocity simultaneous measurement device
Jhang et al. 3-D velocity field measurement using multiple ultrasonic plane detections and high-order correlation analysis
Pfeifer et al. A measuring technique to determine the turbulence degree in gas flows with a CW-laser
JPS6375549A (en) Void meter
JP2002139422A (en) Light absorption measuring instrument for light scattering medium