JPH1193713A - Variable valve timing control device for internal combustion engine - Google Patents

Variable valve timing control device for internal combustion engine

Info

Publication number
JPH1193713A
JPH1193713A JP9259537A JP25953797A JPH1193713A JP H1193713 A JPH1193713 A JP H1193713A JP 9259537 A JP9259537 A JP 9259537A JP 25953797 A JP25953797 A JP 25953797A JP H1193713 A JPH1193713 A JP H1193713A
Authority
JP
Japan
Prior art keywords
valve
exhaust
intake
amount
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9259537A
Other languages
Japanese (ja)
Inventor
Hideki Obayashi
秀樹 大林
Osamu Sato
佐藤  修
Eiji Ogiso
英次 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9259537A priority Critical patent/JPH1193713A/en
Publication of JPH1193713A publication Critical patent/JPH1193713A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly control intake/exhaust valve timing. SOLUTION: Provided are a suction side cam shaft phase difference regulating device 18 and an exhaust side cam shaft phase difference regulating device 20 to control opening and closing timing for an intake valve and an exhaust valve. An ECU 23 sets opening and closing timing for the intake valve and the exhaust valve to make their target exhaust remaining ratios (target valve overlap amount) optimum in respective load regions. The maximum value of spark-advance amount from the most retard position of the intake valve is set to make intake valve closing timing in each engine speed consistent with the optimum value of suction pulsation effect. The exhaust remaining ratio (valve overlap amount) is controlled to its target value in the operation region where the spark-advance amount of the intake valve comes to the maximum value by regulating the retard amount from the most spark-advanced position of the exhaust valve. The maximum value of the retard amount from the most spark-advanced position of the exhaust valve is set to make exhaust valve opening timing come upto the exhaust bottom dead center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の運転状
態に応じて吸気バルブと排気バルブの開閉タイミングを
制御する内燃機関の可変バルブタイミング制御装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable valve timing control system for an internal combustion engine that controls the opening and closing timing of an intake valve and an exhaust valve according to the operating state of the internal combustion engine.

【0002】[0002]

【従来の技術】現在、実用化されている可変バルブタイ
ミング制御装置は、エンジン運転状態に応じて吸気バル
ブのタイミングを進角制御するものが多い。しかし、吸
気バルブの進角制御のみでは、吸気バルブと排気バルブ
の開弁期間のオーバーラップ量(バルブオーバーラップ
量)が吸気バルブの進角量によって決まってしまうた
め、バルブオーバーラップ量の制御による内部EGR量
(排気残留割合)の制御を、吸気バルブの進角制御と独
立して行うことができず、その分、燃費、出力、排気エ
ミッションでのメリットが少なくなる。
2. Description of the Related Art At present, many variable valve timing control devices that are put into practical use advance a timing of an intake valve in accordance with an operating state of an engine. However, if only the advance control of the intake valve is used, the overlap amount (valve overlap amount) of the opening period of the intake valve and the exhaust valve is determined by the advance amount of the intake valve. The control of the internal EGR amount (residual ratio of exhaust gas) cannot be performed independently of the advance control of the intake valve, and the merit in fuel consumption, output, and exhaust emission is reduced accordingly.

【0003】そこで、例えば、特開平6−235307
号公報、特開平7−317511号公報に示すように、
吸気バルブと排気バルブの双方のタイミングを可変制御
するようにしたものがある。
Therefore, for example, Japanese Patent Application Laid-Open No. 6-235307 describes
As shown in JP-A-7-317511,
In some cases, the timing of both the intake valve and the exhaust valve is variably controlled.

【0004】[0004]

【発明が解決しようとする課題】上記従来の吸気/排気
バルブタイミング制御装置は、エンジン回転数と負荷に
応じて吸気/排気バルブタイミングを可変制御するよう
にしている。この場合、内部EGR量を適正に制御する
ために、バルブオーバーラップ量(吸気/排気バルブタ
イミング)を最適な目標排気残留割合となるように制御
する必要があるが、その際、吸気バルブの進角量を大き
くし過ぎると、吸気バルブ閉時期が早くなり過ぎて、燃
焼室内への新気の流入を促進する吸気脈動効果が低下し
てしまい、体積効率が低下して出力低下を招いてしま
う。
The above-described conventional intake / exhaust valve timing control device variably controls the intake / exhaust valve timing according to the engine speed and the load. In this case, in order to properly control the internal EGR amount, it is necessary to control the valve overlap amount (intake / exhaust valve timing) so as to have an optimal target exhaust residual ratio. If the angular amount is too large, the intake valve closing timing will be too early, and the intake pulsation effect that promotes the flow of fresh air into the combustion chamber will be reduced, resulting in reduced volumetric efficiency and reduced output. .

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、吸気/排気バルブタ
イミングの制御とバルブオーバーラップ量(内部EGR
量)の制御を適正化できて、燃費向上、出力向上、排気
エミッション低減を実現することができる内燃機関の可
変バルブタイミング制御装置を提供することにある。
The present invention has been made in view of such circumstances, and accordingly, it is an object of the present invention to control intake / exhaust valve timing and valve overlap (internal EGR).
It is an object of the present invention to provide a variable valve timing control device for an internal combustion engine, which can optimize the control of the amount of fuel, improve fuel efficiency, improve output, and reduce exhaust emissions.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の内燃機関の可変バルブタイミング制御装置
は、吸排気バルブタイミング設定手段が各負荷域で最適
な目標排気残留割合となるように吸気バルブ及び排気バ
ルブの開閉タイミングを設定する際に、各エンジン回転
数における吸気バルブ閉時期が吸気脈動効果の最適値と
なるように吸気バルブの最遅角位置からの進角量の最大
値を設定し、吸気バルブの進角量が最大値となる運転領
域では、排気バルブの最進角位置からの遅角量の調整に
よって前記最適な目標排気残留割合を実現するようにし
たものである(請求項1)。
To achieve the above object, a variable valve timing control apparatus for an internal combustion engine according to the present invention is arranged such that the intake / exhaust valve timing setting means has an optimum target exhaust residual ratio in each load range. When setting the opening and closing timing of the intake valve and exhaust valve, the maximum value of the advance amount from the most retarded position of the intake valve so that the intake valve closing timing at each engine speed becomes the optimal value of the intake pulsation effect In the operating region where the advance amount of the intake valve is the maximum value, the optimum target exhaust residual ratio is realized by adjusting the retard amount from the most advanced position of the exhaust valve. (Claim 1).

【0007】この構成では、吸気バルブ閉時期が吸気脈
動効果の最適値となるように吸気バルブの進角量の最大
値を設定するので、吸気バルブ閉時期が早くなり過ぎる
ことを未然に防止でき、最適な吸気脈動効果により燃焼
室内への新気の流入を促進して体積効率を向上させるこ
とができ、低速域トルク向上、高出力化を実現すること
ができる。そして、吸気バルブの進角量が最大値となる
運転領域では、排気バルブタイミングの遅角制御によっ
て最適な目標排気残留割合を実現するので、バルブオー
バーラップ量(内部EGR量)の制御を適正化でき、N
Ox、HCの排出量を低減できると共に、燃費も向上で
きる。特に、吸気バルブの進角量が最大値となる運転領
域で加速する際には、排気バルブのみを進角すれば良
く、加速レスポンスを向上でききる。しかも、全負荷域
で最適な吸気/排気バルブタイミングとすることができ
る。
In this configuration, the maximum value of the advance amount of the intake valve is set so that the intake valve closing timing becomes the optimal value of the intake pulsation effect. Therefore, it is possible to prevent the intake valve closing timing from becoming too early. In addition, the flow of fresh air into the combustion chamber can be promoted by the optimal intake pulsation effect to improve the volumetric efficiency, thereby improving the low-speed torque and increasing the output. In the operating region where the amount of advance of the intake valve is the maximum value, the optimal target exhaust residual ratio is achieved by retarding the exhaust valve timing, so that the control of the valve overlap amount (internal EGR amount) is optimized. Yes, N
Ox and HC emissions can be reduced, and fuel economy can be improved. In particular, when accelerating in the operation region where the advance amount of the intake valve is the maximum value, only the exhaust valve needs to be advanced, and the acceleration response can be improved. In addition, optimal intake / exhaust valve timing can be achieved in the entire load range.

【0008】この場合、排気バルブ開時期が排気下死点
までとなるように排気バルブの最進角位置からの遅角量
の最大値を設定することが好ましい(請求項2)。これ
は、排気バルブ開時期が排気下死点よりも遅くなると、
排気が十分に行われず、燃焼室内への新気の取り入れが
阻害されて出力低下をきたすためである。
In this case, it is preferable to set the maximum value of the retard amount from the most advanced position of the exhaust valve so that the exhaust valve opening timing reaches the exhaust bottom dead center. This is because if the exhaust valve opening timing is later than the exhaust bottom dead center,
This is because exhaust is not sufficiently performed, and intake of fresh air into the combustion chamber is hindered, resulting in a decrease in output.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。まず、図1に基づいてシステム全
体の概略構成を説明する。内燃機関であるDOHCエン
ジン11は、クランク軸12からの動力がタイミングチ
ェーン13により各スプロケット14,15を介して排
気側カム軸16と吸気側カム軸17とに伝達されるよう
になっている。この吸気側カム軸17には、クランク軸
12に対する吸気側カム軸17の進角量を調整する吸気
側カム軸位相差調整装置18が設けられ、該吸気側カム
軸17には、吸気側カム軸センサ19が取り付けられて
いる。また、排気側カム軸16には、クランク軸12に
対する排気側カム軸16の進角量を調整する排気側カム
軸位相差調整装置20が設けられ、該排気側カム軸16
には、排気側カム軸センサ21が取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. First, a schematic configuration of the entire system will be described with reference to FIG. In a DOHC engine 11 which is an internal combustion engine, power from a crankshaft 12 is transmitted to an exhaust-side camshaft 16 and an intake-side camshaft 17 via sprockets 14 and 15 by a timing chain 13. The intake-side camshaft 17 is provided with an intake-side camshaft phase difference adjusting device 18 for adjusting an advance amount of the intake-side camshaft 17 with respect to the crankshaft 12. An axis sensor 19 is attached. The exhaust-side camshaft 16 is provided with an exhaust-side camshaft phase difference adjusting device 20 that adjusts the advance amount of the exhaust-side camshaft 16 with respect to the crankshaft 12.
, An exhaust-side camshaft sensor 21 is attached.

【0010】一方、クランク軸12には、クランク軸セ
ンサ22が取り付けられている。このクランク軸センサ
22は、クランク軸12の1回転当たりN個のクランク
軸位相検出パルス信号を発生するのに対し、吸気側/排
気側カム軸センサ19,21は、吸気側/排気側カム軸
17,16の1回転当たり2N個のカム軸位相検出パル
ス信号を発生する。また、吸気側/排気側カム軸17,
16の最大進角量/最大遅角量をθmax℃Aとした場
合、N<360/θmaxとなるようにクランク軸位相
検出パルス信号数Nが設定されている。これによって、
クランク軸センサ22からのクランク軸位相検出パルス
信号と、これに続いて発生する吸気側/排気側カム軸セ
ンサ19,21からのカム軸位相検出パルス信号との間
の相対回転角により吸気バルブと排気バルブ(いずれも
図示せず)の実バルブタイミング(吸気側カム軸17の
実進角量と排気側カム軸16の実遅角量)が算出され
る。
On the other hand, a crankshaft sensor 22 is attached to the crankshaft 12. The crankshaft sensor 22 generates N crankshaft phase detection pulse signals per rotation of the crankshaft 12, whereas the intake / exhaust camshaft sensors 19 and 21 generate intake / exhaust camshafts. 2N camshaft phase detection pulse signals are generated per rotation of 17, 16. In addition, the intake / exhaust camshafts 17,
The crankshaft phase detection pulse signal number N is set so that N <360 / θmax when the maximum advance amount / maximum retardation amount of 16 is θmax ° C.A. by this,
The relative rotation angle between the crankshaft phase detection pulse signal from the crankshaft sensor 22 and the subsequently generated camshaft phase detection pulse signals from the intake / exhaust camshaft sensors 19 and 21 causes the intake valve to rotate. The actual valve timing of the exhaust valve (neither is shown) (the actual advance angle of the intake camshaft 17 and the actual retard angle of the exhaust camshaft 16) is calculated.

【0011】クランク軸センサ22及び吸気側/排気側
カム軸センサ19,21からの各検出パルス信号は、エ
ンジン制御回路(以下「ECU」と表記する)23に入
力され、このECU23によって吸気バルブと排気バル
ブの実バルブタイミングが演算されると共に、クランク
軸センサ22からの検出パルス信号の間隔によってエン
ジン回転数が演算される。また、図示はしないが、吸気
管圧力センサ、水温センサ、スロットルセンサ等のエン
ジン運転状態を検出する各種センサの出力もECU23
に入力され、これら各種センサ出力に基づいて、後述す
るように目標排気残留割合(目標バルブオーバーラップ
量)が演算されると共に、吸気バルブと排気バルブの目
標バルブタイミング(吸気側カム軸17の目標進角量と
排気側カム軸16の目標遅角量)が演算される。この機
能が特許請求の範囲でいう吸排気バルブタイミング設定
手段に相当する機能である。
Each detection pulse signal from the crankshaft sensor 22 and the intake / exhaust camshaft sensors 19 and 21 is input to an engine control circuit (hereinafter referred to as "ECU") 23, which controls the intake valve and the intake valve. The actual valve timing of the exhaust valve is calculated, and the engine speed is calculated based on the interval between the detection pulse signals from the crankshaft sensor 22. Although not shown, the outputs of various sensors for detecting the operating state of the engine, such as an intake pipe pressure sensor, a water temperature sensor, and a throttle sensor, are also output from the ECU 23.
The target exhaust residual ratio (target valve overlap amount) is calculated based on the outputs of the various sensors as described later, and the target valve timing of the intake valve and the exhaust valve (the target The advance amount and the target retard amount of the exhaust camshaft 16 are calculated. This function corresponds to the intake / exhaust valve timing setting means described in the claims.

【0012】ECU23は、吸気バルブの実バルブタイ
ミング(吸気側カム軸17の実進角量)を目標進角量に
一致させるように吸気側油圧回路24の油圧制御弁(図
示せず)を制御して吸気側カム軸位相差調整装置18を
フィードバック制御すると共に、排気バルブの実バルブ
タイミング(排気側カム軸16の実遅角量)を目標遅角
量に一致させるように排気側油圧回路25の油圧制御弁
(図示せず)を制御して排気側カム軸位相差調整装置2
0をフィードバック制御する。
The ECU 23 controls a hydraulic control valve (not shown) of the intake hydraulic circuit 24 so that the actual valve timing of the intake valve (the actual advance of the intake camshaft 17) matches the target advance. Then, the intake-side camshaft phase difference adjusting device 18 is feedback-controlled, and the exhaust-side hydraulic circuit 25 is controlled so that the actual valve timing of the exhaust valve (the actual retardation of the exhaust-side camshaft 16) matches the target retardation. Exhaust side camshaft phase difference adjusting device 2 by controlling the hydraulic control valve (not shown)
0 is feedback-controlled.

【0013】次に、ECU23による吸気バルブタイミ
ングと排気バルブタイミングの制御方法について具体的
に説明する。図2に示すように、吸気バルブタイミング
は、最遅角位置を基準にして進角側に制御され、排気バ
ルブタイミングは、最進角位置を基準にして遅角側に制
御される。吸気バルブと排気バルブの開弁期間が重なり
合うことをバルブオーバーラップというが、このバルブ
オーバーラップ量が大きくなるほど排気残留割合が増加
し、内部EGR量が増加する。
Next, a method of controlling the intake valve timing and the exhaust valve timing by the ECU 23 will be specifically described. As shown in FIG. 2, the intake valve timing is controlled to be advanced with respect to the most retarded position, and the exhaust valve timing is controlled to be retarded with respect to the most advanced position. The overlap between the opening periods of the intake valve and the exhaust valve is referred to as valve overlap. As the valve overlap amount increases, the exhaust residual ratio increases, and the internal EGR amount increases.

【0014】そこで、目標排気残留割合(目標バルブオ
ーバーラップ量)は、各負荷域で次のように設定され
る。
Therefore, the target exhaust residual ratio (target valve overlap amount) is set as follows in each load region.

【0015】(1)アイドル時 目標排気残留割合(目標バルブオーバーラップ量)を最
小値(0)に設定する。これにより、アイドル時の排気
の吸気への吹き返しがなくなるため、アイドル回転を安
定させることができる。
(1) At idle The target exhaust residual ratio (target valve overlap amount) is set to a minimum value (0). As a result, the exhaust gas does not return to the intake air at the time of idling, so that idling rotation can be stabilized.

【0016】(2)低負荷域 目標排気残留割合(目標バルブオーバーラップ量)を小
さくする。これにより、内部EGR量を少なくして、燃
焼を安定させる。
(2) Low load region The target exhaust residual ratio (target valve overlap amount) is reduced. Thus, the internal EGR amount is reduced, and the combustion is stabilized.

【0017】(3)中・高負荷域 目標排気残留割合(目標バルブオーバーラップ量)を大
きくする。これにより、内部EGR量を増加させてポン
プ損失を低減し、燃費を向上させる。また、内部EGR
量が増加することで、燃焼温度が低下してNOx排出量
が低減されると共に、内部EGR量による未燃ガスの再
吸入、再燃焼によりHC排出量も低減される。
(3) Medium / high load region The target exhaust residual ratio (target valve overlap amount) is increased. Thus, the pump loss is reduced by increasing the internal EGR amount, and the fuel efficiency is improved. Also, internal EGR
As the amount increases, the combustion temperature decreases, the NOx emission amount is reduced, and the HC emission amount is also reduced by re-inhaling and reburning the unburned gas based on the internal EGR amount.

【0018】(4)WOT(Wide Open Throttle) 目標排気残留割合(目標バルブオーバーラップ量)を中
負荷域よりも小さくする。これにより、内部EGR量を
少なくして、トルク、出力を増大させる。
(4) WOT (Wide Open Throttle) The target exhaust residual ratio (target valve overlap amount) is made smaller than that in the medium load region. Thus, the internal EGR amount is reduced, and the torque and the output are increased.

【0019】ところで、排気残留割合(バルブオーバー
ラップ量)を大きくする際に、吸気バルブタイミングの
進角量を大きくし過ぎると、吸気バルブ閉時期が早くな
り過ぎて、燃焼室内への新気の流入を促進する吸気脈動
効果が低下してしまい、体積効率が低下して出力低下を
招いてしまう。
By the way, when the exhaust residual ratio (valve overlap amount) is increased, if the advance amount of the intake valve timing is too large, the intake valve closing timing will be too early, and the fresh air entering the combustion chamber will be too long. The intake pulsation effect that promotes the inflow is reduced, and the volume efficiency is reduced, leading to a reduction in output.

【0020】そこで、本実施形態では、各エンジン回転
数における吸気バルブ閉時期が吸気脈動効果の最適値と
なるように吸気バルブの最遅角位置からの進角量の最大
値を設定する。エンジン回転数と吸気脈動効果の最適値
が得られる吸気バルブ閉時期との関係は図3に示され、
この図3の関係に基づいて、図4に示すように、各エン
ジン回転数毎に、吸気バルブの最遅角位置からの進角量
がスロットル開度(負荷)をパラメータとして設定され
る。図4の関係は予めマップ化されてECU23のRO
M(記憶媒体)に記憶されている。図4のマップの特徴
は、各エンジン回転数における進角量の最大値が図3の
吸気脈動効果の最適値から外れないように制限されてお
り、中負荷領域から高負荷領域にかけて進角量が最大値
で一定となる。この特性により、吸気バルブ閉時期が早
くなり過ぎることを未然に防止でき、最適な吸気脈動効
果により燃焼室内への新気の流入を促進して体積効率を
向上させることができ、低速域トルク向上、高出力化を
実現することができる。
Therefore, in the present embodiment, the maximum value of the advance amount of the intake valve from the most retarded position is set such that the intake valve closing timing at each engine speed becomes the optimal value of the intake pulsation effect. The relationship between the engine speed and the intake valve closing timing at which the optimal value of the intake pulsation effect is obtained is shown in FIG.
Based on the relationship in FIG. 3, as shown in FIG. 4, the advance amount of the intake valve from the most retarded position is set using the throttle opening (load) as a parameter for each engine speed. The relationship shown in FIG.
M (storage medium). The feature of the map of FIG. 4 is that the maximum value of the advance angle at each engine speed is limited so as not to deviate from the optimum value of the intake pulsation effect of FIG. Becomes constant at the maximum value. Due to this characteristic, it is possible to prevent the intake valve closing timing from becoming too early, to promote the flow of fresh air into the combustion chamber by the optimal intake pulsation effect and improve the volumetric efficiency, and to improve the low-speed torque , High output can be realized.

【0021】そして、吸気バルブの進角量が最大値とな
る運転領域では、図5に示すマップにより、排気バルブ
を遅角制御して排気残留割合(バルブオーバーラップ
量)を目標値に制御する。図5に示すマップは、スロッ
トル開度(負荷)とエンジン回転数とをパラメータとし
て排気バルブの最進角位置からの遅角量を設定するマッ
プであり、ECU23のROMに記憶されている。
In the operating region where the advance amount of the intake valve is the maximum value, the exhaust valve is retarded and the exhaust residual ratio (valve overlap amount) is controlled to the target value by the map shown in FIG. . The map shown in FIG. 5 is a map for setting the retard amount from the most advanced position of the exhaust valve using the throttle opening (load) and the engine speed as parameters, and is stored in the ROM of the ECU 23.

【0022】このように、吸気バルブの進角量が最大値
となる運転領域では、排気バルブタイミングの遅角制御
によって最適な目標排気残留割合を実現すれば、バルブ
オーバーラップ量(内部EGR量)の制御を適正化で
き、NOx、HCの排出量を低減できると共に、燃費も
向上できる。特に、吸気バルブの進角量が最大値となる
運転領域で加速する際には、排気バルブタイミングのみ
を進角すれば良く、加速レスポンスを大幅に向上できき
る。
As described above, in the operation region where the amount of advance of the intake valve is the maximum value, the valve overlap amount (internal EGR amount) can be attained by realizing the optimum target exhaust residual ratio by retard control of the exhaust valve timing. Control can be optimized, NOx and HC emissions can be reduced, and fuel efficiency can be improved. In particular, when accelerating in an operation region where the amount of advance of the intake valve is the maximum value, only the exhaust valve timing needs to be advanced, and the acceleration response can be greatly improved.

【0023】更に、図5のマップでは、排気バルブ開時
期が排気下死点までとなるように排気バルブの最進角位
置からの遅角量の最大値が設定されている。これは、排
気バルブ開時期が排気下死点よりも遅くなると、排気が
十分に行われず、燃焼室内への新気の取り入れが阻害さ
れて出力低下をきたすためである。排気バルブ開時期が
排気下死点よりも早ければ、排気が十分に行われ、燃焼
室内への新気の取り入れが円滑に行われて、体積効率が
向上し、トルク増加、出力向上につながる。
Further, in the map of FIG. 5, the maximum value of the retard amount from the most advanced position of the exhaust valve is set so that the exhaust valve opening timing reaches the exhaust bottom dead center. This is because if the exhaust valve opening timing is later than the exhaust bottom dead center, exhaust is not sufficiently performed, and intake of fresh air into the combustion chamber is hindered, resulting in a decrease in output. If the exhaust valve opening timing is earlier than the exhaust bottom dead center, the exhaust is sufficiently performed, the fresh air is smoothly introduced into the combustion chamber, the volume efficiency is improved, and the torque is increased and the output is increased.

【0024】尚、図4及び図5のマップにおいて、負荷
のパラメータとして、スロットル開度に代えて、吸気管
圧力又は吸入空気量を用いても良い。
In the maps of FIGS. 4 and 5, an intake pipe pressure or an intake air amount may be used as a load parameter instead of the throttle opening.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す可変バルブタイミン
グ制御装置全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire variable valve timing control device according to an embodiment of the present invention.

【図2】吸気バルブタイミングと排気バルブタイミング
との関係を示すタイムチャート
FIG. 2 is a time chart showing a relationship between intake valve timing and exhaust valve timing.

【図3】エンジン回転数と吸気脈動効果の最適値が得ら
れる吸気バルブ閉時期との関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between an engine speed and an intake valve closing timing at which an optimal value of an intake pulsation effect is obtained.

【図4】吸気バルブの進角特性を示す特性図FIG. 4 is a characteristic diagram showing advance angle characteristics of an intake valve.

【図5】排気バルブの遅角特性を示す特性図FIG. 5 is a characteristic diagram showing a retarding characteristic of an exhaust valve.

【符号の説明】[Explanation of symbols]

11…DOHCエンジン(内燃機関)、12…クランク
軸、16…排気側カム軸、17…吸気側カム軸、18…
吸気側カム軸位相差調整装置、19…吸気側カム軸セン
サ、20…排気側カム軸位相差調整装置、21…排気側
カム軸センサ、22…クランク軸センサ、23…エンジ
ン制御回路(吸排気バルブタイミング設定手段)。
11 DOHC engine (internal combustion engine), 12 crankshaft, 16 exhaust camshaft, 17 intake camshaft, 18
Intake side camshaft phase difference adjusting device, 19 ... intake side camshaft sensor, 20 ... exhaust side camshaft phase difference adjusting device, 21 ... exhaust side camshaft sensor, 22 ... crankshaft sensor, 23 ... engine control circuit (intake and exhaust) Valve timing setting means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の運転状態に応じて吸気バルブ
及び排気バルブの開閉タイミングを制御する内燃機関の
可変バルブタイミング制御装置において、 各負荷域で最適な目標排気残留割合となるように前記吸
気バルブ及び前記排気バルブの開閉タイミングを設定す
る吸排気バルブタイミング設定手段を備え、 前記吸排気バルブタイミング設定手段は、各エンジン回
転数における吸気バルブ閉時期が吸気脈動効果の最適値
となるように前記吸気バルブの最遅角位置からの進角量
の最大値を設定し、前記吸気バルブの進角量が最大値と
なる運転領域では、前記排気バルブの最進角位置からの
遅角量の調整によって前記最適な目標排気残留割合を実
現することを特徴とする内燃機関の可変バルブタイミン
グ制御装置。
1. A variable valve timing control apparatus for an internal combustion engine, which controls opening and closing timings of an intake valve and an exhaust valve according to an operation state of the internal combustion engine. Intake and exhaust valve timing setting means for setting the opening and closing timing of the valve and the exhaust valve, wherein the intake and exhaust valve timing setting means sets the intake valve closing timing at each engine speed to an optimal value of the intake pulsation effect. The maximum value of the amount of advance of the intake valve from the most retarded position is set, and in the operation region where the amount of advance of the intake valve is the maximum value, the amount of retardation of the exhaust valve from the most advanced position is adjusted. A variable valve timing control device for an internal combustion engine, wherein the optimal target exhaust gas residual ratio is realized by the following.
【請求項2】 前記吸排気バルブタイミング設定手段
は、排気バルブ開時期が排気下死点までとなるように前
記排気バルブの最進角位置からの遅角量の最大値を設定
することを特徴とする請求項1に記載の内燃機関の可変
バルブタイミング制御装置。
2. The intake / exhaust valve timing setting means sets a maximum value of a retard amount of the exhaust valve from a most advanced position so that an exhaust valve opening timing is equal to a bottom dead center of the exhaust gas. The variable valve timing control device for an internal combustion engine according to claim 1, wherein
JP9259537A 1997-09-25 1997-09-25 Variable valve timing control device for internal combustion engine Pending JPH1193713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259537A JPH1193713A (en) 1997-09-25 1997-09-25 Variable valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259537A JPH1193713A (en) 1997-09-25 1997-09-25 Variable valve timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1193713A true JPH1193713A (en) 1999-04-06

Family

ID=17335495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259537A Pending JPH1193713A (en) 1997-09-25 1997-09-25 Variable valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1193713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020768A (en) * 1999-06-24 2001-01-23 Robert Bosch Gmbh Method for operating internal combustion engine
JP2009228510A (en) * 2008-03-21 2009-10-08 Honda Motor Co Ltd Internal egr control device for internal combustion engine
JP2009228674A (en) * 2008-02-26 2009-10-08 Mazda Motor Corp Method for controlling internal combustion engine, and control system for internal combustion engine
JP2011007132A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Valve timing control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020768A (en) * 1999-06-24 2001-01-23 Robert Bosch Gmbh Method for operating internal combustion engine
JP2009228674A (en) * 2008-02-26 2009-10-08 Mazda Motor Corp Method for controlling internal combustion engine, and control system for internal combustion engine
JP2009228510A (en) * 2008-03-21 2009-10-08 Honda Motor Co Ltd Internal egr control device for internal combustion engine
JP2011007132A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Valve timing control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3123398B2 (en) Continuous variable valve timing control device for internal combustion engine
JP2871615B2 (en) Exhaust gas purification device for internal combustion engine
US5967114A (en) In-cylinder direct-injection spark-ignition engine
US7597093B2 (en) Humidity based control system for an internal combustion engine
JP3011070B2 (en) Intake air amount detection device for internal combustion engine with continuously variable valve timing mechanism
US7311083B2 (en) Engine method
US20060090730A1 (en) Valve characteristic controlling apparatus and method for internal combustion engine
JP3085181B2 (en) Ignition timing control device for internal combustion engine
JP3939079B2 (en) Variable valve timing control device for internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP2000145484A (en) Valve unit of supercharged engine
JP3937522B2 (en) Variable valve operating device for internal combustion engine
US20050263118A1 (en) Valve timing control apparatus for engine
JP4841382B2 (en) Internal combustion engine
JPH1193713A (en) Variable valve timing control device for internal combustion engine
JP4937188B2 (en) Variable valve operating device for internal combustion engine
JPH1193714A (en) Variable valve timing control device for internal combustion engine
JP2001241340A (en) Contol device for internal combustion engine
JPH09166030A (en) Combustion controller for internal combustion engine
JP4075614B2 (en) In-cylinder injection internal combustion engine control device
JPH084599A (en) Combustion control method for engine
JP4295173B2 (en) Control device for internal combustion engine
JP4203720B2 (en) Engine valve timing control device
JP2001098964A (en) Controller for spark ignition type direct injection engine
JPH0610774A (en) Egr control device for cylinder injection type engine