JPH1186641A - Cable - Google Patents

Cable

Info

Publication number
JPH1186641A
JPH1186641A JP24567497A JP24567497A JPH1186641A JP H1186641 A JPH1186641 A JP H1186641A JP 24567497 A JP24567497 A JP 24567497A JP 24567497 A JP24567497 A JP 24567497A JP H1186641 A JPH1186641 A JP H1186641A
Authority
JP
Japan
Prior art keywords
powder
resin
magnetic
cable
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24567497A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24567497A priority Critical patent/JPH1186641A/en
Publication of JPH1186641A publication Critical patent/JPH1186641A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cable having a structure superior in magnetic shielding effect by mixing a nano crystalline magnetic powder with resin, and covering the circumference of a conductor with this in a tubular form. SOLUTION: A powder of amorphous alloy is prepared by water atomization and successively heated at a crystallizing temperature or higher for fine crystallization. When the average particle size of a nano crystalline magnetic power exceeds 500 μm, a homogeneous amorphous is hardly provided in the powder preparation, and superior soft magnetic characteristic is hardly obtained in the following crystallization by heating. Thus, a powder of 500 μm or less is preferably used. The resulting nano crystalline alloy powder is mixed uniformly with a resin, and molded into a tube form around a conductor by extrusion molding. The nano crystalline magnetic powder substantially consists of a fine crystalline particle powder 100 nm or less and specifically, a fine crystalline material of bccFe base, such as Fe-Cu-Nb-Si-B or Fe-Zr-B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の電力供
給あるいは電気的接続に用いられる配線用等として使用
されるケーブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cable used for wiring or the like used for power supply or electrical connection of electric equipment.

【0002】[0002]

【従来の技術】近年電子機器が高度化し、かつ多数用い
られるようになったために、漏れ磁界や電磁雑音等によ
る機器の誤動作が問題となっている。電気機器を接続す
るケーブルにおいてもその内部を流れる電流によって発
生する漏れ磁界等により、周辺機器の誤動作を引き起こ
す原因となることがある。これに対し、樹脂シートの間
に軟磁性粉末を均一に分散させて作製したシート材をケ
ーブルの外周に巻き付けることで、磁気シールド効果が
得られることが特開平8−31237号で示されてい
る。
2. Description of the Related Art In recent years, as electronic devices have become more sophisticated and have been used in large numbers, malfunctions of the devices due to leakage magnetic fields, electromagnetic noise, and the like have become a problem. Even in a cable connecting an electric device, a leakage magnetic field or the like generated by a current flowing through the cable may cause a malfunction of a peripheral device. On the other hand, JP-A-8-31237 discloses that a magnetic shield effect can be obtained by winding a sheet material prepared by uniformly dispersing soft magnetic powder between resin sheets around a cable. .

【0003】[0003]

【発明が解決しようとする課題】上述したケーブルの外
周にシールド材を巻き付ける方法は、巻装後両端を閉じ
あわせるため、接合部が存在する。従ってケーブルに近
接した電子機器に対する接合部からの漏洩磁界の影響が
懸念される。また、本発明者の検討によれば、パーマロ
イあるいは純鉄の粉末では十分な磁気シールド効果が得
られないという問題が生じた。そこで磁気特性に優れる
Co系のアモルファス合金の粉末を用いた。その結果、
上記素材に比べ磁気シールド効果は改善されたが、経時
変化が大きく、長期の使用に問題があることが判明し
た。本発明の目的は上述した問題点を解決するために、
磁気シールド効果を十分に発揮できる新しい構成のケー
ブルを提供することである。
In the above-described method of winding the shield material around the outer periphery of the cable, a joint exists because both ends are closed after winding. Therefore, there is a concern about the influence of the leakage magnetic field from the joint on the electronic device close to the cable. Further, according to the study of the present inventors, there has been a problem that a permalloy or a powder of pure iron cannot provide a sufficient magnetic shielding effect. Therefore, powder of a Co-based amorphous alloy having excellent magnetic properties was used. as a result,
Although the magnetic shielding effect was improved as compared with the above materials, the change with time was large, and it was found that there was a problem in long-term use. The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a cable having a new configuration capable of sufficiently exhibiting a magnetic shielding effect.

【0004】[0004]

【課題を解決するための手段】本発明者は上記問題点を
検討し、パーマロイや純鉄よりも、磁性体としての磁気
特性に優れ、Co系アモルファス合金よりも経時変化の
少ないナノ結晶磁性体の粉末と樹脂を混合し、継ぎ目の
ないチューブ状に成形したものを導体に被覆すること
で、十分な磁気シールド効果が得られ経時変化も少ない
ことを見出し、本発明に到達した。
Means for Solving the Problems The present inventor has studied the above problems and has found that a nanocrystalline magnetic material which has better magnetic properties as a magnetic material than permalloy or pure iron and has less change with time than a Co-based amorphous alloy. The present inventors have found that a sufficient magnetic shielding effect can be obtained and a change with time is small by coating the conductor with a seamless tube formed by mixing the powder and the resin, and reaching the present invention.

【0005】すなわち本発明は、導体とそれを被覆する
樹脂を有するケーブルであって、前記樹脂内部にはナノ
結晶磁性粉末が分散していることを特徴とするケーブル
である。また本発明において、磁性粉末は樹脂の重量の
15倍以下であり、その粒径は500μm以下であるこ
とが好ましい。
That is, the present invention relates to a cable having a conductor and a resin covering the conductor, wherein the nanocrystalline magnetic powder is dispersed in the resin. In the present invention, the magnetic powder is not more than 15 times the weight of the resin, and the particle diameter is preferably not more than 500 μm.

【0006】[0006]

【発明の実施の形態】上述したように、本発明の重要な
特徴はナノ結晶磁性粉末を樹脂と混合し、チューブ状に
成形したものを導体に被覆したことにある。樹脂に混合
する磁性粉末として、パーマロイあるいはアモルファス
合金よりも磁気特性に優れるナノ結晶磁性材料を適用す
ることは、磁気シールドとしてより漏洩磁束が少なくな
るという点で有利である。また導体に被覆する樹脂をチ
ューブ状に成形することは、前述したようなシート状の
シールド材をケーブルに巻き、両端を接合するという工
程が省略できるという点でも有効である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention resides in that a nanocrystalline magnetic powder is mixed with a resin and formed into a tube and coated with a conductor. Applying a nanocrystalline magnetic material having better magnetic properties than permalloy or an amorphous alloy as the magnetic powder to be mixed with the resin is advantageous in that the leakage magnetic flux is reduced as a magnetic shield. Forming the resin for covering the conductor into a tube shape is also effective in that the step of winding the above-mentioned sheet-shaped shield material around a cable and joining both ends can be omitted.

【0007】本発明において樹脂と混合するナノ結晶磁
性粉末の重量を樹脂の15倍としたのは、15倍以上で
は樹脂が少ないために成形性が悪くなるからである。ま
た、本発明において適用される樹脂としては、ポリエチ
レン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、塩
化ビニル樹脂などがある。
In the present invention, the weight of the nanocrystalline magnetic powder to be mixed with the resin is set to 15 times that of the resin, because if it is 15 times or more, the resin is small and the moldability is deteriorated. Examples of the resin applied in the present invention include a polyethylene resin, a polypropylene resin, a polyurethane resin, and a vinyl chloride resin.

【0008】本発明でいうナノ結晶磁性粉末というの
は、実質的に100nm以下の微細結晶粒で構成される
粉末である。具体的には、Fe−Cu−Nb−Si−B
系やFe−Zr−B系に代表されるbccFeの微細結
晶からなる材料である。
The nanocrystalline magnetic powder referred to in the present invention is a powder substantially composed of fine crystal grains of 100 nm or less. Specifically, Fe-Cu-Nb-Si-B
This is a material composed of fine crystals of bccFe typified by Fe-Zr-B system.

【0009】本発明のケーブルは次のような方法で製造
することができる。まず水アトマイズ法などにより、ア
モルファス合金の粉末を作製する。次いで、結晶化温度
以上で加熱処理し微結晶化させる。ナノ結晶磁性粉末の
平均粒径が500μmを越えたものは、粉末製造時に均
質なアモルファスとなり難く、その後の加熱処理で結晶
化した時に優れた軟磁気特性を得にくくなる。したがっ
て、本発明では500μm以上の粉末を使用することが
望ましい。このようにして得られたナノ結晶合金の粉末
と樹脂を均一に混合した後、押出成形により導体の周囲
にチューブ状に成形する。
The cable of the present invention can be manufactured by the following method. First, an amorphous alloy powder is prepared by a water atomizing method or the like. Next, heat treatment is performed at a temperature higher than the crystallization temperature to microcrystallize. When the average particle diameter of the nanocrystalline magnetic powder exceeds 500 μm, it is difficult to form a homogeneous amorphous material at the time of powder production, and it is difficult to obtain excellent soft magnetic properties when crystallized by a subsequent heat treatment. Therefore, in the present invention, it is desirable to use a powder of 500 μm or more. After the powder of the nanocrystalline alloy thus obtained and the resin are uniformly mixed, the mixture is extruded and formed into a tube shape around the conductor.

【0010】[0010]

【実施例】【Example】

(実施例1)水アトマイズ法により、平均粒径20μm
のCu1−Nb3−Si13.5−B9(at%)、残部Fe
からなるアモルファス合金粉末を作製し、これを550
℃で1時間熱処理し、100nm以下のbccFeの微
細結晶でなるナノ結晶粉末を得た。次いで、ポリエチレ
ン樹脂と樹脂の8.5倍の重量を有すナノ結晶粉末を混
合した。さらにこれを導体の周囲に押出成形によりチュ
ーブ状に成形し、図1に示すようなケーブルを得た。こ
のケーブルに被覆材なしの状態で10mGの磁界を発生
するように、周波数50Hzの電流を流し、被覆材あり
の状態での漏洩磁束をガウスメーターにて測定した。
(Example 1) An average particle diameter of 20 μm was obtained by a water atomizing method.
Of Cu 1 -Nb 3 -Si 13.5 -B 9 (at%), the balance Fe
An amorphous alloy powder consisting of
C. for 1 hour to obtain a nanocrystalline powder composed of fine crystals of bccFe of 100 nm or less. Next, a polyethylene resin and a nanocrystalline powder having a weight 8.5 times that of the resin were mixed. Further, this was formed into a tube shape by extrusion molding around the conductor to obtain a cable as shown in FIG. A current having a frequency of 50 Hz was passed through the cable so as to generate a magnetic field of 10 mG without the covering material, and the leakage magnetic flux with the covering material was measured with a Gauss meter.

【0011】また、比較品として平均粒径30μmのP
Cパーマロイも合金粉末を用いて、同様のケーブルを作
製し、被覆なしの状態で同様の磁界を発生するように、
周波数50Hzで通電し、被覆材ありの状態での漏洩磁
束を測定した。その結果、本発明品は3.1mGまで減
少した。これに対し比較品は6.7mGであった。この
結果から明らかなように、本発明のナノ結晶合金粉末を
用いたケーブルは、より漏洩磁束の少ないものとなっ
た。
As a comparative product, P having an average particle size of 30 μm was used.
C permalloy also made a similar cable using alloy powder, and generated a similar magnetic field without coating,
Electric current was applied at a frequency of 50 Hz, and the leakage magnetic flux with the covering material was measured. As a result, the product of the present invention decreased to 3.1 mG. On the other hand, the comparative product was 6.7 mG. As is clear from these results, the cable using the nanocrystalline alloy powder of the present invention has a smaller leakage magnetic flux.

【0012】(実施例2)水アトマイズ法により平均粒
径20μmのCu1−Zr3.5−Nb3.5−B6(at
%)、残部Feからなるアモルファス合金粉末を作製
し、これを600℃で1時間熱処理し、100nm以下
のbccFeの微細結晶でなるナノ結晶粉末を得た。次
いで、耐熱性樹脂と樹脂の6倍の重量を有す粉末を混合
した。さらにこれを導体の周囲に押出成形によりチュー
ブ状に成形し、直径2mmのケーブルを得た。このケー
ブルに被覆材なしの状態で10mGの磁界を発生するよ
うに、周波数50Hzの電流を流し、被覆材ありの状態
での漏洩磁束をガウスメーターにて測定した。
[0012] (Example 2) Cu 1 -Zr an average particle size of 20μm by the water atomizing method 3.5 -Nb 3.5 -B 6 (at
%) And an amorphous alloy powder composed of the balance Fe was prepared and heat-treated at 600 ° C. for 1 hour to obtain a nanocrystalline powder composed of bccFe fine crystals of 100 nm or less. Next, a heat-resistant resin and a powder having a weight six times that of the resin were mixed. Further, this was formed into a tube shape by extrusion molding around the conductor to obtain a cable having a diameter of 2 mm. A current having a frequency of 50 Hz was passed through the cable so as to generate a magnetic field of 10 mG without the covering material, and the leakage magnetic flux with the covering material was measured with a Gauss meter.

【0013】また、比較品として平均粒径20μmのF
2−Mn2−Cr3−Si13−B9(at%)、残部Co
からなるアモルファス合金粉末を用いて、同様のケーブ
ルを作製し、被覆なしの状態で同様の磁界を発生するよ
うに、周波数50Hzで通電し、被覆材ありの状態での
漏洩磁束を測定した。その結果、本発明品は3.8mG
まで減少した。これに対し比較品は4.3mGであっ
た。さらに上記2種類のケーブルを100℃で500時
間保持した後の漏洩磁束も測定した。その結果、ナノ結
晶粉末を用いたものは漏洩磁束の変化が1%未満であっ
た。しかし、比較品の漏洩磁束は8.9mGと約50%
特性が劣化した。この結果から明らかなように、本発明
のナノ結晶合金粉末を用いたケーブルは、より漏洩磁束
および経時変化が少ないものとなった。
As a comparative product, F having an average particle diameter of 20 μm was used.
e 2 -Mn 2 -Cr 3 -Si 13 -B 9 (at%), balance Co
A similar cable was produced using an amorphous alloy powder composed of the following, and a current was applied at a frequency of 50 Hz so as to generate a similar magnetic field without a coating, and the leakage magnetic flux with the coating was measured. As a result, the product of the present invention was 3.8 mG
Down to. On the other hand, the comparative product was 4.3 mG. Furthermore, the leakage magnetic flux after holding the two types of cables at 100 ° C. for 500 hours was also measured. As a result, in the case of using the nanocrystalline powder, the change in leakage magnetic flux was less than 1%. However, the leakage flux of the comparative product was 8.9 mG, about 50%.
The characteristics have deteriorated. As is clear from the results, the cable using the nanocrystalline alloy powder of the present invention has less leakage magnetic flux and less change with time.

【0014】[0014]

【発明の効果】本発明によれば、ナノ結晶磁性粉末を樹
脂と混合し、導体周囲にチューブ状に被覆することで、
磁気シールド効果に優れる新しい構成のケーブルを提供
することができる。
According to the present invention, a nanocrystalline magnetic powder is mixed with a resin, and is coated in a tubular shape around a conductor.
It is possible to provide a cable having a new configuration that is excellent in a magnetic shielding effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のケーブルの構成を示す断面模式図であ
る。
FIG. 1 is a schematic sectional view showing a configuration of a cable of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導体とそれを被覆する樹脂を有するケー
ブルであって、前記樹脂内部にはナノ結晶磁性粉末が分
散していることを特徴とするケーブル。
1. A cable comprising a conductor and a resin covering the conductor, wherein a nanocrystalline magnetic powder is dispersed in the resin.
【請求項2】 導体に被覆された樹脂はチューブ状の形
態を有し、また樹脂に含まれるナノ結晶磁性粉末が、樹
脂の重量の15倍以下含有されていることを特徴とする
請求項1に記載のケーブル。
2. The resin coated on the conductor has a tubular form, and the nanocrystalline magnetic powder contained in the resin is contained in an amount of not more than 15 times the weight of the resin. Cable described in.
【請求項3】 平均粒径が500μm以下のナノ結晶磁
性粉末を有する請求項1または2に記載のケーブル。
3. The cable according to claim 1, comprising a nanocrystalline magnetic powder having an average particle diameter of 500 μm or less.
JP24567497A 1997-09-10 1997-09-10 Cable Pending JPH1186641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24567497A JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24567497A JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Publications (1)

Publication Number Publication Date
JPH1186641A true JPH1186641A (en) 1999-03-30

Family

ID=17137134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24567497A Pending JPH1186641A (en) 1997-09-10 1997-09-10 Cable

Country Status (1)

Country Link
JP (1) JPH1186641A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506972B1 (en) * 2002-01-22 2003-01-14 Nanoset, Llc Magnetically shielded conductor
EP1476882A2 (en) * 2002-01-22 2004-11-17 Nanoset, LLC Nanomagnetically shielded substrate
WO2005045853A1 (en) * 2003-11-07 2005-05-19 Abb Research Ltd. System for transmission of electric power
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
CN1302486C (en) * 2003-09-15 2007-02-28 北京大学 Conducting polymer carbon nanotube nano cable and preparation method thereof
WO2008100839A1 (en) * 2007-02-14 2008-08-21 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
JP2015192034A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
KR20160118939A (en) 2015-04-02 2016-10-12 히타치 긴조쿠 가부시키가이샤 Magnetic shield wire and manufacturing method thereof, as well as magnetic shield braid sleeve and magnetic shield cable using the same
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10537730B2 (en) 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
WO2022190851A1 (en) * 2021-03-08 2022-09-15 株式会社オートネットワーク技術研究所 Electric wire for communication
DE112020006323T5 (en) 2019-12-25 2022-10-06 Autonetworks Technologies, Ltd. communication cable

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
EP1476882A2 (en) * 2002-01-22 2004-11-17 Nanoset, LLC Nanomagnetically shielded substrate
EP1476882A4 (en) * 2002-01-22 2007-01-17 Nanoset Llc Nanomagnetically shielded substrate
US6506972B1 (en) * 2002-01-22 2003-01-14 Nanoset, Llc Magnetically shielded conductor
CN1302486C (en) * 2003-09-15 2007-02-28 北京大学 Conducting polymer carbon nanotube nano cable and preparation method thereof
WO2005045853A1 (en) * 2003-11-07 2005-05-19 Abb Research Ltd. System for transmission of electric power
US9302101B2 (en) 2004-03-30 2016-04-05 Medtronic, Inc. MRI-safe implantable lead
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US10084250B2 (en) 2005-02-01 2018-09-25 Medtronic, Inc. Extensible implantable medical lead
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10537730B2 (en) 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
US10398893B2 (en) 2007-02-14 2019-09-03 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
WO2008100839A1 (en) * 2007-02-14 2008-08-21 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US9259572B2 (en) 2007-04-25 2016-02-16 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US9731119B2 (en) 2008-03-12 2017-08-15 Medtronic, Inc. System and method for implantable medical device lead shielding
US9629998B2 (en) 2009-04-30 2017-04-25 Medtronics, Inc. Establishing continuity between a shield within an implantable medical lead and a shield within an implantable lead extension
US10086194B2 (en) 2009-04-30 2018-10-02 Medtronic, Inc. Termination of a shield within an implantable medical lead
US9452284B2 (en) 2009-04-30 2016-09-27 Medtronic, Inc. Termination of a shield within an implantable medical lead
US9205253B2 (en) 2009-04-30 2015-12-08 Medtronic, Inc. Shielding an implantable medical lead
US9216286B2 (en) 2009-04-30 2015-12-22 Medtronic, Inc. Shielded implantable medical lead with guarded termination
US9186499B2 (en) 2009-04-30 2015-11-17 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9272136B2 (en) 2009-04-30 2016-03-01 Medtronic, Inc. Grounding of a shield within an implantable medical lead
US9220893B2 (en) 2009-04-30 2015-12-29 Medtronic, Inc. Shielded implantable medical lead with reduced torsional stiffness
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
JP2015192034A (en) * 2014-03-28 2015-11-02 日立金属株式会社 Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same
US10279171B2 (en) 2014-07-23 2019-05-07 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
KR20160118939A (en) 2015-04-02 2016-10-12 히타치 긴조쿠 가부시키가이샤 Magnetic shield wire and manufacturing method thereof, as well as magnetic shield braid sleeve and magnetic shield cable using the same
DE112020006323T5 (en) 2019-12-25 2022-10-06 Autonetworks Technologies, Ltd. communication cable
US11837378B2 (en) 2019-12-25 2023-12-05 Autonetworks Technologies, Ltd. Communication cable
WO2022190851A1 (en) * 2021-03-08 2022-09-15 株式会社オートネットワーク技術研究所 Electric wire for communication

Similar Documents

Publication Publication Date Title
JPH1186641A (en) Cable
US6506972B1 (en) Magnetically shielded conductor
JPH05506744A (en) Removable heating article for use in alternating magnetic fields
WO2016121950A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
CN109273185A (en) A method of powder core is prepared with iron-base nanometer crystal alloy powder
WO2016121951A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
DE2262745A1 (en) METHOD OF MANUFACTURING OXYD-COVERED IRON POWDER WITH CONTROLLABLE RESISTOR
US20230160047A1 (en) Fe-based nanocrystalline alloy and electronic component using the same
US20040194996A1 (en) Shielded electrical wire construction and method of manufacture
JPH1187123A (en) High-frequency soft magnetic powder
US20190055635A1 (en) Fe-based nanocrystalline alloy and electronic component using the same
Heydari et al. Nanosized amorphous (Co ‚Fe) oxide particles decorated PANI–CNT: facile synthesis ‚characterization ‚magnetic ‚electromagnetic properties and their application
JP2625485B2 (en) Electromagnetic shielding material
JPH01225663A (en) Conductive resin composition
JPH0479302A (en) Dust core
JP3419243B2 (en) Silica finely dispersed polyimide enameled wire
JPS60134500A (en) Electromagnetic wave shielding material
Shiojima et al. One-dimensional assemblies of magnetic iron-oxide nanoparticles
Wu et al. Magnetic coupling properties of Zn vacancies in ZnO nanowire with screw dislocation
JP2530682Y2 (en) Magnetic shield box for color TV
JP2004247336A (en) Wave absorber
JP2001284123A (en) Magnetic thin film, magnetic component provided with the same, their manufacturing method, and electric power converter
JPS61265803A (en) Manufacture of electromagnetic-wave shielding material
JPS63245998A (en) Heat-shrinkable tube for electromagnetic wave shielding
JP2020132709A (en) Powder coating, powder coating mixture, coated article, powder coating device, and powder coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060210

A521 Written amendment

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070615

Free format text: JAPANESE INTERMEDIATE CODE: A02