JPH1187583A - Boiling cooler - Google Patents

Boiling cooler

Info

Publication number
JPH1187583A
JPH1187583A JP24629797A JP24629797A JPH1187583A JP H1187583 A JPH1187583 A JP H1187583A JP 24629797 A JP24629797 A JP 24629797A JP 24629797 A JP24629797 A JP 24629797A JP H1187583 A JPH1187583 A JP H1187583A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling cooling
heat
mounting portion
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24629797A
Other languages
Japanese (ja)
Inventor
Masayoshi Terao
公良 寺尾
Koji Tanaka
公司 田中
Kazuo Kobayashi
和雄 小林
Seiji Kawaguchi
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24629797A priority Critical patent/JPH1187583A/en
Publication of JPH1187583A publication Critical patent/JPH1187583A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiling cooling container in which the cooling performance can be ensured stably even when a CPU is fixed to a heat receiving face while being offset. SOLUTION: A coolant tank 7 formed in a boiling cooling container 1 has thickness of two stage in the thickness direction thereof, i.e., it is formed thick on the side where the fixing part 5a of a CPU 2 is offset and formed thin on the opposite side. More specifically, it is designed such that the volume above the center, i.e., the fixing part 5a of the CPU 2, is substantially equal to the volume below the center. The shape of the coolant tank 7 projected onto a heat receiving face spreads entirely over the boiling cooling container 1. Since variation of the liquid level of coolant relative to the CPU 2 can be suppressed regardless of the installing direction of the boiling cooling container 1 in such an attitude (side heat) as the heat receiving face 5 is substantially vertical to a heat dissipating face 6, fluctuation of capacity incident to variation in the attitude of the boiling cooling container 1 can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の沸騰と凝縮
の繰り返しによる熱輸送によって発熱体を冷却する沸騰
冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element by heat transport by repeated boiling and condensation of a refrigerant.

【0002】[0002]

【従来の技術】本出願人は、例えばコンピュータに用い
られるCPUの冷却装置として好適な小型の沸騰冷却装
置を出願した(特願平9−9950号および特願平9−
29987号)。この沸騰冷却装置は、偏平な箱型を成
す密閉容器の対向する一方の壁面(受熱面)に発熱体
(CPU)が固定され、他方の壁面(放熱面)に放熱フ
ィンが取り付けられて、容器内部に所定量の冷媒が封入
されている。発熱体の熱は、受熱面より容器内部の冷媒
へ伝達されて冷媒を沸騰させ、沸騰した冷媒蒸気が放熱
面に凝縮する際に凝縮潜熱として放出され、その凝縮潜
熱が放熱面より放熱フィンを通じて大気へ放出される。
また、CPUの冷却装置は、コンピュータの筐体内での
基板の配置や、筐体の置き方等によって様々な向きに使
用される場合がある。そこで、先願では、密閉容器の内
部に熱伝導性に優れる伝熱部材を配置し、この伝熱部材
により受熱面と放熱面とを熱的に連結した構成を採用し
ている。これにより、発熱体を密閉容器の下側に配置し
て使用するボトムヒート時以外でも、発熱体を密閉容器
の上側に配置して使用するトップヒート時、あるいは発
熱体を密閉容器の側面に配置して使用する(つまり密閉
容器を立てて使用する)サイドヒート時においても十分
な冷却性能を確保することができる。
2. Description of the Related Art The present applicant has filed an application for a small-sized boiling cooling device suitable as, for example, a cooling device for a CPU used in a computer (Japanese Patent Application Nos. 9-9950 and 9-950).
29987). In this boiling cooling device, a heating element (CPU) is fixed to one of the opposed wall surfaces (heat receiving surfaces) of a flat box-shaped closed container, and radiation fins are attached to the other wall surface (heat radiating surface). A predetermined amount of refrigerant is sealed inside. The heat of the heating element is transmitted from the heat receiving surface to the refrigerant inside the container to boil the refrigerant, and is released as condensing latent heat when the boiling refrigerant vapor condenses on the heat radiating surface. Released to the atmosphere.
Further, the cooling device of the CPU may be used in various directions depending on the arrangement of the substrate in the housing of the computer, the manner of placing the housing, and the like. Therefore, the prior application employs a configuration in which a heat transfer member having excellent heat conductivity is disposed inside a closed container, and the heat receiving surface and the heat dissipation surface are thermally connected by the heat transfer member. This allows the heating element to be placed above the closed container, used for top heating, or the heating element to be placed on the side of the closed container, other than bottom heating when the heating element is used below the closed container. Sufficient cooling performance can be ensured even in the side heat when the heat is used (that is, the closed container is used upright).

【0003】[0003]

【発明が解決しようとする課題】ところが、上記先願の
沸騰冷却装置は、受熱面の略中央部にCPUが取り付け
られることを前提として構成されているため、基板上の
レイアウトの制約等によりCPUを受熱面の略中央部に
配置できない場合、つまりCPUが受熱面の中央部から
オフセットして配置される場合には、冷却装置の姿勢に
よっては十分な冷却性能が得られないという問題があっ
た。具体的には、CPUの取付け面である受熱面が垂直
となる姿勢(つまり密閉容器を立てて使用するサイドヒ
ート時)で、且つCPUが受熱面の中央部より上方へオ
フセットして配置される場合には、そのオフセット量が
大きいと、容器内部の冷媒液面より上方にCPUの取付
け部が位置することになる。この場合、CPUの取付け
部から容器内部の液冷媒へ十分な熱が伝わらず、冷媒の
沸騰及び凝縮作用が起きないため、熱の拡散効果が大幅
に低下する。本発明は、上記事情に基づいて成されたも
ので、その目的は、受熱面に対して発熱体がオフセット
して取り付けられる場合でも、安定した冷却性能を確保
できる沸騰冷却装置を提供することにある。
However, the boiling cooling device of the prior application is configured on the premise that the CPU is mounted substantially at the center of the heat receiving surface. When the CPU cannot be arranged substantially at the center of the heat receiving surface, that is, when the CPU is arranged offset from the center of the heat receiving surface, there is a problem that sufficient cooling performance cannot be obtained depending on the posture of the cooling device. . Specifically, the CPU is disposed in a posture in which the heat receiving surface, which is the mounting surface of the CPU, is vertical (that is, at the time of side heating when the closed container is used upright), and the CPU is offset above the central portion of the heat receiving surface. In this case, if the offset amount is large, the mounting portion of the CPU is located above the coolant level inside the container. In this case, since sufficient heat is not transmitted from the mounting portion of the CPU to the liquid refrigerant inside the container, and the boiling and condensation of the refrigerant do not occur, the heat diffusion effect is significantly reduced. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a boiling cooling device capable of securing stable cooling performance even when a heating element is mounted offset to a heat receiving surface. is there.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

(請求項1〜3の手段)密閉容器は、発熱体を取り付け
る取付け部が受熱面の中心に対してオフセットして規定
され、且つ受熱面が略垂直となる姿勢で使用される時
に、冷媒槽の容積のうち、発熱体が取り付けられる取付
け部の中心より上方の容積と下方の容積とが略同一とな
る様に設計されている。これにより、受熱面が略垂直と
なる姿勢において、沸騰冷却装置をどのような方向で設
置しても、発熱体に対する冷媒液面の相対位置変化を少
なくできるため、沸騰冷却装置の姿勢変化に伴う能力変
化を少なくできる。従って、発熱体を受熱面の中心より
上方側へオフセットして取り付けた場合でも、冷媒槽の
液冷媒に発熱体の熱が十分に伝わり、安定した冷却性能
を得ることができる。
(Means of Claims 1 to 3) The closed vessel is provided with a refrigerant tank when the mounting portion for mounting the heating element is defined with an offset with respect to the center of the heat receiving surface and the heat receiving surface is used in a substantially vertical position. Is designed such that the volume above and below the center of the mounting portion to which the heating element is mounted is substantially the same. Accordingly, in a posture in which the heat receiving surface is substantially vertical, a change in the relative position of the refrigerant liquid surface with respect to the heating element can be reduced regardless of the orientation of the boiling cooling device in any direction. Ability change can be reduced. Therefore, even when the heating element is mounted offset above the center of the heat receiving surface, the heat of the heating element is sufficiently transmitted to the liquid refrigerant in the refrigerant tank, and stable cooling performance can be obtained.

【0005】発熱体取付け部の中心より上方の容積と下
方の容積とが略同一となる様に構成するために、例えば
請求項2に記載した様に、冷媒槽の厚さを変化させるこ
とが考えられる。この場合、冷媒槽の厚みを段階的に変
化させても良いし、連続的に変化させても良い。また、
請求項3に記載した様に、受熱面に投影された冷媒槽の
面積を変化させても良い。この場合、冷媒槽の厚さは全
体に均一でも良いが、受熱面に投影された冷媒槽の面積
変化と合わせて冷媒槽の厚さを変化させることで、発熱
体取付け部の中心より上方の容積と下方の容積とが略同
一となる様に構成しても良い。
In order to make the volume above the center of the heating element mounting portion substantially equal to the volume below the center, the thickness of the refrigerant tank may be changed, for example, as described in claim 2. Conceivable. In this case, the thickness of the refrigerant tank may be changed stepwise, or may be changed continuously. Also,
As described in claim 3, the area of the refrigerant tank projected on the heat receiving surface may be changed. In this case, the thickness of the coolant tank may be uniform throughout, but by changing the thickness of the coolant tank in accordance with the change in the area of the coolant tank projected on the heat receiving surface, the height of the coolant tank above the center of the heating element mounting portion is changed. You may comprise so that volume and lower volume may become substantially the same.

【0006】(請求項4の手段)密閉容器は、冷媒槽に
両端が開口する1本または複数本の細管を有し、この細
管の総容積が冷媒槽の容積に比べて十分小さく設計さ
れ、且つ細管の一端が冷媒液面より上部の冷媒槽に開口
し、細管の他端が冷媒液面より下部の冷媒槽に開口して
いる。この場合、発熱体の熱を受けて沸騰した冷媒蒸気
が細管の一端より細管内に流入し、細管内で凝縮するこ
とにより細管を閉塞する。ここで、細管を閉塞した凝縮
液の上端と冷媒槽の冷媒液面との差(ヘッド差)によ
り、細管内で下方へのゆるやかな流れが生じ、細管内の
凝縮液が下方へ進む。更に、細管の一端から細管内に流
入した新たな冷媒蒸気が凝縮し、その凝縮液により再び
細管が閉塞される。この繰り返しにより、細管内には冷
媒蒸気と凝縮液とが順次配された気液混合状態で細管内
を下方へ進む。細管内の冷媒蒸気は、細管内を進む際に
より冷却されて凝縮することにより、細管全体が凝縮部
として作用することができる。なお、細管内で凝縮した
液は、細管の他端から冷媒槽の液冷媒へ還流する。
(Means of Claim 4) The closed container has one or a plurality of narrow tubes open at both ends in the refrigerant tank, and the total volume of the narrow tubes is designed to be sufficiently smaller than the volume of the refrigerant tank. In addition, one end of the thin tube opens to the refrigerant tank above the liquid surface of the refrigerant, and the other end of the thin tube opens to the refrigerant tank below the liquid surface of the refrigerant. In this case, the refrigerant vapor boiled by the heat of the heating element flows into the small tube from one end of the small tube and condenses in the small tube, thereby closing the small tube. Here, due to the difference (head difference) between the upper end of the condensed liquid closing the narrow tube and the refrigerant liquid level in the refrigerant tank, a gentle downward flow occurs in the narrow tube, and the condensate in the narrow tube proceeds downward. Further, new refrigerant vapor flowing into the thin tube from one end of the thin tube is condensed, and the condensed liquid closes the thin tube again. By this repetition, a refrigerant vapor and a condensate are sequentially arranged in the narrow tube, and the gas flows downward in the narrow tube in a gas-liquid mixed state. The refrigerant vapor in the narrow tube is cooled and condensed when traveling in the narrow tube, so that the entire narrow tube can function as a condenser. In addition, the liquid condensed in the thin tube returns to the liquid refrigerant in the refrigerant tank from the other end of the thin tube.

【0007】[0007]

【発明の実施の形態】次に、本発明の沸騰冷却装置を図
面に基づいて説明する。 (第1実施例)図1(a)は沸騰冷却容器1の正面図、
(b)は沸騰冷却容器1の側面図である。本実施例の沸
騰冷却容器1は、図4に示す様に、例えばコンピュータ
に内蔵されたCPU2(発熱体)を冷却するものであ
り、基板3の所定位置に取り付けられたCPU2と放熱
フィン4との間に介在されて使用される。この沸騰冷却
容器1は、熱伝導性に優れる金属材料(例えばアルミニ
ウム)により製造され、図1に示す様に、横寸法a及び
縦寸法bに対して厚さ寸法hが小さい偏平な箱型に形成
されている。沸騰冷却容器1の一方の壁面5(以下、受
熱面5と言う)には、CPU2を取り付けるための取付
け部5aが突出して設けられ、他方の壁面6(以下、放
熱面6と言う)には全面に渡って放熱フィン4が取り付
けられる。なお、本実施例では、図4に示す様に、基板
3上に設けられたスリット3a等によって沸騰冷却容器
1の配置に制約を受けるため、受熱面5の中央部にCP
U2を配置することができない。そこで、CPU2の取
付け部5aは、受熱面5の中心からオフセットして設け
られている。なお、受熱面5の中心とは、受熱面5の重
心、即ち受熱面5の対角線の交点付近である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cooling apparatus according to the present invention will be described with reference to the drawings. (First embodiment) FIG. 1A is a front view of a boiling cooling container 1,
(B) is a side view of the boiling cooling container 1. As shown in FIG. 4, the boiling cooling container 1 of this embodiment cools, for example, a CPU 2 (heating element) built in a computer. It is used interposed between. This boiling cooling vessel 1 is made of a metal material (for example, aluminum) having excellent heat conductivity, and as shown in FIG. 1, has a flat box shape having a small thickness h with respect to a horizontal dimension a and a vertical dimension b. Is formed. A mounting portion 5a for mounting the CPU 2 is provided protruding from one wall surface 5 (hereinafter, referred to as a heat receiving surface 5) of the boiling cooling container 1, and the other wall surface 6 (hereinafter, referred to as a heat radiating surface 6). The radiation fins 4 are attached over the entire surface. In this embodiment, as shown in FIG. 4, since the arrangement of the boiling cooling container 1 is restricted by the slits 3a and the like provided on the substrate 3, the center of the heat receiving surface 5 has a CP.
U2 cannot be located. Therefore, the mounting portion 5 a of the CPU 2 is provided offset from the center of the heat receiving surface 5. Note that the center of the heat receiving surface 5 is near the center of gravity of the heat receiving surface 5, that is, near the intersection of diagonal lines of the heat receiving surface 5.

【0008】沸騰冷却容器1の内部には、図2に示す様
に冷媒槽7が形成され、その冷媒槽7に所定量の冷媒が
封入されている。冷媒槽7は、図2(b)に示す様に、
沸騰冷却容器1の厚さ方向において、その厚みが二段階
に設けられ、CPU2の取付け部5aがオフセットされ
ている側では厚く、その反対側では薄く形成されてい
る。具体的には、CPU2の取付け部5aを中心とし
て、その中心位置より上方の容積と下方の容積とが略同
一となる様に設計されている。なお、受熱面5に投影し
た冷媒槽7の形状は、図2(a)に示す様に、沸騰冷却
容器1の全体に渡って形成されている。
As shown in FIG. 2, a refrigerant tank 7 is formed inside the boiling cooling container 1, and a predetermined amount of refrigerant is sealed in the refrigerant tank 7. As shown in FIG. 2 (b), the refrigerant tank 7
In the thickness direction of the boiling cooling container 1, the thickness is provided in two stages, and is thick at the side where the mounting portion 5a of the CPU 2 is offset and thin at the opposite side. Specifically, it is designed such that the volume above and below the center of the mounting portion 5a of the CPU 2 is substantially the same. The shape of the refrigerant tank 7 projected on the heat receiving surface 5 is formed over the entire boiling cooling container 1 as shown in FIG.

【0009】次に、本実施例の沸騰冷却容器1の作用に
ついて説明する。CPU2より発生した熱は、取付け部
5aを有する受熱面5を通じて冷媒槽7の液冷媒に伝達
されて液冷媒を沸騰させる。但し、CPU2から伝わる
熱は、CPU2の取付け部5aで最も高く、取付け部5
aから離れる程低くなるため、冷媒槽7の液冷媒は、主
に取付け部5aの内壁面に接触する領域で最も盛んに沸
騰する。沸騰した冷媒蒸気は、冷媒槽7を形成する温度
の低い壁面に凝縮潜熱を放出して凝縮液化し、液滴とな
って液冷媒に還流する。冷媒槽7を形成する温度の低い
壁面に凝縮潜熱として冷媒から伝達された熱は、沸騰冷
却容器1の受熱面5と対向する放熱面6を通じて放熱フ
ィン4全体に伝達され、放熱フィン4より大気に放出さ
れる。
Next, the operation of the boiling cooling container 1 of this embodiment will be described. The heat generated by the CPU 2 is transmitted to the liquid refrigerant in the refrigerant tank 7 through the heat receiving surface 5 having the mounting portion 5a, and causes the liquid refrigerant to boil. However, the heat transmitted from the CPU 2 is highest in the mounting portion 5a of the CPU 2, and
The liquid refrigerant in the refrigerant tank 7 boils most vigorously mainly in a region that comes into contact with the inner wall surface of the mounting portion 5a. The boiling refrigerant vapor discharges latent heat of condensation to a low-temperature wall surface forming the refrigerant tank 7 to be condensed and liquefied, and returns as liquid droplets to liquid refrigerant. The heat transmitted from the refrigerant as latent heat of condensation to the low-temperature wall forming the refrigerant tank 7 is transmitted to the entire radiation fin 4 through the heat radiation surface 6 facing the heat reception surface 5 of the boiling cooling container 1, and is transmitted from the heat radiation fin 4 to the atmosphere. Will be released.

【0010】(第1実施例の効果)本実施例の沸騰冷却
容器1は、冷媒槽7の容積のうち、CPU2が取り付け
られる取付け部5aの中心より上方の容積と下方の容積
とが略同一となる様に設計されている。これにより、受
熱面5と放熱面6が略垂直となる姿勢(サイドヒート)
において、図3に示す様に、沸騰冷却容器1をどのよう
な方向で設置しても、CPU2に対する冷媒液面の相対
位置変化を少なくできる。つまり、CPU2に対して冷
媒液面が常に略同じ高さにある。従って、CPU2を受
熱面5の中心からオフセットして取り付けた場合でも、
沸騰冷却容器1の姿勢変化に伴う能力変化を少なくで
き、安定した冷却性能を確保することができる。なお、
図3(a)はCPU2の取付け部5aが受熱面5の中心
より上方へオフセットする様に沸騰冷却容器1を立てて
使用した場合、図3(b)はCPU2の取付け部5aが
受熱面5の中心より下方へオフセットする様に沸騰冷却
容器1を立てて使用した場合、図3(c)は沸騰冷却容
器1を横向きに使用した場合である。
(Effect of the first embodiment) In the boiling cooling container 1 of the present embodiment, the volume above the center of the mounting portion 5a to which the CPU 2 is mounted and the volume below the refrigerant tank 7 are substantially the same. It is designed to be. Thereby, the attitude (side heat) in which the heat receiving surface 5 and the heat radiating surface 6 are substantially perpendicular to each other.
In any case, as shown in FIG. 3, the relative position change of the refrigerant liquid level with respect to the CPU 2 can be reduced regardless of the direction in which the boiling cooling container 1 is installed. That is, the coolant level is always at substantially the same height as the CPU 2. Therefore, even when the CPU 2 is mounted offset from the center of the heat receiving surface 5,
A change in capacity due to a change in the posture of the boiling cooling container 1 can be reduced, and stable cooling performance can be secured. In addition,
FIG. 3A shows the case where the boiling cooling container 1 is used upright so that the mounting portion 5a of the CPU 2 is offset above the center of the heat receiving surface 5, and FIG. FIG. 3 (c) shows a case where the boiling cooling container 1 is used sideways when the boiling cooling container 1 is used upright so as to be offset downward from the center of FIG.

【0011】なお、本実施例では、冷媒槽7を沸騰冷却
容器1の厚さ方向に二段階に変化させることで、CPU
2の取付け部5aの中心位置より上方の容積と下方の容
積とが略同一となる様に設計しているが、冷媒槽7の厚
みを三段階以上に変化させても良いことは言うまでもな
い。あるいは、図5に示す様に連続的に変化させても良
い。また、CPU2の取付け部5aを受熱面5の中心か
ら左右方向にオフセットする場合は、左右方向において
も同様の設計が行われる。つまり、冷媒槽7の容積のう
ち、CPU2の取付け部5aを中心として、その中心位
置より左側の容積と右側の容積とが略同一となる様に設
計されている。
In this embodiment, by changing the refrigerant tank 7 in two steps in the thickness direction of the boiling cooling container 1, the CPU is changed.
Although the volume above and below the center position of the second mounting portion 5a is designed to be substantially the same, it goes without saying that the thickness of the refrigerant tank 7 may be changed in three or more steps. Alternatively, it may be changed continuously as shown in FIG. When the mounting portion 5a of the CPU 2 is offset in the left-right direction from the center of the heat receiving surface 5, the same design is performed in the left-right direction. In other words, the refrigerant tank 7 is designed so that the volume on the left side and the volume on the right side of the center position of the mounting portion 5a of the CPU 2 are substantially the same with respect to the mounting portion 5a.

【0012】(第2実施例)図6(a)は沸騰冷却容器
1の正面図、(b)は沸騰冷却容器1の側面図である。
本実施例の沸騰冷却容器1は、受熱面5に投影される冷
媒槽7の面積を変化させることで、取付け部5aの中心
位置より上方の容積と下方の容積とが略同一となる様に
設計されている。具体的には、図7(a)に示す様に、
冷媒槽7の下側を櫛歯状に形成することにより、取付け
部5aがオフセットされている側では冷媒槽7の投影面
積を大きく、反対側では冷媒槽7の投影面積を小さくし
ている。なお、冷媒槽7の厚みは、図7(b)に示す様
に、全体に均一に設けられている。これにより、第1実
施例と同様の効果を得ることができる。
(Second Embodiment) FIG. 6A is a front view of the boiling cooling container 1, and FIG. 6B is a side view of the boiling cooling container 1.
The boiling cooling container 1 of the present embodiment changes the area of the refrigerant tank 7 projected on the heat receiving surface 5 so that the volume above the center position of the mounting portion 5a and the volume below it are substantially the same. Designed. Specifically, as shown in FIG.
By forming the lower side of the coolant tank 7 in a comb shape, the projected area of the coolant tank 7 is increased on the side where the mounting portion 5a is offset, and the projected area of the coolant tank 7 is reduced on the opposite side. The thickness of the refrigerant tank 7 is uniformly provided as a whole as shown in FIG. Thereby, the same effect as in the first embodiment can be obtained.

【0013】なお、本実施例では、図7(a)において
冷媒槽7の下部を4本の櫛歯状に分割しているが、櫛歯
状でなくても良い。但し、櫛歯状とした場合に、この部
分は少ない程作りやすいという利点があるが、全体的に
熱を拡散させる通路となるため、数本に分割して均等に
分布させることが望ましい。また、CPU2の取付け部
5aを受熱面5の中心から左右方向にオフセットする場
合は、第1実施例と同様に左右方向においても同様の設
計が行われる。つまり、冷媒槽7の容積のうち、CPU
2の取付け部5aを中心として、その中心位置より左側
の容積と右側の容積とが略同一となる様に設計されてい
る。
In this embodiment, although the lower part of the refrigerant tank 7 is divided into four comb teeth in FIG. 7A, the lower part does not have to be comb teeth. However, in the case of a comb shape, there is an advantage that the smaller the portion is, the easier it is to produce, but since it becomes a path for diffusing heat as a whole, it is desirable to divide it into several pieces and distribute them evenly. When the mounting portion 5a of the CPU 2 is offset in the left-right direction from the center of the heat receiving surface 5, the same design is performed in the left-right direction as in the first embodiment. That is, of the capacity of the refrigerant tank 7, the CPU
It is designed so that the volume on the left side and the volume on the right side of the center position of the second mounting portion 5a are substantially the same.

【0014】(第3実施例)図8(a)は沸騰冷却容器
1の正面図、(b)は沸騰冷却容器1の側面図である。
本実施例の沸騰冷却容器1は、冷媒槽7の中心が取付け
部5aの中心と略同位置となる様に形成され、且つ冷媒
槽7に両端が開口する複数本の細管8が設けられてい
る。各細管8は、総容積が冷媒槽7の容積に比べて十分
小さく設計されている。具体的には、各細管8の径が毛
管長さ(ラプラス長さ)より小さく設計されている。ま
た、各細管8の一端8aは、冷媒槽7に封入された冷媒
液面より上部の冷媒槽7に開口し、他端8bが冷媒液面
より下部の冷媒槽7に開口している(図9(b)参
照)。この沸騰冷却容器1は、図10に示す様に、複数
枚の板材9a〜9fを重ね合わせて接合することにより
形成することができる。各板材9a〜9fは、例えばア
ルミニウム等の熱伝導性に優れる金属板が使用され、一
体ろう付けによって接合される。受熱面5を構成する板
材9aと放熱面6を構成する板材9fを除く各板材9b
〜9eには、それぞれ所定の開口部がプレスやエッチン
グまたは切削等により形成されている。
(Third Embodiment) FIG. 8A is a front view of the boiling cooling container 1, and FIG. 8B is a side view of the boiling cooling container 1.
The boiling cooling container 1 of the present embodiment is formed such that the center of the refrigerant tank 7 is substantially at the same position as the center of the mounting portion 5a, and the refrigerant tank 7 is provided with a plurality of narrow tubes 8 having both ends opened. I have. Each of the thin tubes 8 is designed to have a total volume sufficiently smaller than the volume of the refrigerant tank 7. Specifically, the diameter of each capillary 8 is designed to be smaller than the capillary length (Laplace length). Further, one end 8a of each narrow tube 8 opens to the refrigerant tank 7 above the refrigerant liquid level sealed in the refrigerant tank 7, and the other end 8b opens to the refrigerant tank 7 below the refrigerant liquid level (FIG. 9 (b)). As shown in FIG. 10, the boiling cooling container 1 can be formed by stacking and joining a plurality of plate members 9a to 9f. For each of the plate members 9a to 9f, for example, a metal plate having excellent heat conductivity such as aluminum is used, and joined by integral brazing. Each plate 9b excluding the plate 9a forming the heat receiving surface 5 and the plate 9f forming the heat radiation surface 6
9e, a predetermined opening is formed by pressing, etching, cutting, or the like.

【0015】次に、本実施例に示す沸騰冷却容器1の作
用を図10を用いて説明する。CPU2より発生した熱
は、取付け部5aを有する受熱面5を通じて冷媒槽7の
液冷媒に伝達されて液冷媒を沸騰させる。沸騰した冷媒
蒸気は、冷媒槽7を形成する温度の低い壁面に凝縮潜熱
を放出して凝縮液化し、液滴となって液冷媒に還流す
る。凝縮潜熱として冷媒から伝達された熱は、放熱面6
より放熱フィン4全体に伝達されて放熱フィン4より大
気に放出される。また、沸騰した冷媒蒸気の一部は、冷
媒液面より上部に開口する細管8の一端8aより細管8
内へ導かれ、細管8の内壁面においても凝縮する。ここ
で、細管8の径が毛管長さより小さく設計されているこ
とから、細管8内で凝縮した液が細管8を閉塞する。こ
の時、細管8を閉塞する凝縮液の上端と冷媒槽7の液面
との差H(ヘッド差)、正確には細管8を閉塞する凝縮
液の上端と冷媒槽7の液面との間にある液分の高さによ
り、細管8内で下方へのゆるやかな流れが生じ、細管8
内の凝縮液が下方へ進む。
Next, the operation of the boiling cooling container 1 shown in this embodiment will be described with reference to FIG. The heat generated by the CPU 2 is transmitted to the liquid refrigerant in the refrigerant tank 7 through the heat receiving surface 5 having the mounting portion 5a, and causes the liquid refrigerant to boil. The boiling refrigerant vapor discharges latent heat of condensation to a low-temperature wall surface forming the refrigerant tank 7 to be condensed and liquefied, and returns as liquid droplets to liquid refrigerant. Heat transferred from the refrigerant as latent heat of condensation is
The heat is further transmitted to the heat radiation fins 4 and released to the atmosphere from the heat radiation fins 4. In addition, a part of the boiling refrigerant vapor is supplied from one end 8a of the small tube 8 opening above the liquid surface of the refrigerant.
It is guided inside and condenses also on the inner wall surface of the thin tube 8. Here, since the diameter of the capillary 8 is designed to be smaller than the capillary length, the liquid condensed in the capillary 8 closes the capillary 8. At this time, the difference H (head difference) between the upper end of the condensed liquid closing the narrow tube 8 and the liquid level of the refrigerant tank 7, more precisely, the difference between the upper end of the condensed liquid closing the narrow tube 8 and the liquid level of the refrigerant tank 7. , A gentle downward flow occurs in the capillary 8,
The condensate inside moves downward.

【0016】更に、細管8の上方(一端8a)から細管
8内に流入した新たな冷媒蒸気が凝縮し、その凝縮液に
より再び細管8が閉塞される。この繰り返しにより、細
管8内には冷媒蒸気と凝縮液とが順次配された気液混合
状態で細管8内を下方へ進む。細管8内の冷媒蒸気は、
細管8内を進む際により冷却されて凝縮することによ
り、細管8全体が凝縮部として作用することができる。
また、本実施例では、冷媒槽7の液面より低い位置にお
いても、細管8内では冷媒蒸気が存在し、その冷媒蒸気
が冷却されて凝縮することから、細管8内のより広い領
域を凝縮部として作用させる効果がある。細管8内で凝
縮した液は、細管8内を順次進んで細管8の他端8bよ
り冷媒槽7へ還流することができる。この様に、冷媒槽
7で沸騰した冷媒蒸気が細管8内を流れる際に凝縮し
て、再び冷媒槽7へ還流する循環流を形成することがで
きる。
Furthermore, new refrigerant vapor flowing into the thin tube 8 from above the thin tube 8 (one end 8a) is condensed, and the condensed liquid closes the thin tube 8 again. By this repetition, the refrigerant vapor and the condensed liquid are sequentially arranged in the narrow tube 8 to move downward in the narrow tube 8 in a gas-liquid mixed state. The refrigerant vapor in the thin tube 8 is
By cooling and condensing as it travels through the thin tube 8, the whole thin tube 8 can function as a condensing portion.
Further, in the present embodiment, even at a position lower than the liquid level of the refrigerant tank 7, the refrigerant vapor exists in the narrow tube 8 and the refrigerant vapor is cooled and condensed. It has the effect of acting as a part. The liquid condensed in the small tube 8 can sequentially flow in the small tube 8 and return to the refrigerant tank 7 from the other end 8 b of the small tube 8. In this manner, the refrigerant vapor boiling in the refrigerant tank 7 is condensed when flowing in the narrow tube 8, and a circulation flow returning to the refrigerant tank 7 can be formed again.

【0017】(第3実施例の効果)本実施例の沸騰冷却
容器1は、細管8の総容積を冷媒槽7の容積に比べて十
分小さく設計することにより、冷媒槽7の容積のうち、
CPU2が取り付けられる取付け部5aの中心より上方
の容積と下方の容積とが略同一となる様に設計されてい
る。これにより、受熱面5と放熱面6が略垂直となる姿
勢(サイドヒート)において、図12に示す様に、沸騰
冷却容器1をどのような方向で設置しても、CPU2に
対する冷媒液面の相対位置変化を少なくできる。つま
り、CPU2に対して冷媒液面が常に略同じ高さにあ
る。従って、CPU2を受熱面5の中心からオフセット
して取り付けた場合でも、沸騰冷却容器1の姿勢変化に
伴う能力変化を少なくできる、安定した冷却性能を確保
することができる。なお、図12(a)はCPU2の取
付け部5aが受熱面5の中心より上方へオフセットする
様に沸騰冷却容器を立てて使用した場合、図12(b)
はCPU2の取付け部5aが受熱面5の中心より下方へ
オフセットする様に沸騰冷却容器を立てて使用した場
合、図12(c)は沸騰冷却容器を横向きに使用した場
合である。また、冷媒槽7に連通する細管8を設けたこ
とにより、この細管8を凝縮部として作用させることが
できるため、その分、放熱性能を向上できる。
(Effect of Third Embodiment) In the boiling cooling container 1 of the present embodiment, the total volume of the thin tube 8 is designed to be sufficiently smaller than the volume of the refrigerant tank 7 so that the volume of the refrigerant tank 7 can be reduced.
It is designed such that the volume above and below the center of the mounting portion 5a to which the CPU 2 is mounted is substantially the same. Thus, in a posture (side heat) in which the heat receiving surface 5 and the heat radiating surface 6 are substantially perpendicular to each other, as shown in FIG. Changes in relative position can be reduced. That is, the coolant level is always at substantially the same height as the CPU 2. Therefore, even when the CPU 2 is mounted offset from the center of the heat receiving surface 5, a stable cooling performance can be ensured in which a change in performance due to a change in the posture of the boiling cooling container 1 can be reduced. FIG. 12A shows a case where the boiling cooling container is used upright so that the mounting portion 5a of the CPU 2 is offset upward from the center of the heat receiving surface 5. FIG.
FIG. 12C shows a case where the boiling cooling container is used upright so that the mounting portion 5a of the CPU 2 is offset downward from the center of the heat receiving surface 5, and FIG. 12C shows a case where the boiling cooling container is used sideways. In addition, since the thin tube 8 communicating with the refrigerant tank 7 is provided, the thin tube 8 can function as a condensing portion, so that the heat radiation performance can be improved accordingly.

【0018】なお、本実施例の沸騰冷却容器1では、サ
イドヒート以外にトップヒートやボトムヒートで使用す
る場合においても細管8内の冷媒の流れをスムーズに行
うため、細管8の一端8aは冷媒槽7の冷媒液面より上
部に開口し、細管8の他端8bは冷媒液面より下部に開
口することが望ましい。言い換えれば、冷媒槽7を形成
する直方体の6面のうち、対向する一組の面に細管8の
両端が開口する様に設計することが良い。より望ましく
は、対向する角部に細管8の両端が開口する様に設計す
ることが良い。
In the boiling cooling vessel 1 of this embodiment, one end 8a of the small tube 8 is connected to the refrigerant 8 in order to smoothly flow the refrigerant in the small tube 8 even when using the top heat or the bottom heat in addition to the side heat. It is desirable that the tank 7 be opened above the liquid surface of the refrigerant and the other end 8b of the narrow tube 8 be opened below the liquid surface of the refrigerant. In other words, it is preferable to design so that both ends of the thin tube 8 are opened on a pair of opposing surfaces among the six surfaces of the rectangular parallelepiped forming the refrigerant tank 7. More desirably, it is preferable to design so that both ends of the thin tube 8 are opened at opposing corners.

【0019】(変形例)上記の各実施例では、受熱面5
にCPU2の取付け部5aを突出させているが、受熱面
5全体を平面(取付け部5aが突出していない)に形成
しても良い。またはCPU2の取付け部5aを受熱面5
より窪ませて形成しても良い。本実施例の沸騰冷却容器
1は、トップヒートで使用する場合にも安定した冷却性
能を確保するために、冷媒槽7に受熱面5と放熱面6と
を熱的に連結する伝熱部材を配置することが好ましい。
この場合、冷媒の高い圧力によって変形しない容器強度
を確保するためにも、伝熱部材として柱状部材を設ける
ことが望ましい。
(Modification) In each of the above embodiments, the heat receiving surface 5
Although the mounting portion 5a of the CPU 2 is protruded, the entire heat receiving surface 5 may be formed flat (the mounting portion 5a does not protrude). Alternatively, the mounting portion 5a of the CPU 2 is
It may be formed more concave. The boiling cooling container 1 of the present embodiment is provided with a heat transfer member for thermally connecting the heat receiving surface 5 and the heat radiating surface 6 to the refrigerant tank 7 in order to secure stable cooling performance even when used in top heat. It is preferable to arrange them.
In this case, it is desirable to provide a columnar member as the heat transfer member also in order to ensure the strength of the container that is not deformed by the high pressure of the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は沸騰冷却容器の正面図、(b)は沸騰
冷却容器の側面図である(第1実施例)。
FIG. 1A is a front view of a boiling cooling container, and FIG. 1B is a side view of the boiling cooling container (first embodiment).

【図2】(a)は図1(a)のA−A断面図、(b)は
図1(b)のB−B断面図である(第1実施例)。
2A is a cross-sectional view taken along line AA of FIG. 1A, and FIG. 2B is a cross-sectional view taken along line BB of FIG. 1B (first embodiment).

【図3】沸騰冷却容器の各姿勢での冷媒液面と取付け部
との位置関係を示す断面図である(第1実施例)。
FIG. 3 is a cross-sectional view showing a positional relationship between a refrigerant liquid surface and a mounting portion in each posture of the boiling cooling container (first embodiment).

【図4】沸騰冷却容器の具体的な使用例を示す斜視図で
ある。
FIG. 4 is a perspective view showing a specific usage example of the boiling cooling container.

【図5】(a)は沸騰冷却容器の正面断面図、(b)は
沸騰冷却容器の側面断面図である(第1実施例の変形
例)。
5A is a front sectional view of a boiling cooling container, and FIG. 5B is a side sectional view of the boiling cooling container (a modification of the first embodiment).

【図6】(a)は沸騰冷却容器の正面図、(b)は沸騰
冷却容器の側面図である(第2実施例)。
FIG. 6A is a front view of a boiling cooling container, and FIG. 6B is a side view of the boiling cooling container (second embodiment).

【図7】(a)は図6(a)のC−C断面図、(b)は
図6(b)のD−D断面図である(第2実施例)。
7A is a cross-sectional view taken along line CC of FIG. 6A, and FIG. 7B is a cross-sectional view taken along line DD of FIG. 6B (second embodiment).

【図8】(a)は沸騰冷却容器の正面図、(b)は沸騰
冷却容器の側面図である(第3実施例)。
FIG. 8A is a front view of a boiling cooling container, and FIG. 8B is a side view of the boiling cooling container (third embodiment).

【図9】(a)は図8(a)のE−E断面図、(b)は
図8(b)のF−F断面図である(第3実施例)。
9A is a sectional view taken along line EE of FIG. 8A, and FIG. 9B is a sectional view taken along line FF of FIG. 8B (third embodiment).

【図10】沸騰冷却容器を構成する各板材の平面図であ
る(第3実施例)。
FIG. 10 is a plan view of each plate constituting a boiling cooling container (third embodiment).

【図11】沸騰冷却容器の作用を説明する断面図である
(第3実施例)。
FIG. 11 is a cross-sectional view illustrating the operation of a boiling cooling container (third embodiment).

【図12】沸騰冷却容器の各姿勢での冷媒液面と取付け
部との位置関係を示す断面図である(第3実施例)。
FIG. 12 is a sectional view showing a positional relationship between a refrigerant liquid surface and a mounting portion in each position of the boiling cooling container (third embodiment).

【符号の説明】[Explanation of symbols]

1 沸騰冷却容器(沸騰冷却装置/密閉容器) 2 CPU(発熱体) 5 受熱面 5a 取付け部 7 冷媒槽 8 細管 Reference Signs List 1 boiling cooling container (boiling cooling device / closed container) 2 CPU (heating element) 5 heat receiving surface 5a mounting portion 7 refrigerant tank 8 thin tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 清司 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kiyoshi Kawaguchi 1-1-1, Showa-cho, Kariya-shi, Aichi, Japan

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】発熱体が取り付けられる取付け部を含む受
熱面を有し、内部に前記発熱体の熱を受けて沸騰する冷
媒が封入される冷媒槽を形成する密閉容器を備え、冷媒
の沸騰と凝縮の繰り返しにより前記発熱体を冷却する沸
騰冷却装置であって、 前記密閉容器は、 前記受熱面の中心に対してオフセットして前記取付け部
が規定され、且つ前記受熱面が略垂直となる姿勢で使用
される時に、前記冷媒槽の容積のうち、前記取付け部の
中心より上方の容積と下方の容積とが略同一となる様に
設計されていることを特徴とする沸騰冷却装置。
1. A closed vessel having a heat receiving surface including a mounting portion to which a heating element is attached, and forming a refrigerant tank in which a refrigerant boiling under the heat of the heating element is enclosed. And a cooling device for cooling the heat generating element by repeating condensation, wherein the hermetically sealed container has the mounting portion defined offset from the center of the heat receiving surface, and the heat receiving surface is substantially vertical. The boiling cooling device is characterized in that, when used in a posture, the volume above the center of the mounting portion and the volume below the center of the mounting portion of the refrigerant tank are substantially the same.
【請求項2】前記密閉容器は、前記冷媒槽の厚さを変化
させることで、前記取付け部の中心より上方の容積と下
方の容積とが略同一となる様に設計されていることを特
徴とする請求項1に記載した沸騰冷却装置。
2. The closed container is designed such that the volume above and below the center of the mounting portion is substantially the same by changing the thickness of the refrigerant tank. The boiling cooling device according to claim 1, wherein
【請求項3】前記密閉容器は、前記受熱面に投影された
前記冷媒槽の面積を変化させることで、前記取付け部の
中心より上方の容積と下方の容積とが略同一となる様に
設計されていることを特徴とする請求項1に記載した沸
騰冷却装置。
3. The closed container is designed such that the volume above and below the center of the mounting portion is substantially the same by changing the area of the refrigerant tank projected on the heat receiving surface. The boiling cooling device according to claim 1, wherein the boiling cooling device is used.
【請求項4】前記密閉容器は、前記冷媒槽に両端が開口
する1本または複数本の細管を有し、この細管の総容積
が前記冷媒槽の容積に比べて十分小さく設計され、且つ
前記細管の一端が冷媒液面より上部の冷媒槽に開口し、
前記細管の他端が冷媒液面より下部の冷媒槽に開口して
いることを特徴とする請求項1〜3に記載した何れかの
沸騰冷却装置。
4. The closed vessel has one or a plurality of small tubes whose both ends are open to the coolant tank, and the total volume of the small tubes is designed to be sufficiently smaller than the capacity of the coolant tank. One end of the thin tube opens into the refrigerant tank above the refrigerant liquid level,
The boiling cooling device according to any one of claims 1 to 3, wherein the other end of the narrow tube is open to a refrigerant tank below a liquid surface of the refrigerant.
JP24629797A 1997-09-11 1997-09-11 Boiling cooler Withdrawn JPH1187583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24629797A JPH1187583A (en) 1997-09-11 1997-09-11 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24629797A JPH1187583A (en) 1997-09-11 1997-09-11 Boiling cooler

Publications (1)

Publication Number Publication Date
JPH1187583A true JPH1187583A (en) 1999-03-30

Family

ID=17146470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24629797A Withdrawn JPH1187583A (en) 1997-09-11 1997-09-11 Boiling cooler

Country Status (1)

Country Link
JP (1) JPH1187583A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227287B1 (en) 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
US6679317B2 (en) 2000-10-31 2004-01-20 Denso Corporation Cooling device boiling and cooling refrigerant, with main wick and auxiliary wick
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
RU2518982C2 (en) * 2012-07-13 2014-06-10 Открытое акционерное общество "ОКБ-Планета" ОАО "ОКБ-Планета" Cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227287B1 (en) 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
US6679317B2 (en) 2000-10-31 2004-01-20 Denso Corporation Cooling device boiling and cooling refrigerant, with main wick and auxiliary wick
JPWO2011145618A1 (en) * 2010-05-19 2013-07-22 日本電気株式会社 Boiling cooler
RU2518982C2 (en) * 2012-07-13 2014-06-10 Открытое акционерное общество "ОКБ-Планета" ОАО "ОКБ-Планета" Cooling system

Similar Documents

Publication Publication Date Title
US7607470B2 (en) Synthetic jet heat pipe thermal management system
JP3451737B2 (en) Boiling cooling device
US7597134B2 (en) Heat dissipation device with a heat pipe
US7556086B2 (en) Orientation-independent thermosyphon heat spreader
JP3918502B2 (en) Boiling cooler
US5396947A (en) Radiating device
JP2002164486A (en) Vapor cooling system
KR20020042421A (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
WO2013005622A1 (en) Cooling device and method for manufacturing same
US20080314554A1 (en) Heat dissipation device with a heat pipe
JP2013007501A (en) Cooling device
JP2005229102A (en) Heatsink
US6321831B1 (en) Cooling apparatus using boiling and condensing refrigerant
JPH1187583A (en) Boiling cooler
JPH10256445A (en) Boiling and cooling device and its manufacture
JPH05304384A (en) Heat pipe type heat sink
JP2002016201A (en) Heat pipe
JP4026038B2 (en) Boiling cooler
JP2002062071A (en) Flat plate type heat pipe
JP3840739B2 (en) Boiling cooler
US11754345B2 (en) Heat dissipation device
JPH10284661A (en) Boiling/cooling device and manufacture therefor
JP3085205U (en) Heat exchange equipment
JP2001068611A (en) Boiling cooler
WO2022195719A1 (en) Boiling-type cooler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050322