JPH1186634A - Dc cable and its manufacture - Google Patents

Dc cable and its manufacture

Info

Publication number
JPH1186634A
JPH1186634A JP24063197A JP24063197A JPH1186634A JP H1186634 A JPH1186634 A JP H1186634A JP 24063197 A JP24063197 A JP 24063197A JP 24063197 A JP24063197 A JP 24063197A JP H1186634 A JPH1186634 A JP H1186634A
Authority
JP
Japan
Prior art keywords
inorganic filler
polar inorganic
treated
cable
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24063197A
Other languages
Japanese (ja)
Other versions
JP3430875B2 (en
Inventor
Terushi Katagai
昭史 片貝
Yoshinao Murata
義直 村田
Hisaya Shirai
久也 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24063197A priority Critical patent/JP3430875B2/en
Publication of JPH1186634A publication Critical patent/JPH1186634A/en
Application granted granted Critical
Publication of JP3430875B2 publication Critical patent/JP3430875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide superior DC insulating characteristic and impulse the breaking characteristic by using a cross-linked polyethylene containing a polarized inorganic filler as an insulating layer, treating the polarized inorganic filler with a surface treatment agent, and pulverizing the resulting polarized inorganic filler into substantially the same grain size as that of the polarized inorganic filler before the surface treatment. SOLUTION: A cross-linked polyethylene insulating layer is formed of polyethylene including homopolymer, copolymer, and graft body thereof, and a polarized inorganic filler as magnesium oxide, and the cross-linking is performed by use of an organic peroxide cross-linking agent as dicumyl peroxide. The polarized inorganic filler is surface-treated with vinyl silane, and pulverized by jet pulverization, so that both the average grain size and the largest diameter are substantially equal to those of the untreated filler, or an average grain size of 1 to 2 μm and a maximum grain size of 15 μm or less. Thus, the not for increase in thickness of the insulating layer is eliminated, and the size and weight can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直流用ケ−ブル及び
その製造方法に関し、特に、直流絶縁特性及びインパル
ス破壊特性にすぐれ、長尺ケ−ブルの製造が可能な直流
用架橋ポリエチレンケ−ブル及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC cable and a method of manufacturing the same, and more particularly, to a DC cross-linked polyethylene cable having excellent DC insulation properties and impulse breakdown characteristics and capable of manufacturing a long cable. And its manufacturing method.

【0002】[0002]

【従来の技術】架橋ポリエチレンを絶縁層とするケ−ブ
ル(以下、架橋PEケ−ブルと記す)は交流用として広
く用いられている。ポリエチレンの架橋には一般にジク
ミルパ−オキサイド(以下、DCPと記す)のような有
機過酸化物が用いられている。
2. Description of the Related Art A cable having a cross-linked polyethylene as an insulating layer (hereinafter referred to as a cross-linked PE cable) is widely used for alternating current. Generally, an organic peroxide such as dicumyl peroxide (hereinafter, referred to as DCP) is used for crosslinking polyethylene.

【0003】架橋PEケ−ブルを直流用に用いる場合の
絶縁性能の不安定を改善するため、絶縁層に酸化マグネ
シウムのような有極性無機充填剤を加えることが特公昭
57─21805号公報に開示されている。
In order to improve the instability of insulation performance when a crosslinked PE cable is used for direct current, it is disclosed in Japanese Patent Publication No. 57-21805 that a polar inorganic filler such as magnesium oxide is added to the insulation layer. It has been disclosed.

【0004】DCPのような架橋剤を用いた架橋PEケ
−ブルでは、架橋剤の分解残渣が架橋ポリエチレン絶縁
体の体積抵抗率を低下させ、電荷蓄積を増大させるため
に、安定した絶縁性能が得られなかった。体積抵抗率の
低下は絶縁体のもれ電流を増し、ジュ−ル熱により絶縁
体を熱破壊する恐れがある。架橋剤の分解残渣が多く分
布する絶縁層の中層部分で体積抵抗率が特に低下するた
め、直流課電の下で外層と内層にかかる電圧の負担が大
となり、絶縁体の有効厚さが減少する。また電荷蓄積の
増大は絶縁体中に局部的に高電界を発生させ、低電圧破
壊等の原因となり、あるいは極性反転の際又は逆極性の
インパルスの侵入の際に絶縁破壊が生ずる。
[0004] In a crosslinked PE cable using a crosslinker such as DCP, a stable insulation performance is obtained because the decomposition residue of the crosslinker lowers the volume resistivity of the crosslinked polyethylene insulator and increases the charge accumulation. Could not be obtained. The decrease in the volume resistivity increases the leakage current of the insulator, and the insulator may be thermally destroyed by Joule heat. Since the volume resistivity is particularly low in the middle layer of the insulating layer where the decomposition residue of the cross-linking agent is distributed a lot, the load on the voltage applied to the outer layer and the inner layer under DC power application increases, and the effective thickness of the insulator decreases. I do. In addition, the increase in charge accumulation locally generates a high electric field in the insulator, causing a low voltage breakdown or the like, or causes a dielectric breakdown when the polarity is reversed or when an impulse of the opposite polarity is introduced.

【0005】このような架橋PEケ−ブルの直流特性に
おける欠点は、前述のように有極性無機充填剤の添加に
よって改良された。
The drawbacks in the DC properties of such crosslinked PE cables have been ameliorated by the addition of polar inorganic fillers as described above.

【0006】[0006]

【発明が解決しようとする課題】しかし、酸化マグネシ
ウムのような有極性無機充填剤を架橋ポリエチレン絶縁
体に加えた直流用ケ−ブルによると、有極性無機充填剤
の粗粒や凝集が生ずることがある。充填剤の粗粒や凝集
は、絶縁体の連続押し出し成形の工程で、押し出し機の
前面に樹脂中の異物の除去のため設けられているスクリ
−ンメッシュに目詰まりを起こす。メッシュが目詰まり
すると、樹脂圧が上昇し、押し出し成形が困難になり、
長尺のケ−ブルの製造ができない。製造工程上の問題だ
けでなく、完成したケ−ブルの雷インパルス破壊強度も
低下する。
However, according to the direct current cable in which a polar inorganic filler such as magnesium oxide is added to a crosslinked polyethylene insulator, coarse particles and agglomeration of the polar inorganic filler occur. There is. The coarse particles and agglomeration of the filler cause clogging in a screen mesh provided on the front surface of the extruder for removing foreign matter in the resin in a process of continuously extruding the insulator. When the mesh is clogged, the resin pressure increases, making extrusion molding difficult,
Long cables cannot be manufactured. Not only the manufacturing process problem, but also the lightning impulse breakdown strength of the finished cable is reduced.

【0007】スクリ−ンメッシュの目詰まりを起こす充
填剤の粗粒や凝集は、充填剤とポリエチレンの間の接着
性向上や充填剤の吸湿防止のため充填剤の表面処理を行
なった場合に発生しやすい。
[0007] Coarse particles and agglomeration of the filler causing clogging of the screen mesh occur when a surface treatment of the filler is performed to improve the adhesion between the filler and the polyethylene and to prevent the filler from absorbing moisture. It's easy to do.

【0008】従って本発明の目的は、直流絶縁特性及び
インパルス破壊特性にすぐれ、しかも長尺ケ−ブルの製
造が可能な、架橋ポリエチレン絶縁体を有する直流用ケ
−ブルを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a DC cable having a cross-linked polyethylene insulator, which has excellent DC insulation characteristics and impulse breakdown characteristics, and is capable of producing a long cable.

【0009】本発明の目的はまた、押し出し成形の工程
でスクリ−ンメッシュの目詰まりを起こさず、すぐれた
直流絶縁特性及びインパルス破壊特性を有する長尺ケ−
ブルを製造できる、直流用ケ−ブルの製造方法を提供す
ることにある。
It is another object of the present invention to provide a long cable having excellent DC insulation characteristics and impulse breakdown characteristics without causing clogging of a screen mesh in an extrusion molding process.
An object of the present invention is to provide a method of manufacturing a DC cable capable of manufacturing a cable.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するため、有極性無機充填剤を含む架橋ポリエチレン
を絶縁層とする直流用ケ−ブルにおいて、この有極性無
機充填剤は、表面処理剤によって表面処理された表面処
理有極性無機充填剤であり、この表面処理有極性無機充
填剤は、表面処理前の有極性無機充填剤の粒径とほぼ同
等の粒径になるように、粉砕されていることを特徴とす
る直流用ケ−ブルを提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a DC cable having a crosslinked polyethylene containing a polar inorganic filler as an insulating layer, wherein the polar inorganic filler has a surface. It is a surface-treated polar inorganic filler surface-treated with a treating agent, and the surface-treated polar inorganic filler has a particle size substantially equal to the particle size of the polar inorganic filler before the surface treatment. Provided is a DC cable characterized by being pulverized.

【0011】また本発明は、上記目的を達成するため、
ポリエチレンに有極性無機充填剤と架橋剤を加えて成る
コンパウンドを、スクリ−ンメッシュを通して押し出し
て、絶縁層を導体の周囲に形成する直流用ケ−ブルの製
造方法において、前記有極性無機充填剤を表面処理剤に
よって表面処理してから、表面未処理の前記有極性無機
充填剤とほぼ同等の平均粒子径及び最大粒子径をもつよ
うに粉砕処理してコンパウンドとすることを特徴とする
直流用ケ−ブルの製造方法を提供する。
[0011] In order to achieve the above object, the present invention provides
A method for producing a DC cable, comprising extruding a compound obtained by adding a polar inorganic filler and a crosslinking agent to polyethylene through a screen mesh to form an insulating layer around a conductor. Is subjected to a surface treatment with a surface treatment agent, and then subjected to a pulverization treatment so as to have an average particle diameter and a maximum particle diameter substantially equal to those of the unpolarized inorganic filler on the surface to form a compound, A method for manufacturing a cable is provided.

【0012】すぐれた直流絶縁特性を得るために絶縁層
に加える有極性無機充填剤としては酸化マグネシウム
(MgO)が適しており、特に純度99%以上のMgO
が好ましい。MgOはDCP等の有機過酸化物架橋剤の
分解残渣による体積抵抗率の低下や空間電荷の蓄積を抑
制して、直流絶縁特性を向上する効果が大きい。純度9
9%以上のMgOは特にこの効果がすぐれる。
Magnesium oxide (MgO) is suitable as a polar inorganic filler to be added to the insulating layer in order to obtain excellent DC insulation characteristics.
Is preferred. MgO has a great effect of suppressing the reduction of volume resistivity and the accumulation of space charge due to the residue of decomposition of an organic peroxide crosslinking agent such as DCP, thereby improving the DC insulation characteristics. Purity 9
This effect is particularly excellent with MgO of 9% or more.

【0013】MgO等の有極性無機充填剤の表面処理の
代表例はビニルシラン処理である。MgOのビニルシラ
ン処理は、例えば、特開平4−368719号、特開平
5−314818号に開示されている。
A typical example of the surface treatment of a polar inorganic filler such as MgO is a vinylsilane treatment. The vinyl silane treatment of MgO is disclosed in, for example, JP-A-4-368719 and JP-A-5-314818.

【0014】充填剤は少なくとも0.5phr加えるこ
とが好ましい。製造過程において連続押し出し工程での
樹脂圧の上昇を避けるためには、充填剤量を5phr以
下とすることが好ましい。
Preferably, at least 0.5 phr of filler is added. In order to avoid an increase in the resin pressure in the continuous extrusion step in the production process, the amount of the filler is preferably 5 phr or less.

【0015】絶縁体を構成する主材のポリエチレンとし
ては、高密度、中密度、低密度、または超低密度ポリエ
チレン、直鎖状低密度ポリエチレン等のいずれを用いて
もよい。ポリエチレンはホモポリマ−に限らず、共重合
体、グラフト体でもよく、それらの混合物でもよい。共
重合体は、例えば、エチレンとオレフィン類(プロピレ
ン等)、アルキルアクリレ−ト類(エチルアクリレ−
ト、メチルメタクリレ−ト等)、ビニルエステル類(酢
酸ビニル等)、スチレン等との共重合体で、エチレンの
分子比が50%以上のもの、グラフト体は例えばポリエ
チレンまたはエチレン重合体と無水マレイン酸、ビニル
シラン等とのグラフト体である。
As the main material polyethylene constituting the insulator, any of high-density, medium-density, low-density, ultra-low-density polyethylene, linear low-density polyethylene and the like may be used. The polyethylene is not limited to a homopolymer, but may be a copolymer, a graft, or a mixture thereof. Copolymers include, for example, ethylene and olefins (such as propylene) and alkyl acrylates (ethyl acrylate).
, Methyl methacrylate, etc.), vinyl esters (eg, vinyl acetate), styrene, etc., having a molecular ratio of ethylene of 50% or more. It is a graft with maleic acid, vinyl silane and the like.

【0016】ポリエチレン架橋剤としては通常、DCP
を用いるが、DCP以外の有機過酸化物架橋剤に対して
も本発明は有効である。
As a polyethylene crosslinking agent, DCP is usually used.
However, the present invention is also effective for an organic peroxide crosslinking agent other than DCP.

【0017】高密度、中密度、低密度又は超低密度ポリ
エチレン、直鎖状低密度ポリエチレン等のポリエチレン
に、無水マレイン酸変性ポリエチレン、例えば無水マレ
イン酸グラフトポリエチレンを、1phr以上10ph
r以下加えてもよく、それにより耐雷インパルス強度を
さらに向上できる。無水マレイン酸による変性量は、
0.1%以上が好ましい。
A polyethylene such as a high-density, medium-density, low-density or ultra-low-density polyethylene, a linear low-density polyethylene, and a maleic anhydride-modified polyethylene, for example, a maleic anhydride-grafted polyethylene, are added in an amount of 1 phr to 10 phr.
r or less may be added, thereby further improving the lightning impulse strength. The amount of denaturation with maleic anhydride is
0.1% or more is preferable.

【0018】有極性無機充填剤の粉砕処理は、平均粒子
径、最大粒子径ともに未処理の充填剤とほぼ同等となる
ようにすることが好ましい。粉砕処理は、充填剤の粒子
同士を高速で衝突させるジェット粉砕により行なうこと
ができる。充填剤粒子の平均粒子径が1ないし2μm、
最大粒子径が15μm以下の範囲にあることが好まし
い。
It is preferable that the crushing treatment of the polar inorganic filler is performed so that both the average particle diameter and the maximum particle diameter are substantially equal to those of the untreated filler. The pulverization can be performed by jet pulverization in which the particles of the filler collide with each other at high speed. The average particle diameter of the filler particles is 1 to 2 μm,
It is preferable that the maximum particle diameter is in the range of 15 μm or less.

【0019】有極性無機充填剤は、粗大粒子や凝集の発
生を防ぐため、粉砕処理後コンパウンド調製まで低湿度
雰囲気中に置くことが望ましい。例えば、有極性無機充
填剤を粉砕処理後コンパウンド調製前まで温度60℃な
いし90℃の雰囲気中で乾燥処理する。また粉砕処理前
後を問わず、湿度管理を行なう。
The polar inorganic filler is preferably placed in a low-humidity atmosphere after pulverization until compound preparation in order to prevent the occurrence of coarse particles and aggregation. For example, the polar inorganic filler is dried in an atmosphere at a temperature of 60 ° C. to 90 ° C. after the pulverizing treatment and before the preparation of the compound. Humidity control is performed before and after the pulverization.

【0020】[0020]

【発明の実施の形態】以下、本発明の直流用ケ−ブル及
びその製造方法の実施の形態を詳細に説明する。本発明
の直流用ケ−ブルの実施の形態では、導体とその周囲に
形成された内部半導電層と、その外周に形成された架橋
ポリエチレン絶縁層と、その外周に形成された外部半導
電層と、その外周に形成されたシ−スを少なくとも具え
る。架橋ポリエチレン絶縁層は、ホモポリマ−、共重合
体、グラフト体を含めたポリエチレンと、酸化マグネシ
ウムのような有極性無機充填剤とから成り、DCPのよ
うな有機過酸化物架橋剤を用いて架橋されている。この
有極性無機充填剤はビニルシラン等で表面処理され、平
均径、最大径ともに未処理の充填剤とほぼ同等の粒子
径、すなわち平均粒子径が1ないし2μm、最大粒子径
が15μm以下になるように、ジェット粉砕等により粉
砕処理されたものである。粉砕処理された有極性無機充
填剤は、ポリエチレンと混合し、架橋剤を加えてコンパ
ウンドとし、コンパウンドを導体の周りに、内外の半導
電層とともに押し出し成形したものである。充填剤の量
は0.5phr以上、5phr以下が好ましい。ポリエ
チレンは、高密度、中密度、低密度、又は超低密度ポリ
エチレン、直鎖状低密度ポリエチレン等のいずれでもよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the DC cable and the method of manufacturing the same according to the present invention will be described in detail. In the embodiment of the DC cable of the present invention, a conductor, an inner semiconductive layer formed around the conductor, a cross-linked polyethylene insulating layer formed around the outer periphery, and an outer semiconductive layer formed around the outer periphery are provided. And at least a sheet formed on the outer periphery thereof. The crosslinked polyethylene insulating layer is composed of polyethylene including homopolymers, copolymers and grafts, and a polar inorganic filler such as magnesium oxide, and is crosslinked using an organic peroxide crosslinking agent such as DCP. ing. This polar inorganic filler is surface-treated with vinylsilane or the like so that both the average diameter and the maximum diameter are substantially the same as the untreated filler, that is, the average particle diameter is 1 to 2 μm, and the maximum particle diameter is 15 μm or less. And pulverized by jet pulverization or the like. The pulverized polar inorganic filler is mixed with polyethylene, added with a crosslinking agent to form a compound, and the compound is extruded around a conductor together with the inner and outer semiconductive layers. The amount of the filler is preferably 0.5 phr or more and 5 phr or less. Polyethylene may be any of high density, medium density, low density, or ultra low density polyethylene, linear low density polyethylene, and the like.

【0021】本発明の直流用ケ−ブルの製造方法の実施
の形態では、ポリエチレン(ホモポリマ−、共重合体、
グラフト体を包含する)と、ビニルシラン等で表面処理
された、酸化マグネシウムのような有極性無機充填剤と
から成り、DCPのような有機過酸化物架橋剤を用いて
架橋された架橋ポリエチレン絶縁層を有する直流用ケ−
ブルを製造するにあたり、表面処理された充填剤を、平
均径、最大径ともに未処理の充填剤とほぼ同等の粒子径
をもつように、ジェット粉砕等により粉砕処理した後、
ポリエチレンと混合し、架橋剤を加えてコンパウンドと
し、コンパウンドをスクリ−ンメッシュを通して押し出
し、導体の周りに内外の半導電層とともに成形して、ケ
−ブルを製造する。平均粒子径が1ないし2μm、最大
粒子径が15μm以下の範囲にあるようにするのが好ま
しい。粉砕処理後コンパウンド調製まで、湿度管理を充
分行なうとともに、充填剤を低湿度雰囲気(例えば、温
度70℃の乾燥雰囲気)中に置くことが好ましい。充填
剤の量は0.5phr以上5phr以下とする。ポリエ
チレンは、高密度、中密度、低密度、または超低密度ポ
リエチレン、直鎖状低密度ポリエチレン等のいずれでも
よい。
In an embodiment of the method for producing a DC cable according to the present invention, polyethylene (homopolymer, copolymer,
And a polar inorganic filler such as magnesium oxide surface-treated with vinylsilane or the like, and crosslinked with an organic peroxide crosslinking agent such as DCP. DC case with
In producing a bull, after the surface-treated filler is pulverized by jet pulverization or the like, so that the average diameter and the maximum diameter have substantially the same particle diameter as the untreated filler,
The compound is mixed with polyethylene and added with a cross-linking agent to form a compound, the compound is extruded through a screen mesh, and molded with the inner and outer semiconductive layers around the conductor to produce a cable. It is preferable that the average particle diameter is in the range of 1 to 2 μm and the maximum particle diameter is in the range of 15 μm or less. It is preferable that the humidity control is sufficiently performed from the pulverization treatment to the preparation of the compound, and the filler is placed in a low humidity atmosphere (for example, a dry atmosphere at a temperature of 70 ° C.). The amount of the filler is 0.5 phr or more and 5 phr or less. The polyethylene may be any of high density, medium density, low density, ultra low density polyethylene, linear low density polyethylene and the like.

【0022】[0022]

【実施例】以下、本発明の直流ケ−ブル及びその製造方
法の実施例を詳細に説明する。表1のように組成が異な
る酸化マグネシウム充填剤を作り、試料イないしニとし
た。試料イは表面処理していない酸化マグネシウム、試
料ロはビニルシランで表面処理した酸化マグネシウム、
試料ハとニはビニルシランで表面処理した酸化マグネシ
ウムを、それぞれ表1に示した平均及び最大粒子径にな
るまで、ジェットミルで破砕処理したものである。粒子
径はレ−ザ粒度計で測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the DC cable and the method of manufacturing the same according to the present invention will be described below in detail. Magnesium oxide fillers having different compositions as shown in Table 1 were prepared and used as Samples I to D. Sample A is magnesium oxide without surface treatment, Sample B is magnesium oxide surface treated with vinylsilane,
Samples C and D were obtained by crushing magnesium oxide surface-treated with vinylsilane with a jet mill until the average and maximum particle diameters shown in Table 1 were obtained. The particle size was measured with a laser granulometer.

【0023】表面処理された試料ロの粒子径は平均、最
大とも未処理の試料イより大となっている。粉砕処理に
より試料ハは平均、最大とも未処理の試料イとほぼ同等
の粒子径となり、試料ニでは未処理の試料イより平均粒
子径、最大粒子径とも小さくなった。
The particle size of the surface-treated sample B is larger than the average, at most, of the untreated sample A. As a result of the pulverization, the sample C had an average and maximum particle size almost equal to that of the untreated sample A, and the average particle size and the maximum particle size of the sample D were smaller than the untreated sample A.

【0024】[0024]

【表1】 [Table 1]

【0025】低密度ポリエチレンに表1の試料ロ、ハ、
ニの充填剤を1phr加え、架橋剤としてDCPを添加
したコンパウンドを用い、押し出し成形により、導体断
面積200mm2 、絶縁層の厚さ9mmのケ−ブル1,
2,3を製造した。成形にはた325メッシュのスクリ
−ンメッシュを備えた押し出し機を用いた。24時間に
わたり連続で総量約1トンの樹脂を押し出したときの樹
脂圧の上昇は表2に示す通りであった。
Samples B, C, and C shown in Table 1
A compound having a conductor cross-sectional area of 200 mm 2 and an insulating layer thickness of 9 mm was prepared by extrusion molding using a compound containing 1 phr of a filler and adding DCP as a cross-linking agent.
A few were prepared. An extruder equipped with a 325 mesh screen mesh was used for molding. Table 2 shows the rise in resin pressure when a total of about 1 ton of resin was continuously extruded over 24 hours.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、試料ロ、すなわ
ち充填剤を粉砕処理しないコンパウンドでは、24時間
後に樹脂圧が3MPaまで上昇した。酸化マグネシウム
充填剤を粉砕処理したとき、試料ロでは樹脂圧の上昇は
著しく小さくなるが、平均粒子径0.7μmまで粉砕し
た試料ハでは、樹脂圧の上昇が大きく、粉砕処理しない
ものと大差ない。
As is evident from Table 2, the resin pressure of the sample B, that is, the compound in which the filler was not pulverized, rose to 3 MPa after 24 hours. When the magnesium oxide filler was pulverized, the increase in resin pressure was remarkably small in Sample B, but in Sample C pulverized to an average particle diameter of 0.7 μm, the increase in resin pressure was large, which was not much different from that without pulverization. .

【0028】この結果は、ビニルシランで表面処理され
たMgO充填剤を、表面未処理のものと同程度の粒子径
(平均及び最大)まで粉砕処理することにより、連続押
し出し後の樹脂圧上昇が回避されることを示す。
[0028] The result is that the MgO filler surface-treated with vinylsilane is pulverized to the same particle size (average and maximum) as that of the untreated surface, thereby avoiding an increase in resin pressure after continuous extrusion. Indicates that

【0029】それぞれのケ−ブルにつき絶縁破壊試験を
行なった。結果を表3に示す。
Each cable was subjected to a dielectric breakdown test. Table 3 shows the results.

【表3】 [Table 3]

【0030】表3に見られるように、直流破壊強度はど
れも変わらないが、ケ−ブル1と3は耐インパルス強度
が劣る。これに対し、表面処理MgO充填剤を表面未処
理のものと同等まで粉砕処理したケ−ブル2は直流破壊
強度、耐インパルス強度とも優れている。充填剤粒子が
表面未処理のときの半分の平均粒子径まで粉砕処理され
たケ−ブル3では、耐インパルス強度がかえって劣る。
As can be seen in Table 3, none of the DC breakdown strengths are changed, but cables 1 and 3 have poor impulse withstand strength. On the other hand, the cable 2 obtained by pulverizing the surface-treated MgO filler to the same level as that of the untreated surface has excellent DC breaking strength and impulse resistance. The cable 3 pulverized to an average particle diameter half that of the untreated filler particles has an impulse resistance rather poor.

【0031】以上の結果から、架橋ポリエチレン絶縁層
に加えるビニルシラン表面処理MgO充填剤を表面未処
理のものと同等の粒子径まで粉砕処理することにより、
充填剤中の粗大粒子や凝集が除かれ、スクリ−ンメッシ
ュの目詰りが防がれる結果、直流破壊強度、耐インパル
ス強度とも優れた直流用ケ−ブルが得られ、またそのよ
うな絶縁特性の優れた長尺ケ−ブルを製造できること
が、確かめられた。
From the above results, the vinyl silane surface-treated MgO filler to be added to the crosslinked polyethylene insulating layer was pulverized to a particle size equivalent to that of the untreated surface,
As a result of removing coarse particles and agglomeration in the filler and preventing clogging of the screen mesh, a DC cable excellent in both DC breaking strength and impulse resistance can be obtained. It has been confirmed that a long cable having excellent characteristics can be manufactured.

【0032】[0032]

【発明の効果】本発明の直流用ケ−ブルによると、ビニ
ルシラン等で表面処理された酸化マグネシウム等の充填
剤を絶縁体に含む直流用架橋PEケ−ブルにおいて、表
面処理された充填剤の平均粒子径を1ないし2μm、最
大粒子径を15μm以下に、すなわち表面未処理のもの
とほぼ同じにしたので、すぐれた直流絶縁特性を保ち、
しかも表面未処理の充填剤を用いた場合と同等の耐雷イ
ンパルス強度が得られる。すなわち、信頼性の高い直流
用ケ−ブルを実現できる。絶縁特性の向上により絶縁層
の厚さを増す必要がなく、絶縁層を薄くすることさえで
きるので、ケ−ブルの小型、軽量化も可能になる。
According to the direct current cable of the present invention, in a direct current crosslinked PE cable containing a filler such as magnesium oxide surface-treated with vinylsilane or the like in an insulator, the surface-treated filler is Since the average particle diameter is 1 to 2 μm and the maximum particle diameter is 15 μm or less, that is, almost the same as that of the untreated surface, excellent DC insulation properties are maintained,
Moreover, a lightning impulse resistance equivalent to that obtained when the untreated filler is used is obtained. That is, a highly reliable DC cable can be realized. By improving the insulation characteristics, it is not necessary to increase the thickness of the insulation layer, and the insulation layer can be made thinner, so that the cable can be reduced in size and weight.

【0033】また本発明の直流用ケ−ブルの製造方法に
よると、ビニルシラン等で表面処理された酸化マグネシ
ウム等の充填剤の粒子を、表面未処理の充填剤と同等の
粒子径(平均及び最大)まで粉砕処理することにより、
充填剤の粗大粒子や凝集によるスクリ−ンメッシュの目
詰りが防がれるので、長尺の連続押し出し成形でも樹脂
圧の上昇を起こさず、長尺の直流用架橋PEケ−ブルを
製造できる。
Further, according to the method for producing a direct current cable of the present invention, particles of a filler such as magnesium oxide surface-treated with vinylsilane or the like are reduced to a particle diameter (average and maximum) equivalent to that of an untreated filler. ),
Since the clogging of the screen mesh due to the coarse particles and agglomeration of the filler is prevented, a long continuous cross-linked PE cable for direct current can be produced without increasing the resin pressure even in long continuous extrusion molding.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有極性無機充填剤を含む架橋ポリエチレ
ンを絶縁層とする直流用ケ−ブルにおいて、 前記有極性無機充填剤は、表面処理剤によって表面処理
された表面処理有極性無機充填剤であり、 前記表面処理有極性無機充填剤は、表面処理前の前記有
極性無機充填剤の粒径とほぼ同等の粒径になるように、
粉砕されていることを特徴とする直流用ケ−ブル。
1. A direct current cable having a crosslinked polyethylene containing a polar inorganic filler as an insulating layer, wherein the polar inorganic filler is a surface-treated polar inorganic filler surface-treated with a surface treating agent. There, the surface-treated polar inorganic filler, so as to have a particle size substantially equivalent to the particle size of the polar inorganic filler before the surface treatment,
A DC cable characterized by being pulverized.
【請求項2】 前記表面処理有極性無機充填剤は、粉砕
によって1μm以上2μm以下の平均粒子径及び15μ
m以下の最大粒子径を有することを特徴とする請求項1
の直流用ケ−ブル。
2. The surface-treated polar inorganic filler has an average particle size of 1 μm or more and 2 μm or less and 15 μm
2. The particle having a maximum particle diameter of not more than m.
DC cable.
【請求項3】 前記有極性無機充填剤は酸化マグネシウ
ムである、請求項1または2の直流用ケ−ブル。
3. The direct current cable according to claim 1, wherein the polar inorganic filler is magnesium oxide.
【請求項4】 前記有極性無機充填剤は、前記絶縁層に
0.5phr以上5phr以下含まれる、請求項1ない
し3いずれかの直流用ケ−ブル。
4. The direct current cable according to claim 1, wherein the polar inorganic filler is contained in the insulating layer in an amount of 0.5 phr to 5 phr.
【請求項5】 前記表面処理剤は、ビニルシランであ
る、請求項1ないし4いずれかの直流用ケ−ブル。
5. The direct current cable according to claim 1, wherein said surface treating agent is vinyl silane.
【請求項6】 ポリエチレンに有極性無機充填剤と架橋
剤を加えて成るコンパウンドを、スクリ−ンメッシュを
通して押し出して、絶縁層を導体の周囲に形成する直流
用ケ−ブルの製造方法において、前記有極性無機充填剤
を表面処理剤によって表面処理してから、表面未処理の
前記有極性無機充填剤とほぼ同等の平均粒子径及び最大
粒子径をもつように粉砕処理して前記コンパウンドとす
ることを特徴とする直流用ケ−ブルの製造方法。
6. A method for producing a DC cable, comprising extruding a compound obtained by adding a polar inorganic filler and a crosslinking agent to polyethylene through a screen mesh to form an insulating layer around a conductor. After the polar inorganic filler is surface-treated with a surface treating agent, it is pulverized so as to have an average particle diameter and a maximum particle diameter substantially equal to those of the surface-untreated polar inorganic filler to form the compound. A method for producing a DC cable.
【請求項7】 前記有極性無機充填剤は、前記表面処理
剤としてビニルシランを用いて表面処理される、請求項
6の直流用ケ−ブルの製造方法。
7. The method for producing a direct current cable according to claim 6, wherein said polar inorganic filler is surface-treated using vinylsilane as said surface treating agent.
【請求項8】 前記粉砕処理はジェット粉砕により行な
われる、請求項6又は7の直流用ケ−ブルの製造方法。
8. The method for producing a direct current cable according to claim 6, wherein the pulverization is performed by jet pulverization.
【請求項9】 前記表面処理剤によって表面処理された
前記有極性無機充填剤は、前記粉砕処理後コンパウンド
調製まで低湿度雰囲気中に置かれる、請求項6ないし8
いずれかの直流用ケ−ブルの製造方法。
9. The polar inorganic filler surface-treated with the surface treatment agent is placed in a low-humidity atmosphere after the pulverization treatment until compound preparation.
A method for producing any of the DC cables.
【請求項10】 前記表面処理剤によって表面処理され
た前記有極性無機充填剤は、前記粉砕処理後コンパウン
ド調製前に温度60℃以上90℃以下の乾燥雰囲気で乾
燥処理を施される、請求項6ないし8いずれかの直流用
ケ−ブルの製造方法。
10. The polar inorganic filler surface-treated with the surface treatment agent is subjected to a drying treatment in a dry atmosphere at a temperature of 60 ° C. or more and 90 ° C. or less after the pulverization treatment and before compound preparation. 6. A method for manufacturing a DC cable according to any one of 6 to 8.
JP24063197A 1997-09-05 1997-09-05 DC cable manufacturing method Expired - Lifetime JP3430875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24063197A JP3430875B2 (en) 1997-09-05 1997-09-05 DC cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24063197A JP3430875B2 (en) 1997-09-05 1997-09-05 DC cable manufacturing method

Publications (2)

Publication Number Publication Date
JPH1186634A true JPH1186634A (en) 1999-03-30
JP3430875B2 JP3430875B2 (en) 2003-07-28

Family

ID=17062379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24063197A Expired - Lifetime JP3430875B2 (en) 1997-09-05 1997-09-05 DC cable manufacturing method

Country Status (1)

Country Link
JP (1) JP3430875B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191070A (en) * 2002-12-06 2004-07-08 Daihatsu Motor Co Ltd Coated surface inspection apparatus
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
US7579397B2 (en) 2005-01-27 2009-08-25 Rensselaer Polytechnic Institute Nanostructured dielectric composite materials
US8648257B2 (en) 2010-04-02 2014-02-11 Ls Cable & System Ltd. Insulation material composition for DC power cable and the DC power cable using the same
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
JP2014218617A (en) * 2013-05-10 2014-11-20 株式会社ジェイ・パワーシステムズ Resin composition and dc cable
WO2016000735A1 (en) 2014-06-30 2016-01-07 Abb Technology Ltd Power transmission cable
WO2020204012A1 (en) 2019-03-29 2020-10-08 古河電気工業株式会社 Insulating resin composition and production method therefor, insulating tape and production method therefor, insulating layer formation method, and power cable and production method therefor
WO2022163197A1 (en) * 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291022A (en) * 2005-04-11 2006-10-26 J-Power Systems Corp Insulating composition, wire/cable, and method for producing insulating composition
KR101161360B1 (en) 2010-07-13 2012-06-29 엘에스전선 주식회사 DC Power Cable Having Reduced Space Charge Effect
KR101318481B1 (en) 2012-09-19 2013-10-16 엘에스전선 주식회사 Insulating composition for dc power cable and dc power cable prepared by using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191070A (en) * 2002-12-06 2004-07-08 Daihatsu Motor Co Ltd Coated surface inspection apparatus
US7579397B2 (en) 2005-01-27 2009-08-25 Rensselaer Polytechnic Institute Nanostructured dielectric composite materials
US7884149B2 (en) 2005-01-27 2011-02-08 Rensselaer Polytechnic Institute, Inc. Nanostructured dielectric composite materials
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
JP2007103247A (en) * 2005-10-06 2007-04-19 J-Power Systems Corp Insulation composite and electric wire/cable
EP2436014A4 (en) * 2010-04-02 2015-11-25 Ls Cable Ltd Insulation material composition for dc power cable and the dc power cable using the same
US8648257B2 (en) 2010-04-02 2014-02-11 Ls Cable & System Ltd. Insulation material composition for DC power cable and the DC power cable using the same
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
JP2014218617A (en) * 2013-05-10 2014-11-20 株式会社ジェイ・パワーシステムズ Resin composition and dc cable
WO2016000735A1 (en) 2014-06-30 2016-01-07 Abb Technology Ltd Power transmission cable
WO2020204012A1 (en) 2019-03-29 2020-10-08 古河電気工業株式会社 Insulating resin composition and production method therefor, insulating tape and production method therefor, insulating layer formation method, and power cable and production method therefor
KR20210144724A (en) 2019-03-29 2021-11-30 후루카와 덴키 고교 가부시키가이샤 Insulating resin composition and its manufacturing method, insulating tape and its manufacturing method, insulating layer forming method, and electric power cable and its manufacturing method
WO2022163197A1 (en) * 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable

Also Published As

Publication number Publication date
JP3430875B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
KR101362560B1 (en) Cross-linked polyethylene compositions
KR101161360B1 (en) DC Power Cable Having Reduced Space Charge Effect
KR101318481B1 (en) Insulating composition for dc power cable and dc power cable prepared by using the same
US3096210A (en) Insulated conductors and method of making same
JPH1186634A (en) Dc cable and its manufacture
JP2000357419A (en) Semiconductive shield for cable
KR20110110928A (en) Insulation material composition for dc power cable and the dc power cable using the same
JPH01246707A (en) Semiconductive resin composition
JP2007103247A (en) Insulation composite and electric wire/cable
KR101318457B1 (en) Insulating composition for dc power cable and dc power cable prepared by using the same
JP2006066262A (en) Electric wire or cable
JP2000511212A (en) Treated carbonaceous compositions and improved polymer compositions
KR101770351B1 (en) Semiconductive composition
JP3428388B2 (en) DC cable
KR20190000272A (en) Direct current power cable
JP2001302856A (en) Semiconductive resin composition and electric cable using the same
JPH1186635A (en) Dc cable
JP3289424B2 (en) Polyolefin insulated wire
US4085249A (en) Semiconductive composition having controlled strippability
KR101388136B1 (en) DC Power Cable Using Semiconductive Composition And Insulation Composition
KR101408924B1 (en) Insulation Material Composition For DC Power Cable And The DC Power Cable Using The Same
JPH0668714A (en) Crosslinked polyolefin insulated electric cable
KR20180091555A (en) Compound for a semiconductor layer of a power cable and power cable including the same
JPS61253713A (en) Dc power cable
JPS6210254B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term