JPH1192954A - Method for packing microrecesses and apparatus therefor - Google Patents

Method for packing microrecesses and apparatus therefor

Info

Publication number
JPH1192954A
JPH1192954A JP26930897A JP26930897A JPH1192954A JP H1192954 A JPH1192954 A JP H1192954A JP 26930897 A JP26930897 A JP 26930897A JP 26930897 A JP26930897 A JP 26930897A JP H1192954 A JPH1192954 A JP H1192954A
Authority
JP
Japan
Prior art keywords
plating
plating solution
liquid
fine
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26930897A
Other languages
Japanese (ja)
Inventor
Naoaki Kogure
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26930897A priority Critical patent/JPH1192954A/en
Publication of JPH1192954A publication Critical patent/JPH1192954A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the use of materials, such as copper and copper alloys, having a low specific electric resistance as a packing material by immersing a base material having microrecesses into a plating liquid and executing the viscosity adjustment of the plating liquid, then evacuating the space in the upper part in a plating tank to deaerate the plating liquid and packing the prescribed material into the microrecesses. SOLUTION: The semiconductor base material 1 is immersed into the plating liquid. At this time, the plating liquid has a low viscosity but when the plating liquid is rested still for a prescribed time, the plating liquid changes to the high-viscosity liquid as aluminum oxide and sodium chloride are added thereto. A vacuum pump 11 is operated to evacuate the upper space R of the plating tank 10, by which the gas dissolved in the plating liquid is deaerated. At this time, the liquid turns highly viscous and, therefore, the liquid itself does not boil. As a result, the microrecesses on the semiconductor base 1 are deaerated and the plating liquid successively infiltrates the recesses. The upper space R of the plating tank 10 is thereafter restored to the atm. pressure and when the liquid is stirred by a stirring machine 16, the liquid changes to the low viscosity. Plating work is then carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細窪みの充填方
法及び装置に係り、特に半導体素子の配線用溝等の微細
窪みに銅(Cu)等の金属を充填するための充填方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for filling a fine dent, and more particularly to a method and an apparatus for filling a fine dent such as a wiring groove of a semiconductor element with a metal such as copper (Cu). .

【0002】[0002]

【従来の技術】従来、半導体素子の導電線路としての配
線パターンを形成するための配線材料として、アルミニ
ウム(Al)又はアルミニウム合金が用いられている。
しかしながら、半導体素子の配線工程においては集積度
を更に増大させたいという要求からアルミニウム又はア
ルミニウム合金に替わる低電気抵抗材料による微細パタ
ーン形成技術の確立が切望されている。
2. Description of the Related Art Conventionally, aluminum (Al) or an aluminum alloy has been used as a wiring material for forming a wiring pattern as a conductive line of a semiconductor element.
However, in a wiring process of a semiconductor element, there is a strong demand for establishment of a fine pattern forming technique using a low electric resistance material instead of aluminum or an aluminum alloy due to a demand for further increasing the degree of integration.

【0003】これは、集積度が高くなるにつれて、電流
密度が増加するため温度上昇とそれに伴って生じる熱応
力が共に無視できない程度に高まる結果、従来のAl又
はAl合金ではストレスマイグレーションやエレクトロ
マイグレーションによる断線の恐れが増すことに大きく
起因している。これを避けるため、Al又はAl合金へ
のCuの添加や高融点金属との積層化が行われつつある
が万全ではない。
[0003] This is because, as the degree of integration increases, the current density increases, so that the temperature rise and the resulting thermal stress both increase to a nonnegligible level. As a result, in conventional Al or Al alloys, stress migration or electromigration occurs. This is largely due to the increased risk of disconnection. In order to avoid this, addition of Cu to Al or Al alloy and lamination with a high melting point metal are being performed, but this is not perfect.

【0004】そこで、通電による過度の発熱を避けるた
め、従来のAl又はAl合金とは根本的に異なる導電性
のよい材料を配線形成に採用することが必然的に要求さ
れている。現用材料のうち、Al系よりも電気比抵抗の
小さい材料としては、銅(Cu)と銀(Ag)がある。
このうち、銀は高価であり、又、強度および耐食性が低
く、構成原子が拡散しやすいという欠点がある。したが
って、銅及び銅合金が配線材料としては最適である。
[0004] Therefore, in order to avoid excessive heat generation due to energization, it is inevitably required to employ a material having good conductivity, which is fundamentally different from conventional Al or Al alloy, for forming the wiring. Among the current materials, copper (Cu) and silver (Ag) are materials having lower electric resistivity than Al-based materials.
Among them, silver is expensive, has low strength and low corrosion resistance, and has the disadvantage that constituent atoms are easily diffused. Therefore, copper and copper alloy are most suitable as wiring materials.

【0005】従来、配線パターンを形成するためには、
スパッタリング成膜とケミカルドライエッチングを組合
わせて用いる方法がとられてきたが、スパッタリング成
膜ではアスペクト比(深さと直径又は幅の比)の高い配
線用の溝又は穴への金属の充填又は埋め込みが困難であ
り、又、銅又は銅合金に対してはケミカルドライエッチ
ングが技術的に確立されていないという問題点があっ
た。
Conventionally, to form a wiring pattern,
A method using a combination of sputtering film formation and chemical dry etching has been used, but in sputtering film formation, metal is filled or buried in a wiring groove or hole having a high aspect ratio (ratio of depth to diameter or width). In addition, there has been a problem that chemical dry etching has not been technically established for copper or copper alloy.

【0006】また、微細な配線用の溝への埋め込み手段
として、CVD法があるが、堆積膜中への有機原料から
の炭素(C)の混入が避けられないという問題点があっ
た。
Further, there is a CVD method as a means for embedding in a fine wiring groove. However, there is a problem that incorporation of carbon (C) from an organic raw material into a deposited film is unavoidable.

【0007】[0007]

【発明が解決しようとする課題】すなわち、従来のいず
れの方法を用いても、アスペクト比の高い微細な配線用
の溝や穴等にCu又はCu合金等の電気比抵抗の小さい
材料を充填することができないという問題点があった。
That is, in any of the conventional methods, a material having a small electric resistivity such as Cu or a Cu alloy is filled in a fine wiring groove or hole having a high aspect ratio. There was a problem that it was not possible.

【0008】本発明は上述の事情に鑑みなされたもの
で、充填材料として銅又は銅合金等の電気比抵抗の小さ
い材料を用いることができ、かつ微細な配線用の溝等の
微細窪みに銅又は銅合金等の電気比抵抗の小さい材料を
充填することができる液相メッキ工程等の液相工程によ
る微細窪みの充填方法及び装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and it is possible to use a material having a low electric resistivity such as copper or a copper alloy as a filling material, and to insert copper into a fine depression such as a fine wiring groove. Another object of the present invention is to provide a method and an apparatus for filling fine pits by a liquid phase process such as a liquid phase plating process, which can fill a material having a small electric resistivity such as a copper alloy.

【0009】[0009]

【課題を解決するための手段】上述した目的を達成する
ため、本発明の充填方法は、微細窪みを有する基材をメ
ッキ液に浸漬し、前記メッキ液の粘性調整を行った後、
メッキ槽内の上部空間を真空排気してメッキ液の脱気を
行い、前記微細窪みへの所定材料の充填を行うことを特
徴とするものである。
In order to achieve the above-mentioned object, a filling method of the present invention comprises immersing a substrate having fine depressions in a plating solution, adjusting the viscosity of the plating solution,
The upper space in the plating tank is evacuated to degas the plating solution, and the minute recess is filled with a predetermined material.

【0010】また、本発明の充填装置は、微細窪みを有
する基材を浸漬するメッキ液を保持したメッキ槽と、該
メッキ槽内の上部空間を真空排気する手段と、前記メッ
キ液の粘性を調整する手段とを備えたことを特徴とする
ものである。
Further, the filling apparatus of the present invention comprises a plating tank holding a plating solution for immersing a substrate having fine depressions, means for evacuating an upper space in the plating tank, and a method for reducing the viscosity of the plating solution. Adjustment means.

【0011】本発明によれば、メッキ液を真空にさらす
ことにより、微細窪み内の気体を脱気することができ、
メッキ液の窪み内部への浸入が活発になる結果、微細窪
みへの所定の金属の充填が実現できる。
According to the present invention, by exposing the plating solution to a vacuum, the gas in the fine depression can be degassed,
As a result of active penetration of the plating solution into the inside of the depression, filling of the fine depression with a predetermined metal can be realized.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る微細窪みの充
填方法及び装置の実施の一形態を図1乃至図3を参照し
て説明する。図1は微細窪みの充填方法によって製造さ
れる半導体素子の製造工程を示す説明図である。図1
(a)に示すように、半導体素子が形成された半導体基
材1上の導電層1aの上にSiO2からなる絶縁膜2を
堆積させた後、リソグラフィ・エッチング技術によりコ
ンタクトホール3と配線用の溝4を形成する。そして、
TiN等からなるバリア層5を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method and an apparatus for filling a fine dent according to the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory view showing a manufacturing process of a semiconductor device manufactured by a method for filling a fine recess. FIG.
As shown in (a), after depositing the insulating film 2 made of SiO 2 on a conductive layer 1a on a semiconductor substrate 1 on which semiconductor devices are formed, wiring contact hole 3 by a lithographic etching technique Is formed. And
A barrier layer 5 made of TiN or the like is formed.

【0013】次に、本発明に係る液相メッキ工程によ
り、図1(b)に示すように半導体基板1のコンタクト
ホール3および溝4にCuを充填するとともに絶縁膜2
上にCu層6を堆積させる。その後、化学的機械的研磨
(CMP)により、絶縁膜2上のCu層を除去してコン
タクトホール3および配線用の溝4に充填されたCu層
6の表面と絶縁膜2の表面とをほぼ同一平面にする。こ
れにより、図1(c)に示すようにCu層6からなる配
線が形成される。
Next, in the liquid phase plating process according to the present invention, as shown in FIG. 1B, the contact holes 3 and the grooves 4 of the semiconductor substrate 1 are filled with Cu and the insulating film 2 is formed.
A Cu layer 6 is deposited thereon. Thereafter, the Cu layer on the insulating film 2 is removed by chemical mechanical polishing (CMP), so that the surface of the Cu layer 6 filled in the contact hole 3 and the trench 4 for wiring and the surface of the insulating film 2 are almost completely removed. Make them coplanar. As a result, a wiring made of the Cu layer 6 is formed as shown in FIG.

【0014】図2は本発明の液相メッキ工程を実施する
装置の構成の一実施例を示す概略図である。図2に示す
ように、メッキ液Lを保持したメッキ槽10は真空ポン
プ11に接続されており、メッキ槽10内の上部空間R
が真空排気されるようになっている。メッキ槽10内の
メッキ液は、貯溜槽12、ポンプ13およびフィルタ1
4を介して循環するようになっている。またメッキ槽1
0内には、メッキ槽10内のメッキ液の温度を調節する
ための温調器15と、メッキ液を攪拌するための攪拌器
16とが設置されている。攪拌器16はメッキ液の粘性
を調整する手段を構成している。
FIG. 2 is a schematic view showing one embodiment of the structure of an apparatus for performing the liquid phase plating step of the present invention. As shown in FIG. 2, the plating tank 10 holding the plating solution L is connected to a vacuum pump 11, and an upper space R in the plating tank 10 is provided.
Is evacuated. The plating solution in the plating tank 10 is stored in the storage tank 12, the pump 13, and the filter 1.
4 for circulation. Plating tank 1
Inside 0, a temperature controller 15 for adjusting the temperature of the plating solution in the plating tank 10 and a stirrer 16 for stirring the plating solution are provided. The stirrer 16 constitutes means for adjusting the viscosity of the plating solution.

【0015】前記メッキ槽10内には、基材表面が水平
な状態で半導体基材1が設置されている。この場合、充
填すべき微細窪みであるコンタクトホール3および溝4
の深さ方向は、垂直方向に位置している。メッキ槽10
内に保持されたメッキ液Lの組成は表1に示される。
The semiconductor substrate 1 is placed in the plating tank 10 with the substrate surface being horizontal. In this case, the contact holes 3 and the grooves 4 which are the fine depressions to be filled.
Is located in the vertical direction. Plating tank 10
Table 1 shows the composition of the plating solution L held therein.

【表1】 またメッキ条件は表2に示される。[Table 1] Table 2 shows the plating conditions.

【表2】 表1及び2は電解メッキと無電解メッキの場合の両方を
示している。
[Table 2] Tables 1 and 2 show both the cases of electrolytic plating and electroless plating.

【0016】表1に示すメッキ液に、酸化アルミニウム
のゾルに適量の塩化ナトリウムを添加したものを混合し
ておく。酸化アルミニウムのゾルおよび塩化ナトリウム
からなる添加剤は、メッキ液の粘性を変化させるために
メッキ液に混合するものである。上記添加剤は、液体を
静止状態又は流動状態にさせ、ゾル状態とゲル状態との
2態様をとることにより粘性が変化する性質を有してい
る。
A plating solution shown in Table 1 is mixed with a sol of aluminum oxide to which an appropriate amount of sodium chloride has been added. The additive consisting of aluminum oxide sol and sodium chloride is mixed with the plating solution to change the viscosity of the plating solution. The additive has a property that the viscosity is changed by bringing the liquid into a stationary state or a flowing state and taking two modes of a sol state and a gel state.

【0017】次に、図2の装置を用いて半導体基材1の
微細窪みに銅を充填する工程を図3を参照して説明す
る。ステップ1(S1)において、半導体基材1をメッ
キ液中に浸漬する。このとき、メッキ液は低粘性液であ
る。次に、ステップ2(S2)において、メッキ液を所
定時間静置する。これによって、酸化アルミニウムと塩
化ナトリウムとが添加されているメッキ液は高粘性液に
変化する。
Next, a process of filling the fine recesses of the semiconductor substrate 1 with copper using the apparatus of FIG. 2 will be described with reference to FIG. In step 1 (S1), the semiconductor substrate 1 is immersed in a plating solution. At this time, the plating solution is a low viscosity solution. Next, in step 2 (S2), the plating solution is allowed to stand for a predetermined time. As a result, the plating solution to which aluminum oxide and sodium chloride are added changes to a highly viscous solution.

【0018】次に、ステップ3(S3)において、真空
ポンプ11を稼働させて、メッキ液の上部空間Rを所定
の真空圧(0.001〜680Torr(0Torrを
完全な真空とした場合))とすることにより、メッキ液
を真空にさらし、メッキ液中に溶解している気体を脱気
する。このとき、メッキ液は高粘性液となっているた
め、メッキ液が真空にさらされてもメッキ液自体が沸騰
することによる不都合はない。メッキ液中に溶解してい
る気体が脱気されるのに伴い、半導体基材1上の微細窪
み内の空気も脱気され、微細窪み内にメッキ液が浸入し
ていく。即ち、真空時の脱気作用によって、微細窪みで
あるコンタクトホール3および溝4内へのメッキ液の浸
入が徐々に実現する。
Next, in Step 3 (S3), the vacuum pump 11 is operated to evacuate the upper space R of the plating solution to a predetermined vacuum pressure (0.001 to 680 Torr (when 0 Torr is set to a complete vacuum)). As a result, the plating solution is exposed to a vacuum, and the gas dissolved in the plating solution is degassed. At this time, since the plating solution is a highly viscous solution, even if the plating solution is exposed to a vacuum, there is no inconvenience caused by the plating solution itself boiling. As the gas dissolved in the plating solution is degassed, the air in the fine depression on the semiconductor substrate 1 is also degassed, and the plating solution infiltrates into the fine depression. In other words, the plating solution gradually infiltrates into the contact holes 3 and the grooves 4 which are fine pits due to the deaeration effect in a vacuum.

【0019】次に、ステップ4(S4)において、真空
ポンプ11を停止させるとともにメッキ槽10の上部空
間Rの真空破壊を行なって大気圧とし、ステップ5(S
5)において、撹拌器16を作動させてメッキ液を撹拌
する。これによって酸化アルミニウムと塩化ナトリウム
とが添加されている液は低粘性液に変化する。次に、ス
テップ6(S6)において、半導体基板1に対する所定
時間のメッキを実行する。本実施例によれば、真空脱気
により、微細窪み内の空気をメッキ液と置換することが
できるため、該微細窪み内表面をメッキ液で十分濡らす
ことができ、その結果、アスペクト比の高い微細窪みで
あるコンタクトホール3および溝4内に銅を充填でき
る。
Next, in step 4 (S4), the vacuum pump 11 is stopped, and the upper space R of the plating tank 10 is evacuated to a vacuum to make it atmospheric pressure.
In 5), the stirrer 16 is operated to stir the plating solution. Thereby, the liquid to which aluminum oxide and sodium chloride are added changes to a low-viscosity liquid. Next, in step 6 (S6), plating is performed on the semiconductor substrate 1 for a predetermined time. According to the present embodiment, the air in the fine recess can be replaced with the plating solution by vacuum degassing, so that the inner surface of the fine recess can be sufficiently wetted with the plating solution, and as a result, the aspect ratio is high. Copper can be filled in the contact holes 3 and the trenches 4 which are fine depressions.

【0020】図3に示す液層メッキ工程においては、メ
ッキ液の粘性を変化させるために、いわゆるチキソトロ
ピーを利用したが、メッキ液中に特定波長の光の照射あ
るいは、外部電界の印加等によって粘性が変化する物質
を添加しておき、光の照射および照射停止、又は、外部
電界の有無によりメッキ液の粘性を変化させることもで
きる。
In the liquid layer plating process shown in FIG. 3, so-called thixotropic is used to change the viscosity of the plating solution. However, the viscosity is increased by irradiating the plating solution with light of a specific wavelength or applying an external electric field. The viscosity of the plating solution can be changed by irradiating and stopping light irradiation or by the presence or absence of an external electric field.

【0021】また、メッキ液の粘性を変化させる工程を
経ることなく真空脱気工程のみで本発明の充填方法を実
施することも可能である。この場合には、図3におい
て、ステップ1およびステップ2は省略し、ステップ3
〜5のみで液相メッキ工程が完了する。
It is also possible to carry out the filling method of the present invention only by the vacuum degassing step without going through the step of changing the viscosity of the plating solution. In this case, Step 1 and Step 2 are omitted in FIG.
The liquid phase plating step is completed only with the steps 5 to 5.

【0022】本実施例の説明においては、微細窪みに銅
を充填する場合を説明したが、本発明を適用することに
より、微細窪みに銀(Ag)や金(Au)等の他の電気
比抵抗の小さい材料を充填することもできる。また実施
例では、無電解メッキ及び電解メッキの場合を説明した
が、本発明は、ドブ付けメッキ、溶融塩メッキ、化成
法、ゾルゲル法、析出法(LPD)等の液体を用いる充
填法には全て適用することができる。また半導体基板以
外であっても微細な窪みをもつ基材ならばどんなもので
も本発明による材料充填が可能とある。
In the description of the present embodiment, the case where copper is filled in the fine pits has been described. However, by applying the present invention, the fine pits may be filled with another electric ratio such as silver (Ag) or gold (Au). A material having a low resistance can also be filled. In the examples, the cases of electroless plating and electrolytic plating have been described. However, the present invention relates to a filling method using a liquid such as dough plating, molten salt plating, a chemical conversion method, a sol-gel method, and a deposition method (LPD). All can be applied. In addition, any material other than a semiconductor substrate can be filled with the material according to the present invention, as long as it has a fine recess.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
液相メッキ工程等の液相を利用した材料の充填工程中
に、系内を真空脱気することにより、基材上の微細窪み
にCu等の電気比抵抗の小さい材料を空洞(ボイド)を
形成することなく充填することができる。
As described above, according to the present invention,
During the material filling step using the liquid phase such as the liquid phase plating step, the inside of the system is evacuated to a vacuum so that a material having a small electrical resistivity such as Cu is formed in a micro dent on the substrate. It can be filled without forming.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る微細窪みの充填方法によって製造
される半導体素子の製造工程を示す説明図である。
FIG. 1 is an explanatory view showing a manufacturing process of a semiconductor device manufactured by a method for filling a fine dent according to the present invention.

【図2】本発明の液相メッキ工程を実施する装置の構成
を示す概略図である。
FIG. 2 is a schematic view showing a configuration of an apparatus for performing a liquid phase plating step of the present invention.

【図3】本発明の液相メッキ工程を示す工程図である。FIG. 3 is a process chart showing a liquid phase plating process of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基材 2 絶縁膜 3 コンタクトホール 4 溝 5 バリア層 6 Cu層 10 メッキ槽 11 真空ポンプ 12 貯溜槽 13 ポンプ 14 フィルタ 15 温調器 16 攪拌器 DESCRIPTION OF SYMBOLS 1 Semiconductor base material 2 Insulating film 3 Contact hole 4 Groove 5 Barrier layer 6 Cu layer 10 Plating tank 11 Vacuum pump 12 Storage tank 13 Pump 14 Filter 15 Temperature controller 16 Stirrer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微細窪みを有する基材をメッキ液に浸漬
し、前記メッキ液の粘性調整を行った後、メッキ槽内の
上部空間を真空排気してメッキ液の脱気を行い、前記微
細窪みへの所定材料の充填を行うことを特徴とする微細
窪みの充填方法。
1. A substrate having fine depressions is immersed in a plating solution, the viscosity of the plating solution is adjusted, and the upper space in the plating tank is evacuated to degas the plating solution. A method for filling a fine dent, wherein the dent is filled with a predetermined material.
【請求項2】 前記メッキ液の粘性調整は、メッキ液中
に添加された添加剤の性状変化を利用して行うことを特
徴とする請求項1記載の微細窪みの充填方法。
2. The method according to claim 1, wherein the adjustment of the viscosity of the plating solution is performed by utilizing a property change of an additive added to the plating solution.
【請求項3】 前記材料を微細窪みに充填した後、化学
的機械的研磨(CMP)により充填された材料の表面を
平坦化することを特徴とする請求項1又は2記載の微細
窪みの充填方法。
3. The method according to claim 1, wherein after filling the material into the fine recess, the surface of the filled material is flattened by chemical mechanical polishing (CMP). Method.
【請求項4】 微細窪みを有する基材をメッキ液に浸漬
し、メッキ槽内の上部空間を真空排気してメッキ液の脱
気を行い、前記微細窪みへの所定材料の充填を行うこと
を特徴とする微細窪みの充填方法。
4. A method of immersing a substrate having fine depressions in a plating solution, evacuating an upper space in the plating tank to degas the plating solution, and filling the fine depressions with a predetermined material. Characteristic method of filling fine pits.
【請求項5】 微細窪みを有する基材をメッキ液に浸漬
し、メッキ槽内の上部空間を真空排気してメッキ液の脱
気を行い、前記微細窪みへのメッキ液の浸入を促進する
ことを特徴とする微細窪みへのメッキ液の浸入方法。
5. A method of immersing a base material having a fine pit in a plating solution, evacuating an upper space in a plating tank to degas the plating solution, and thereby facilitating penetration of the plating solution into the fine dent. A method for infiltrating a plating solution into a fine depression.
【請求項6】 微細窪みを有する基材を浸漬するメッキ
液を保持したメッキ槽と、該メッキ槽内の上部空間を真
空排気する手段と、前記メッキ液の粘性を調整する手段
とを備えたことを特徴とする微細窪みの充填装置。
6. A plating tank for holding a plating solution for immersing a substrate having fine recesses, means for evacuating an upper space in the plating tank, and means for adjusting the viscosity of the plating solution. A filling device for a fine depression.
【請求項7】 前記メッキ液の粘性を調整する手段は、
前記メッキ液中に添加された添加剤に流動状態を付与す
る攪拌器であることを特徴とする請求項6記載の微細窪
みの充填装置。
7. A means for adjusting the viscosity of the plating solution,
7. The filling device according to claim 6, wherein the stirring device is a stirrer for imparting a fluid state to the additive added to the plating solution.
JP26930897A 1997-09-16 1997-09-16 Method for packing microrecesses and apparatus therefor Pending JPH1192954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26930897A JPH1192954A (en) 1997-09-16 1997-09-16 Method for packing microrecesses and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26930897A JPH1192954A (en) 1997-09-16 1997-09-16 Method for packing microrecesses and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH1192954A true JPH1192954A (en) 1999-04-06

Family

ID=17470539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26930897A Pending JPH1192954A (en) 1997-09-16 1997-09-16 Method for packing microrecesses and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH1192954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048209A (en) * 2003-07-30 2005-02-24 Hitachi Ltd Electroless plating method, electroless plating device, method of fabricating semiconductor device, and fabrication device therefor
JP2006249530A (en) * 2005-03-11 2006-09-21 Fujitsu Ltd Method for forming pattern made of metallic film
JP2008308713A (en) * 2007-06-13 2008-12-25 Nikko Kinzoku Kk Electroless copper-plating solution, method for forming damascene wiring of copper, and semiconductor wafer having damascene wiring of copper formed therein by using the method
JP2010535939A (en) * 2007-08-06 2010-11-25 カトリーケ・ウニベルシタイト・リユーベン Deposition from ionic liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048209A (en) * 2003-07-30 2005-02-24 Hitachi Ltd Electroless plating method, electroless plating device, method of fabricating semiconductor device, and fabrication device therefor
JP2006249530A (en) * 2005-03-11 2006-09-21 Fujitsu Ltd Method for forming pattern made of metallic film
JP2008308713A (en) * 2007-06-13 2008-12-25 Nikko Kinzoku Kk Electroless copper-plating solution, method for forming damascene wiring of copper, and semiconductor wafer having damascene wiring of copper formed therein by using the method
JP2010535939A (en) * 2007-08-06 2010-11-25 カトリーケ・ウニベルシタイト・リユーベン Deposition from ionic liquid

Similar Documents

Publication Publication Date Title
TWI598996B (en) Methods for producing interconnects in semiconductor devices
TWI326479B (en) Selective capping of copper wiring
AU765242B2 (en) Electrodeposition of metals in small recesses using modulated electric fields
CN102224574B (en) Bottom up plating by organic surface passivation and differential plating retardation
JP4965091B2 (en) Conductive material, semiconductor structure and method of manufacturing conductive material
JP3116897B2 (en) Fine wiring formation method
CN1853262A (en) Process and integration scheme for fabricating conductive components through-vias and semiconductor components including conductive through-wafer vias
CN1832159A (en) Semiconductor component
US6951599B2 (en) Electropolishing of metallic interconnects
CN1467819A (en) Method of plugging through-holes in silicon substrate
TWI238459B (en) Copper alloy interconnections for integrated circuits and methods of making same
JP2008502806A (en) Barrier layer surface treatment method enabling direct copper plating on barrier metal
US6410442B1 (en) Mask-less differential etching and planarization of copper films
JPH1192954A (en) Method for packing microrecesses and apparatus therefor
KR20000012027A (en) Method for manufacturing a semiconductor device
KR970013215A (en) Metal layer formation method of a pole thin film and wiring formation method using the same
KR0157889B1 (en) Method of depositing cu selectively
JP2004276219A (en) Electrolytic machining liquid, electrolytic machining device, and wiring machining method
JP3836252B2 (en) Substrate plating method
KR20040007863A (en) Method of forming a copper wiring in a semiconductor device
JPH1192953A (en) Method for packing microrecesses and apparatus therefor
JP2002275639A (en) Deposition of seed layer
TWI299370B (en) Apparatus and method for electrochemically depositing a metal layer
TW200529286A (en) Plating apparatus, plating method, and manufacturing method of semiconductor device
KR100564799B1 (en) Device and method for electrochemical plating of Cu