JPH1194382A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JPH1194382A
JPH1194382A JP27188897A JP27188897A JPH1194382A JP H1194382 A JPH1194382 A JP H1194382A JP 27188897 A JP27188897 A JP 27188897A JP 27188897 A JP27188897 A JP 27188897A JP H1194382 A JPH1194382 A JP H1194382A
Authority
JP
Japan
Prior art keywords
refrigeration unit
pulse tube
heat exchanger
temperature heat
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27188897A
Other languages
Japanese (ja)
Inventor
Tatsuya Hirose
達也 廣瀬
Kazuo Ikegami
和男 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27188897A priority Critical patent/JPH1194382A/en
Publication of JPH1194382A publication Critical patent/JPH1194382A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress vibration being generated by the reciprocation of a piston. SOLUTION: First and second refrigeration parts A and B are formed by connecting, in series, pistons 2a and 2b for receiving driving force for reciprocating, cold storage devices 4a and 4b for exchanging heat with an operaton gas being compressed and expanded by the reciprocation of the pistons 2a and 2b, low-temperature heat exchangers 5a and 5b for taking out cold, pulse tubes 6a and 6b where the operation gas is compressed and expanded, and high- temperature heat exchangers 7a and 7b for exchanging heat with the operation gas and for radiating heat to an outside. Then, the phases of the pistons 2a and 2b between the first and second refrigeration parts A and B are shifted by 180 degrees, thus offsetting vibration being generated when each of the pistons 2a and 2b of the first and second refrigeration parts A and B performs the reciprocation each other and suppressing the generation of the vibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,往復運動するピス
トンによる振動を抑制すると共に,寒冷発生量を増大さ
せたパルスチューブ冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator which suppresses vibration caused by a reciprocating piston and increases the amount of generated cold.

【0002】[0002]

【従来の技術】従来,冷凍機としては種々の構造が提案
され,なかでも構成が簡単で極低温が達成できる可能性
を秘めたものとしてパルスチューブを用いた冷凍機が提
案されている。当該冷凍機には,ベーシック型,オリフ
ィス型,ダブルインレット型等種々の構造がある。
2. Description of the Related Art Conventionally, various types of refrigerators have been proposed. Among them, a refrigerator using a pulse tube has been proposed as having a simple structure and a possibility of achieving extremely low temperatures. The refrigerator has various structures such as a basic type, an orifice type and a double inlet type.

【0003】図4は,オリフィス型パルスチューブ冷凍
機の断面図で,クランク機構を備えた駆動部1,該駆動
部1から駆動力を受けて往復運動するピストン2,熱伝
導率の高い銅等からなる放熱用熱交換器3,内部に銅や
鉛等の蓄冷材が充填された蓄冷器4,銅などの熱伝導性
の高い材料からなり100K以下の極低温を取り出すた
めの低温熱交換器5,ステンレス鋼により形成されたパ
ルスチューブ6,熱伝導率の高い銅等からなる水冷式又
は空冷式の放熱フィンを備えた高温熱交換器7,ニード
ル弁等のオリフィス8及びバッファタンク95等を主要
構成要素として,これらが順次配管接続された構成とな
っている。
FIG. 4 is a cross-sectional view of an orifice type pulse tube refrigerator. A drive unit having a crank mechanism, a piston reciprocating by receiving a driving force from the drive unit 2, copper having a high thermal conductivity, etc. A heat exchanger for heat radiation consisting of a heat exchanger 3, a regenerator filled with a regenerator material such as copper or lead 4, and a low-temperature heat exchanger made of a material having high thermal conductivity such as copper for extracting an extremely low temperature of 100K or less. 5, a pulse tube 6 made of stainless steel, a high-temperature heat exchanger 7 having a water-cooled or air-cooled radiating fin made of copper or the like having a high thermal conductivity, an orifice 8 such as a needle valve, and a buffer tank 95. As main components, these are sequentially connected by piping.

【0004】なお,オリフィス8は,高温熱交換器7と
バッファタンク9とを連結する配管10の途中に設けら
れている。
The orifice 8 is provided in the middle of a pipe 10 connecting the high-temperature heat exchanger 7 and the buffer tank 9.

【0005】上記の構成において,ピストン2が,駆動
部1から駆動力を受けて往復運動し,これによりヘリウ
ム等の作動ガスを圧縮/膨張している。
In the above configuration, the piston 2 reciprocates upon receiving a driving force from the driving section 1, thereby compressing / expanding a working gas such as helium.

【0006】即ち,ピストン2が上動(図8において上
方向)する圧縮過程により,作動ガスは圧縮されて,放
熱用熱交換器3及び蓄冷器4側に押込まれる。そして,
当該放熱用熱交換器3で作動ガスは外気に放熱し,その
後蓄冷器4と熱交換して冷却され,パルスチューブ6に
流入する。
That is, in the compression process in which the piston 2 moves upward (upward in FIG. 8), the working gas is compressed and pushed into the heat-radiating heat exchanger 3 and the regenerator 4. And
The working gas radiates heat to the outside air in the heat radiating heat exchanger 3, is then cooled by exchanging heat with the regenerator 4, and flows into the pulse tube 6.

【0007】当該作動ガスの流入に伴い,パルスチュー
ブ6内の作動ガスはオリフィス8を介してバッファタン
ク9に流入する。その膨張に伴い寒冷が発生する。
[0007] With the inflow of the working gas, the working gas in the pulse tube 6 flows into the buffer tank 9 through the orifice 8. Cold occurs with the expansion.

【0008】一方,ピストン2が下動(図3に於いて下
方向)する膨張過程により,パルスチューブ6内の作動
ガスは吸引されて更に膨張し,寒冷を発生する。
On the other hand, due to the expansion process in which the piston 2 moves downward (downward in FIG. 3), the working gas in the pulse tube 6 is sucked and further expanded to generate cold.

【0009】発生した寒冷により,低温熱交換器5に負
荷が設けられている場合には,当該負荷を冷すことが可
能になる。また,オリフィス8からの作動ガスの戻りに
より冷凍サイクルが形成される。
When a load is provided in the low-temperature heat exchanger 5 due to the generated cold, the load can be cooled. The return of the working gas from the orifice 8 forms a refrigeration cycle.

【0010】そこで,パルスチューブ冷凍機において,
寒冷の発生量を増加させるためには,パルスチューブ6
内の作動ガスの圧力変動とバッファタンク9の作動ガス
の変位とに位相差を持たせる必要がある。
Therefore, in a pulse tube refrigerator,
To increase the amount of cold generated, use a pulse tube 6
It is necessary to provide a phase difference between the pressure fluctuation of the working gas in the inside and the displacement of the working gas in the buffer tank 9.

【0011】このようなことから,図8において点線で
示すダブルインレット用配管11によりピストン2側の
圧縮空間Sと高温熱交換器7とを連結し,当該ダブルイ
ンレット用配管11にオリフィス12を設けたダブルイ
ンレット型パルスチューブ冷凍機が提案されている。
For this reason, the compression space S on the piston 2 side and the high-temperature heat exchanger 7 are connected by the double inlet pipe 11 shown by the dotted line in FIG. 8, and the orifice 12 is provided in the double inlet pipe 11. In addition, a double inlet type pulse tube refrigerator has been proposed.

【0012】当該パルスチューブ冷凍機では,ピストン
2が上動すると圧縮された作動ガスは,蓄冷器3内を通
ってパルスチューブ6内へ流れ込むと共に,ダブルイン
レット用配管11を介してパルスチューブ6及びバッフ
ァタンク9に流入する。
In the pulse tube refrigerator, when the piston 2 moves upward, the compressed working gas flows into the pulse tube 6 through the regenerator 3 and at the same time, the pulse tube 6 and the It flows into the buffer tank 9.

【0013】また,ピストン2が下動すると,パルスチ
ューブ6内の作動ガスは,蓄冷器3及びダブルインレッ
ト用配管11を通って流出する。
When the piston 2 moves down, the working gas in the pulse tube 6 flows out through the regenerator 3 and the pipe 11 for the double inlet.

【0014】これにより,前述した位相差を大きくする
ことができて,パルスチューブ6内を流動する作動ガス
の流量を増大させることが可能になる。そして,オリフ
ィス8,12の開度を調節することによって,作動ガス
の流量を最適に調整すれば寒冷の発生量を多することが
できる。
As a result, the above-described phase difference can be increased, and the flow rate of the working gas flowing in the pulse tube 6 can be increased. By adjusting the opening of the orifices 8 and 12 to optimize the flow rate of the working gas, the amount of cold generated can be increased.

【0015】このような作動ガスの流れにより,寒冷の
一部は低温熱交換器4を介して負荷を冷却し,残りは作
動ガスが逆の経路で戻るときに蓄冷材7を冷却するのに
供される。
Due to such a flow of the working gas, a part of the refrigeration cools the load through the low-temperature heat exchanger 4 and the rest cools the cold storage material 7 when the working gas returns in the reverse route. Provided.

【0016】[0016]

【発明が解決しようとする課題】しかしながら,上記構
成ではピストンの往復運動に伴う振動が発生する問題が
あった。
However, the above configuration has a problem that vibrations are generated due to the reciprocating motion of the piston.

【0017】また,蓄冷器等を通過する作動ガスの流量
は,ピストン2の移動量によって制限されるため,これ
を十分に大きくすることが困難となる問題がある。
Further, since the flow rate of the working gas passing through the regenerator or the like is limited by the moving amount of the piston 2, there is a problem that it is difficult to sufficiently increase the flow rate.

【0018】そこで,本発明は,ピストンの往復運動に
伴う振動を抑えると共に,寒冷発生量を大きくことがで
きるパルスチューブ冷凍機を提供することを目的とす
る。
Accordingly, an object of the present invention is to provide a pulse tube refrigerator capable of suppressing vibration caused by reciprocation of a piston and increasing the amount of cold generated.

【0019】[0019]

【課題を解決するための手段】本発明は,上記課題を解
決するため,請求項1にかかる発明は,第1冷凍部及び
第2冷凍部を,駆動力を受けて往復運動するピストン
と,該ピストンの往復運動により圧縮/膨張した作動ガ
スと熱交換する蓄冷器と,寒冷を取出す低温熱交換器
と,作動ガスが圧縮/膨張するパルスチューブと,作動
ガスと熱交換して外部に放熱する高温熱交換器とを直列
接続して形成する。そして,当該第1冷凍部及び第2冷
凍部を1対として冷凍部を構成し,当該冷凍部をN対
(N=1,2…)設ける。さらに,第1冷凍部と第2冷
凍部とのピストンの位相を180度ずらす。これによ
り,第1冷凍部及び第2冷凍部の各ピストンが往復運動
した際の振動を相互に打消すように作用させて静音化を
図ったことを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, a first aspect of the present invention provides a first refrigeration unit and a second refrigeration unit, which reciprocate by receiving a driving force; A regenerator that exchanges heat with the working gas that has been compressed / expanded by the reciprocating motion of the piston, a low-temperature heat exchanger that extracts cold, a pulse tube that compresses / expands the working gas, and exchanges heat with the working gas to release heat to the outside. And a high temperature heat exchanger to be connected in series. The first freezing section and the second freezing section constitute a pair to form a freezing section, and the freezing sections are provided in N pairs (N = 1, 2,...). Further, the phases of the pistons of the first freezing section and the second freezing section are shifted by 180 degrees. Thus, the first and second refrigerating sections are characterized in that the pistons of the reciprocating section act so as to cancel each other out of vibration, thereby reducing noise.

【0020】請求項2にかかる発明は,第1冷凍部の高
温熱交換器と第2冷凍部の高温熱交換器とを相互に連通
する冷凍部連結用配管を設けて,当該第1冷凍部と第2
冷凍部との大きな圧力差を利用して作動ガスの移動量の
増大を図り,これにより寒冷発生量を増大させたことを
特徴とする。
According to a second aspect of the present invention, there is provided a refrigeration unit connecting pipe for interconnecting the high temperature heat exchanger of the first refrigeration unit and the high temperature heat exchanger of the second refrigeration unit. And the second
The present invention is characterized in that the amount of movement of the working gas is increased by utilizing a large pressure difference from the refrigeration unit, thereby increasing the amount of cold generated.

【0021】請求項3にかかる発明は,冷凍部連結用配
管の配管途中に,当該配管を流動する作動ガスの流量を
調整するオリフィスを設けて,寒冷発生量が最大になる
ように流量調整を可能にしたことを特徴とする。
According to a third aspect of the present invention, an orifice for adjusting the flow rate of the working gas flowing through the pipe is provided in the middle of the pipe for connecting the refrigeration section, and the flow rate is adjusted so that the amount of generated cold is maximized. It is made possible.

【0022】請求項4にかかる発明は,第1冷凍部の高
温熱交換器と第2冷凍部の高温熱交換器とを1つのバッ
ファタンクを介して連通したことを特徴とする。
The invention according to claim 4 is characterized in that the high-temperature heat exchanger of the first refrigeration unit and the high-temperature heat exchanger of the second refrigeration unit are connected via one buffer tank.

【0023】請求項5にかかる発明は,第1冷凍部及び
第2冷凍部におけるそれぞれの高温熱交換器と圧縮空間
とがダブルインレット用配管により連結したことを特徴
とする。
The invention according to claim 5 is characterized in that the respective high-temperature heat exchangers and the compression space in the first refrigeration section and the second refrigeration section are connected by a double inlet pipe.

【0024】[0024]

【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。本発明にかかるパルスチューブ冷凍機は,
ベーシック型,オリフェス型及びダブルインレット型の
パルスチューブのいずれであっても適用可能であり,以
下の説明においては,オリフェス型パルスチューブ冷凍
機を例に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. The pulse tube refrigerator according to the present invention comprises:
The present invention can be applied to any of a basic type, an orifice type, and a double inlet type pulse tube. In the following description, an orifice type pulse tube refrigerator will be described as an example.

【0025】図1は第1の実施の形態にかかるオリフェ
ス型パルス冷凍機の構成図で,同じ構成の第1及び2冷
凍部A,B,該第1,2冷凍部A,Bのピストン2a,
2bの位相が180度異なるクランク機構を備えた駆動
部30等を有している。
FIG. 1 is a block diagram of an orifice-type pulse refrigerator according to a first embodiment. First and second refrigerators A and B having the same structure, and pistons 2a of the first and second refrigerators A and B are shown. ,
The drive unit 30 includes a crank mechanism having a phase difference of 2b by 180 degrees.

【0026】なお,第1,第2冷凍部A,Bの構成の
内,従来の構成と同一構成に関しては同一符号に添字
「a」又は「b」を付して説明を適宜省略する。このと
き,添字「a」は第1冷凍部Aの構成要素を示し,添字
「b」は第2冷凍部Bの構成要素であることを示すもの
とする。
In the first and second refrigeration units A and B, the same reference numerals as those of the conventional refrigeration units A and B are given the same reference numerals with the suffix "a" or "b", and the description is omitted as appropriate. At this time, the subscript “a” indicates a component of the first freezing section A, and the subscript “b” indicates a component of the second freezing section B.

【0027】駆動部30は,クランク機構31に回転駆
動力を与えるロータ32,クランク機構31を潤滑する
ためのオイルを貯留するオイル槽33,シャフト34に
取付けられたクランク35a,35b等を有している。
The drive section 30 has a rotor 32 for applying a rotational driving force to the crank mechanism 31, an oil tank 33 for storing oil for lubricating the crank mechanism 31, and cranks 35a and 35b attached to the shaft 34. ing.

【0028】なお,クランク35a,35bは,シャフ
ト34に偏心して連結され,かつ,ピストン2aとピス
トン2bとの位相が略180度異なるように設定されて
いる。
The cranks 35a and 35b are eccentrically connected to the shaft 34, and are set so that the phases of the pistons 2a and 2b are different by approximately 180 degrees.

【0029】このような構成にすることにより,ピスト
ン2a,2bによる振動は相互に打消し合うようにな
り,振動を効果的に抑制することが可能になる。
With this configuration, the vibrations caused by the pistons 2a and 2b cancel each other, and the vibrations can be effectively suppressed.

【0030】また,ピストン2a,2bの背面側は連通
し,各ピストン2a,2bの位相が180度ずれている
ので当該背面側の空間には圧力変動が生じない。このた
め,ピストン2a,2bとクランク35a,35bとの
間のロッドにオイルシールを設けて,オイルが圧縮空間
Sa,Sbに侵入しないようにした場合には,当該オイ
ルシールとピストン2a,2bで形成される空間を相互
に連通すれば,オイル槽33との圧力差を無くすことが
可能になって,効果的にオイルシールを作用させること
が可能になる。
Further, the rear sides of the pistons 2a and 2b communicate with each other and the phases of the pistons 2a and 2b are shifted by 180 degrees, so that no pressure fluctuation occurs in the space on the rear side. For this reason, when an oil seal is provided on the rod between the pistons 2a, 2b and the cranks 35a, 35b to prevent oil from entering the compression spaces Sa, Sb, the oil seal and the pistons 2a, 2b are used. If the formed spaces communicate with each other, it is possible to eliminate the pressure difference between the space and the oil tank 33, and it is possible to effectively operate the oil seal.

【0031】なお,上記説明では,第1,2冷凍部A,
Bを持つ場合について説明したが,本発明はこれに限定
されるものではなく,これらを1対としてN対(Nは正
数)設けても良いことは付言するまでもない。
In the above description, the first and second refrigeration units A,
Although the case where B is provided has been described, the present invention is not limited to this, and it goes without saying that N pairs (N is a positive number) may be provided as one pair.

【0032】次に本発明の第2の実施の形態について説
明する。図2は本実施の形態に係るパルスチューブ冷凍
機の構成図である。なお,第1の実施の形態と同一構成
については同一符号を用いて説明を適宜省略する。
Next, a second embodiment of the present invention will be described. FIG. 2 is a configuration diagram of the pulse tube refrigerator according to the present embodiment. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

【0033】本実施の形態に係るパルスチューブ型冷凍
機は,バッファタンク等が省略されて,高温熱交換器7
a,7bを冷凍部連結用配管21により相互に連結され
た構成となっている。当該冷凍部連結用配管21の途中
には,オリフィス22が設けられている。
In the pulse tube type refrigerator according to this embodiment, the buffer tank and the like are omitted, and the high-temperature heat exchanger 7 is used.
a and 7b are connected to each other by a refrigeration unit connection pipe 21. An orifice 22 is provided in the middle of the refrigeration unit connection pipe 21.

【0034】次に,上記構成の作用について説明する
が,第1冷凍部Aと第2冷凍部Bとは,同じ作用を行う
ので,第1冷凍部に注目して説明を行い,第2冷凍部に
ついては説明を省略する。
Next, the operation of the above configuration will be described. Since the first refrigeration unit A and the second refrigeration unit B perform the same operation, the description will focus on the first refrigeration unit, and the second refrigeration unit will be described. Description of the parts will be omitted.

【0035】ピストン2aが上動して第1冷凍機A内の
作動ガスを圧縮すると,当該作動ガスは蓄冷器4a等を
介してパルスチューブ6aに流入する。このとき,当該
パルスチューブ6a内の作動ガスの一部は,オリフィス
22を介して第2冷凍部Bの高温熱交換器7bに流入す
る。
When the piston 2a moves upward to compress the working gas in the first refrigerator A, the working gas flows into the pulse tube 6a via the regenerator 4a and the like. At this time, a part of the working gas in the pulse tube 6a flows into the high-temperature heat exchanger 7b of the second refrigeration section B via the orifice 22.

【0036】他方,ピストン2aが下動して第1冷凍機
A内の作動ガスを膨張させると,当該作動ガスは蓄冷器
4a等を介してピストン2a側に流動する。このとき,
圧縮過程で第2冷凍部Bに流出した作動ガスは第1冷凍
部A側に戻るようになる。
On the other hand, when the piston 2a moves down to expand the working gas in the first refrigerator A, the working gas flows toward the piston 2a via the regenerator 4a and the like. At this time,
The working gas flowing out to the second refrigeration section B during the compression process returns to the first refrigeration section A side.

【0037】ピストン2aとピストン2bとは,位相が
180度ずれているので,第1冷凍部Aが圧縮過程の時
は,第2冷凍部Bは膨張過程である。同時に,第2冷凍
部Bが圧縮過程の時は,第1冷凍部Aは膨張過程であ
る。
Since the phases of the pistons 2a and 2b are shifted by 180 degrees, when the first refrigeration unit A is in the compression process, the second refrigeration unit B is in the expansion process. At the same time, when the second refrigeration unit B is in the compression process, the first refrigeration unit A is in the expansion process.

【0038】従って,第1冷凍部Aから第2冷凍部Bに
流動する際の圧力差が大きくなり,第1冷凍部A及び第
2冷凍部Bにそれぞれ独立にバッファタンクを設けた場
合に比べ,作動ガスの流量を増大させることができる。
因ってオリフィス22の開閉度を最適化すれば,低温熱
交換器5aでの寒冷量を増大させることが可能になる。
Therefore, the pressure difference when flowing from the first freezing section A to the second freezing section B becomes large, and compared with the case where the first freezing section A and the second freezing section B are each provided with a buffer tank independently. , The flow rate of the working gas can be increased.
Therefore, by optimizing the degree of opening and closing of the orifice 22, it is possible to increase the amount of cold in the low-temperature heat exchanger 5a.

【0039】なお,上記説明においては,冷凍部連結用
配管21を流動する作動ガスの流量をオリフィス22に
より調整する場合について説明したが,本発明はこれに
限定されるものではない。
In the above description, the case where the flow rate of the working gas flowing through the refrigeration unit connecting pipe 21 is adjusted by the orifice 22 has been described, but the present invention is not limited to this.

【0040】即ち,冷凍部連結用配管21を流動する作
動ガスの流量は,当該冷凍部連結用配管21のコンダク
タンスにより規定されると共に,第1冷凍部と第2冷凍
部との圧力関係により依存する。従って,これらのパラ
メータを考慮して冷凍部連結用配管21の管径や長さ等
が予め最適設計された場合には,当該オリフィス22は
不用になる。
That is, the flow rate of the working gas flowing through the refrigeration unit connection pipe 21 is determined by the conductance of the refrigeration unit connection pipe 21 and depends on the pressure relationship between the first refrigeration unit and the second refrigeration unit. I do. Therefore, when the pipe diameter and length of the refrigeration unit connection pipe 21 are optimally designed in advance in consideration of these parameters, the orifice 22 becomes unnecessary.

【0041】また,上記説明においてはバッファタンク
を用いない場合について説明した。これによりパルスチ
ューブ冷凍機のコンパクト化が可能になる利点がある
が,本発明はこれに限定されるものではなく,図1に示
すように第1冷凍部と第2冷凍部とにそれぞれ独立した
バッファタンク及びオリフィスを設けることも可能であ
り,また図3に示すように,第1冷凍部と第2冷凍部と
に共通のバッファタンク20を設けることも可能であ
る。
In the above description, the case where the buffer tank is not used has been described. This has the advantage that the pulse tube refrigerator can be made more compact, but the present invention is not limited to this, and the first refrigerator and the second refrigerator are independent as shown in FIG. It is also possible to provide a buffer tank and an orifice, and as shown in FIG. 3, it is also possible to provide a common buffer tank 20 for the first freezing unit and the second freezing unit.

【0042】図3に示すバッファタンク20は,オリフ
ィス8a,8bにより高温熱交換器7a,7bと連結さ
れている。従って,第1冷凍部A及び第2冷凍部Bの低
温熱交換器5a,5bを流動する作動ガスの位相をその
サイズにより最適な点に調整できて,流量を増大させる
ことができて寒冷量を増大させることができる。
The buffer tank 20 shown in FIG. 3 is connected to the high-temperature heat exchangers 7a and 7b by orifices 8a and 8b. Therefore, the phase of the working gas flowing through the low-temperature heat exchangers 5a and 5b of the first freezing section A and the second freezing section B can be adjusted to an optimum point depending on the size, the flow rate can be increased, and the amount of refrigeration can be increased. Can be increased.

【0043】無論,図4に示すように,冷凍部連結用配
管21等とバッファタンク20等とを共に備えて,図2
と図3とを合成した構成とすることも可能である。
Of course, as shown in FIG. 4, both the refrigeration section connection pipe 21 and the like and the buffer tank 20 and the like are provided, and FIG.
3 and FIG. 3 can be combined.

【0044】次に本発明の第3の実施の形態について説
明する。図5は本実施の形態に係るパルスチューブ冷凍
機の構成図である。なお,第1の実施の形態と同一構成
については同一符号を用いて説明を適宜省略する。
Next, a third embodiment of the present invention will be described. FIG. 5 is a configuration diagram of the pulse tube refrigerator according to the present embodiment. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

【0045】本実施の形態にかかるパルスチューブ冷凍
機は,高温熱交換器7a,7bと圧縮空間Sa,Sbと
をダブルインレット用配管11b,11bにより連結し
てダブルインレット型パルスチューブ冷凍機とした場合
を示している。
In the pulse tube refrigerator according to the present embodiment, the high-temperature heat exchangers 7a and 7b and the compression spaces Sa and Sb are connected by double inlet pipes 11b and 11b to form a double inlet type pulse tube refrigerator. Shows the case.

【0046】このような構成にすることにより,本来の
ダブルインレット構成による作用効果に加えて,第2の
実施の形態において説明した作用効果が同時に達成でき
て寒冷発生量を増大させることができるようになる。
With this configuration, in addition to the function and effect of the original double inlet structure, the function and effect described in the second embodiment can be simultaneously achieved, and the amount of cold generated can be increased. become.

【0047】なお,本実施の形態においても,図6に示
すように,共通したバッファタンクを相互に連結した構
成とすることも可能であり,また図7に示すようにこれ
らを共に備えた構成にしても良いことは付言するまでも
ない。
In this embodiment, as shown in FIG. 6, a common buffer tank may be connected to each other, and as shown in FIG. Needless to say, it is possible to do so.

【0048】[0048]

【発明の効果】以上説明したように,請求項1にかかる
発明によれば,第1冷凍部と第2冷凍部とのピストンの
位相を180度ずらして設けたので,各ピストンが往復
運動した際の振動を相互に打消すように作用させること
が可能になって静音化が図れる。
As described above, according to the first aspect of the present invention, the phases of the pistons of the first refrigeration unit and the second refrigeration unit are shifted by 180 degrees, so that each piston reciprocates. In this case, the vibrations at the time can be made to cancel each other, so that the noise can be reduced.

【0049】また,第1冷凍部と第2冷凍部とのピスト
ンの背面空間を連結できるので,当該背面空間の圧力変
動を防止することができる。
Further, since the space behind the piston of the first freezing section and the second freezing section can be connected to each other, it is possible to prevent pressure fluctuation in the back space.

【0050】請求項2にかかる発明は,第1冷凍部の高
温熱交換器と第2冷凍部の高温熱交換器とを相互に連通
する冷凍部連結用配管を設けたので,第1冷凍部と第2
冷凍部との大きな圧力差を利用して,これらの間を流動
する作動ガスの流量を増大させて寒冷発生量を増大させ
ることが可能になる。
According to the second aspect of the present invention, since the refrigeration unit connecting pipe for connecting the high temperature heat exchanger of the first refrigeration unit and the high temperature heat exchanger of the second refrigeration unit to each other is provided, the first refrigeration unit is provided. And the second
By utilizing a large pressure difference with the refrigeration unit, the flow rate of the working gas flowing between them can be increased to increase the amount of cold generated.

【0051】また,バッファタンクを用いない場合に
は,装置の小型化を図ることが可能になる。
When no buffer tank is used, the size of the apparatus can be reduced.

【0052】請求項3にかかる発明は,冷凍部連結用配
管の配管途中に,当該配管を流動する作動ガスの流量を
調整するオリフィスを設けたので,寒冷発生量が最大に
なるように流量が調整できるようになる。
According to the third aspect of the present invention, since the orifice for adjusting the flow rate of the working gas flowing through the pipe is provided in the middle of the pipe for connecting the refrigeration section, the flow rate is controlled so as to maximize the amount of cold generated. Be able to adjust.

【0053】請求項4にかかる発明は,第1冷凍部の高
温熱交換器と第2冷凍部の高温熱交換器とを1つのバッ
ファタンクを介して連通したので,部品点数が少なくな
り装置の小型化が図れると共に,位相の最適化が可能に
なる。
In the invention according to claim 4, the high-temperature heat exchanger of the first refrigeration unit and the high-temperature heat exchanger of the second refrigeration unit are communicated via one buffer tank, so that the number of parts is reduced, and The size can be reduced, and the phase can be optimized.

【0054】請求項5にかかる発明は,第1冷凍部及び
第2冷凍部における高温熱交換器と圧縮空間とがダブル
インレット用配管により連結したので,寒冷発生量を増
大させることが可能になる。
In the invention according to claim 5, since the high-temperature heat exchanger and the compression space in the first refrigeration section and the second refrigeration section are connected by the double inlet pipe, it is possible to increase the amount of cold generated. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の説明に適用される
パルスチューブ冷凍機の断面図である。
FIG. 1 is a sectional view of a pulse tube refrigerator applied to the description of a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の説明に適用される
パルスチューブ冷凍機の断面図である。
FIG. 2 is a sectional view of a pulse tube refrigerator applied to a description of a second embodiment of the present invention.

【図3】本発明の第2の実施の形態の説明に適用され
る,他の構成のパルスチューブ冷凍機の断面図である。
FIG. 3 is a cross-sectional view of a pulse tube refrigerator having another configuration applied to the description of the second embodiment of the present invention.

【図4】本発明の第2の実施の形態の説明に適用され
る,他の構成のパルスチューブ冷凍機の断面図である。
FIG. 4 is a sectional view of a pulse tube refrigerator having another configuration applied to the description of the second embodiment of the present invention.

【図5】本発明の第3の実施の形態の説明に適用される
パルスチューブ冷凍機の断面図である。
FIG. 5 is a sectional view of a pulse tube refrigerator applied to the description of a third embodiment of the present invention.

【図6】本発明の第3の実施の形態の説明に適用され
る,他の構成のパルスチューブ冷凍機の断面図である。
FIG. 6 is a sectional view of a pulse tube refrigerator having another configuration applied to the description of the third embodiment of the present invention.

【図7】本発明の第3の実施の形態の説明に適用され
る,他の構成のパルスチューブ冷凍機の断面図である。
FIG. 7 is a cross-sectional view of a pulse tube refrigerator having another configuration applied to the description of the third embodiment of the present invention.

【図8】従来の技術の説明に適用されるパルスチューブ
冷凍機の断面図である。
FIG. 8 is a cross-sectional view of a pulse tube refrigerator applied to the description of the related art.

【符号の説明】[Explanation of symbols]

30 駆動部 35a,35b クランク 2a,2b ピストン 3a,3b 放熱用熱交換器 4a,4b 蓄冷器 5a,5b 低温熱交換器 6a,6b パルスチューブ 7a,7b 高温熱交換器 8a,8b,12a,12b,22 オリフィス 9a,9b,20 バッファタンク 10a,10b 配管 11a,11b ダブルインレット用配管 21 冷凍部連結用配管 30 Drive unit 35a, 35b Crank 2a, 2b Piston 3a, 3b Heat radiating heat exchanger 4a, 4b Cold storage 5a, 5b Low temperature heat exchanger 6a, 6b Pulse tube 7a, 7b High temperature heat exchanger 8a, 8b, 12a, 12b , 22 Orifice 9a, 9b, 20 Buffer tank 10a, 10b Piping 11a, 11b Double inlet piping 21 Piping for connecting refrigeration unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 駆動力を受けて往復運動するピストン
と,該ピストンの往復運動により圧縮/膨張した作動ガ
スと熱交換する蓄冷器と,寒冷を取出す低温熱交換器
と,作動ガスが圧縮/膨張するパルスチューブと,作動
ガスと熱交換して外部に放熱する高温熱交換器とが直列
接続されてなる第1冷凍部及び第2冷凍部を1対とした
冷凍部がN対(N=1,2…)設けられ,かつ,前記第
1冷凍部と第2冷凍部との前記ピストンの位相が180
度ずれるように設けられてなることを特徴とするパルス
チューブ冷凍機。
A piston that reciprocates by receiving a driving force; a regenerator that exchanges heat with working gas that is compressed / expanded by the reciprocating motion of the piston; a low-temperature heat exchanger that extracts cold; N pairs of refrigeration units (N = N = 1) having a pair of a first refrigeration unit and a second refrigeration unit in which an expanding pulse tube and a high-temperature heat exchanger for exchanging heat with the working gas and radiating heat to the outside are connected in series. 1, 2...) And the phases of the pistons of the first freezing section and the second freezing section are 180
A pulse tube refrigerator characterized by being provided so as to be shifted from one another.
【請求項2】 前記第1冷凍部の前記高温熱交換器と第
2冷凍部の前記高温熱交換器とを相互に連通する冷凍部
連結用配管を設けたことを特徴とする請求項1記載のパ
ルスチューブ冷凍機。
2. A refrigeration unit connection pipe for interconnecting the high-temperature heat exchanger of the first refrigeration unit and the high-temperature heat exchanger of the second refrigeration unit. Pulse tube refrigerator.
【請求項3】 前記冷凍部連結用配管の配管途中に,当
該配管を流動する作動ガスの流量を調整するオリフィス
を設けたことを特徴とする請求項2記載のパルスチュー
ブ冷凍機。
3. The pulse tube refrigerator according to claim 2, wherein an orifice for adjusting a flow rate of the working gas flowing through the piping is provided in the middle of the piping for connecting the refrigeration unit.
【請求項4】 前記第1冷凍部の前記高温熱交換器と第
2冷凍部の前記高温熱交換器とが1つのバッファタンク
を介して連通してなることを特徴とする請求項1乃至3
いずれか1項記載のパルスチューブ冷凍機。
4. The high-temperature heat exchanger of the first refrigeration unit and the high-temperature heat exchanger of the second refrigeration unit communicate with each other via one buffer tank.
A pulse tube refrigerator according to any one of the preceding claims.
【請求項5】 前記第1冷凍部及び第2冷凍部における
前記高温熱交換器と圧縮空間とがダブルインレット用配
管により連結されてなることを特徴とする請求項1乃至
4いずれか1項記載のパルスチューブ冷凍機。
5. The high-temperature heat exchanger and a compression space in the first refrigeration unit and the second refrigeration unit are connected by a double inlet pipe. Pulse tube refrigerator.
JP27188897A 1997-09-19 1997-09-19 Pulse tube refrigerator Pending JPH1194382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27188897A JPH1194382A (en) 1997-09-19 1997-09-19 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27188897A JPH1194382A (en) 1997-09-19 1997-09-19 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JPH1194382A true JPH1194382A (en) 1999-04-09

Family

ID=17506303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27188897A Pending JPH1194382A (en) 1997-09-19 1997-09-19 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JPH1194382A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393790B1 (en) * 2001-02-13 2003-08-02 엘지전자 주식회사 Pulstube refrigerator
DE10105489B4 (en) * 2000-02-17 2005-03-17 Lg Electronics Inc. Pulse tube refrigerator
JP2006112260A (en) * 2004-10-13 2006-04-27 Daikin Ind Ltd Thermoacoustic engine
KR101395285B1 (en) * 2012-08-30 2014-05-15 한국과학기술원 Tandem pulse tube refrigerator to automatically reduce vibration
JP2019190678A (en) * 2018-04-19 2019-10-31 住友重機械工業株式会社 Active buffer pulse tube refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105489B4 (en) * 2000-02-17 2005-03-17 Lg Electronics Inc. Pulse tube refrigerator
KR100393790B1 (en) * 2001-02-13 2003-08-02 엘지전자 주식회사 Pulstube refrigerator
JP2006112260A (en) * 2004-10-13 2006-04-27 Daikin Ind Ltd Thermoacoustic engine
KR101395285B1 (en) * 2012-08-30 2014-05-15 한국과학기술원 Tandem pulse tube refrigerator to automatically reduce vibration
JP2019190678A (en) * 2018-04-19 2019-10-31 住友重機械工業株式会社 Active buffer pulse tube refrigerator

Similar Documents

Publication Publication Date Title
JP3949135B2 (en) Piezoelectric pump and Stirling refrigerator
JPH055568A (en) Pulse tube type refrigerator
CN100371657C (en) Pulse tube refrigerator
US5927080A (en) Vibration-actuated pump for a stirling-cycle refrigerator
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
JP2009236456A (en) Pulse tube-type heat storage engine
JP2007040647A (en) Pulse type heat storage engine
JP5882110B2 (en) Regenerator type refrigerator, regenerator
KR100412299B1 (en) Gas Compression Expansion Device
JP5908324B2 (en) Regenerative refrigerator
JPH1194382A (en) Pulse tube refrigerator
US7047749B2 (en) Regenerative refrigerating apparatus
JP3593713B2 (en) Pulse tube refrigerator
JP2000136753A (en) V-arranged stirling equipment
JP6087168B2 (en) Cryogenic refrigerator
JP2000146336A (en) V-shaped two-piston stirling equipment
JPH0996480A (en) Low-temperature storage box
US8950193B2 (en) Secondary pulse tubes and regenerators for coupling to room temperature phase shifters in multistage pulse tube cryocoolers
JP3635904B2 (en) Gas cycle engine refrigerator
JP2000018742A (en) Cooling device
JP2006144690A (en) Piezo-electric pump and sterling refrigerator/freezer
CN107726658A (en) Pulse type VM refrigeration machines
KR100571128B1 (en) Pulse tube refrigerator using two-way linear compressor
JP2699939B2 (en) Regenerator refrigerator
JP3363697B2 (en) Refrigeration equipment