JPH1180841A - Method for heating and cooling metal and device therefor - Google Patents

Method for heating and cooling metal and device therefor

Info

Publication number
JPH1180841A
JPH1180841A JP27321197A JP27321197A JPH1180841A JP H1180841 A JPH1180841 A JP H1180841A JP 27321197 A JP27321197 A JP 27321197A JP 27321197 A JP27321197 A JP 27321197A JP H1180841 A JPH1180841 A JP H1180841A
Authority
JP
Japan
Prior art keywords
cooling
heating
cooled
gap
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27321197A
Other languages
Japanese (ja)
Inventor
Masutarou Azami
益太郎 莇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN ORUSON INTANASHIYONARU K
JAPAN ORUSON INTANASHIYONARU KK
Original Assignee
JAPAN ORUSON INTANASHIYONARU K
JAPAN ORUSON INTANASHIYONARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN ORUSON INTANASHIYONARU K, JAPAN ORUSON INTANASHIYONARU KK filed Critical JAPAN ORUSON INTANASHIYONARU K
Priority to JP27321197A priority Critical patent/JPH1180841A/en
Publication of JPH1180841A publication Critical patent/JPH1180841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the rapid lowering of heat transmission under mutually contacting condition of solids caused by the development of air gap by holding a heating material or a cooling material and a heating source or a cooling source under press-contacting condition or to have the interval of <= a specific size and filling gaseous hydrogen into the gap between both materials. SOLUTION: The interval is set to <=2 mm and the gap between both materials is filled up with the gaseous hydrogen. For example, molten steel 11 is cast into a mold 12 for continuous casting and the outer shell 14 of a cast slab 13 is formed and becomes the solidified shell 15 by rapidly growing with the contact-cooling having large heat transmission at the upper part of the mold 12, but a part of the outer shell 14 is separated from the surface of the mold 12 due to the shrinkage caused by solidification and the thermal deformation caused by cooling in about few sec to develop the air gap 16. As a result, the cooling capacity at this position is quickly and largely lowered causing to unevenness of the solidified shell thickness. Then, at the time of injecting the gaseous hydrogen having large thermal conductivity into the air gap 16 from gas introducing holes 17, the heat insulation of the air gap 16 is broken and the heat transmission is drastically improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属の加熱、冷却方法に
関し、特に被処理金属と加熱源もしくは冷却源物体との
接触的な伝熱を強化する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating and cooling a metal, and more particularly to a method and an apparatus for enhancing the contact heat transfer between a metal to be treated and a heating source or a cooling source object.

【0002】[0002]

【従来の技術】金属の鋳造、加熱、熱処理等において被
処理物体はしばしば加熱源もしくは冷却源物体と接触も
しくは近接した状態で熱の授受が行われる。このような
場合、放射伝熱や気体対流伝熱に比べ大きな伝熱性がえ
られるが、伝熱の主体は微視的には微少、多数の接合点
を通る固体熱伝導と気体境界膜を通した熱伝導からなる
ので接触状態や境界膜の厚さに強く影響され制御困難と
いう特徴がある。以下所望の伝熱性能を安定して得るに
あたり従来の加熱、冷却における問題点を 検討する。
2. Description of the Related Art In metal casting, heating, heat treatment, and the like, an object to be processed often transfers heat while in contact with or in close proximity to a heating source or cooling source object. In such a case, large heat transfer is obtained compared to radiative heat transfer or gas convection heat transfer, but the main heat transfer is microscopically small, and solid heat conduction passing through a large number of junctions and gas boundary film pass through. It is characterized by difficulties in control because it is strongly influenced by the contact state and the thickness of the boundary film because of the heat conduction. In the following, problems in conventional heating and cooling are considered in order to stably obtain the desired heat transfer performance.

【0003】連続鋳造用水冷鋳型; 銅製水冷鋳型に溶
融金属が鋳込まれると直ちに鋳片の外皮が形成され成長
する。数秒後には外皮は熱収縮により鋳型から離れいわ
ゆるエア・ギャップが発生し、その結果冷却能は急速に
低下する。この現象は極めて不均等、不安定であるため
外皮の成長と形状に異常が生じワレ等の鋳造不良やブレ
イクアウト等の事故の原因となっている。鋳型の精密テ
ーパー化という対策では、エア・ギャップ量を小さくす
るのでそれなりの効果はあるが鋳型自体の変形や鋼種に
よる収縮差もあって完全ではない。
[0003] Water-cooled mold for continuous casting: As soon as molten metal is cast into a copper water-cooled mold, the outer skin of the slab is formed and grows. After a few seconds, the skin separates from the mold due to heat shrinkage, creating a so-called air gap, which results in a rapid decrease in cooling capacity. Since this phenomenon is extremely uneven and unstable, the growth and shape of the outer skin are abnormal, which causes casting defects such as cracks and accidents such as breakout. The measure of precisely tapering the mold has a certain effect because the amount of air gap is reduced, but is not perfect due to the deformation of the mold itself and the difference in shrinkage due to the type of steel.

【0004】特開平9−103846では鋳型に適正な
テーパーをつけて接触性を改善し且つ鋳型表面に凹凸を
持たせ予め制御されたエア・ギャップを形成することに
より冷却、凝固の均等化を図っているが、冷却能が低下
して鋳造能率が不利になるという問題がある。
Japanese Patent Application Laid-Open No. Hei 9-103846 attempts to equalize cooling and solidification by forming a pre-controlled air gap by providing a mold with an appropriate taper to improve the contact property and to make the mold surface uneven. However, there is a problem that the cooling efficiency is reduced and the casting efficiency becomes disadvantageous.

【0005】溶融鉛浴浸漬法; 鋼部品や鋼線ではしば
しば鉛浴浸漬によって加熱、冷却される。被処理物体と
熱媒体との離反は無く安定且つ大きな伝熱性が得られる
が融点以下では使用不能、高温では鉛蒸気による汚染問
題がある。
Molten lead bath immersion method: Steel parts and steel wires are often heated and cooled by immersion in a lead bath. There is no separation between the object to be treated and the heat medium, and a stable and large heat conductivity can be obtained. However, it cannot be used below the melting point, and there is a problem of contamination by lead vapor at high temperatures.

【0006】溶融塩浴浸漬法でも同様の効果があるが付
着塩の除去工程が不可欠となってやはり繁雑さは避けら
れない。
Although the same effect can be obtained by the molten salt bath immersion method, the step of removing the attached salt is indispensable, and the complexity is still unavoidable.

【0007】板状鋼材のプレス・クエンチ; 鋼材寸法
が精密で且つ極めて平滑の場合は均等で且つ大きな冷却
能が得られる。大型鋼材では表面の平滑性が必ずしも良
くなく焼入れは不均等になって硬化不足や変形の原因と
なる。
Press quenching of plate-shaped steel material: If the steel material is precise and extremely smooth, a uniform and large cooling capacity can be obtained. In the case of large steel materials, the smoothness of the surface is not always good and quenching becomes uneven, leading to insufficient hardening and deformation.

【0008】雰囲気制御熱処理; 伝熱性と表面品質の
改善を目的に水素雰囲気中での加熱、冷却法が使用され
る。この場合伝熱は主に放射と対流によって成されるの
で他のガスを使用する場合に比べ伝熱性の向上はあるが
伝熱性自体が接触伝熱の10分の1程度以下と小さいの
で用途が限定される。
Atmosphere control heat treatment: A heating and cooling method in a hydrogen atmosphere is used for the purpose of improving heat transfer and surface quality. In this case, heat transfer is mainly performed by radiation and convection, so there is an improvement in heat transfer compared to the case where other gases are used, but the heat transfer itself is less than about one-tenth of contact heat transfer, so it is not suitable for applications. Limited.

【0009】[0009]

【発明が解決しようとする課題】本発明はこのような従
来の問題点を解消しようとするものであり、伝熱性のき
わめて大きい接触方式を対象としている。即ち個体どう
しの接触状態における伝熱性が不安定なエア・ギャップ
の発生によって急低下するのを抑制し、結果的に伝熱性
の向上と安定によって当該工程の品質安定だけでなく能
率向上を目的としている。
SUMMARY OF THE INVENTION The present invention is intended to solve such a conventional problem and is directed to a contact system having extremely high heat conductivity. In other words, the heat conductivity in the contact state between the individuals is suppressed from suddenly dropping due to the generation of an unstable air gap. As a result, not only the quality of the process but also the efficiency is improved by the improvement and stability of the heat conductivity. I have.

【0010】[0010]

【課題を解決するための手段】上記問題を解明し解決を
図るため発明者は鋳造におけるエア・ギャップの断熱
性、固定接触式もしくは制御されたエヤ・ギャップを持
つ摺動接触式の伝熱装置の低伝熱性をそれぞれ必然的、
不可避的なものとあきらめずに見直した結果、極めて単
純な事実に気付き実効ある手段の提供とその理論的裏付
けをなすに至った。即ち、エア・ギャップを通過する伝
熱はギャップ量が極めて小さいので主としてガス膜の熱
伝導に依存しており、従ってガス体の熱伝導率は決定的
要因となる。水素ガスの熱伝導率は空気その他一般的な
ガスのそれの5〜10倍の大きさを持つ。両物体の間隙
を水素ガスで満たすことにより伝熱性は飛躍的に向上す
る。この原理を応用して以下の発明を構成した。
SUMMARY OF THE INVENTION In order to solve and solve the above problems, the inventor of the present invention has insulated air gaps in casting, a fixed contact type or a sliding contact type heat transfer device having a controlled air gap. Inevitably low heat transfer of each,
As a result of revisiting it as unavoidable, I realized a very simple fact and provided an effective means and supported it theoretically. That is, the heat transfer through the air gap mainly depends on the heat conduction of the gas film since the gap amount is extremely small, and therefore the heat conductivity of the gas is a decisive factor. The thermal conductivity of hydrogen gas is 5 to 10 times larger than that of air and other general gases. By filling the gap between the two bodies with hydrogen gas, the heat conductivity is dramatically improved. The following invention was constituted by applying this principle.

【0011】第1の発明は被加熱もしくは被冷却物体と
加熱源もしくは冷却源物体とが接触もしくは近接状態で
熱の授受を行う方法において、該被加熱もしくは被冷却
物体と該加熱源もしくは冷却源物体を伝熱面において圧
着状態もしくは2mm以下の間隔とし且つ該両物体の間
隙に水素ガスを充満させることを特徴とする物体の加熱
もしくは冷却方法である。
According to a first aspect of the present invention, there is provided a method for transferring heat in a state where a heated or cooled object and a heating or cooling source object are in contact with or in close proximity to each other. A method of heating or cooling an object, wherein the object is pressed on the heat transfer surface or in an interval of 2 mm or less, and a gap between the two objects is filled with hydrogen gas.

【0012】第2の発明は、被冷却物体が連続鋳造中の
鋼の鋳片てあり冷却源物体が連続鋳造用鋳型である請求
項1に記載の物体の冷却方法である。
A second invention is the method for cooling an object according to claim 1, wherein the object to be cooled is a steel slab during continuous casting, and the cooling source object is a continuous casting mold.

【0013】第3の発明は被加熱もしくは被冷却物体が
走行している鋼線であり、所定温度に制御された加熱源
もしくは冷却源物体と該鋼線表面円周の一部もしくは全
周で鋼線軸方向に摺動接触しつつ連続加熱もしくは連続
冷却することを特徴とする請求項1に記載の物体の加熱
もしくは冷却方法である。
[0013] A third invention is a steel wire in which an object to be heated or cooled is running, and a heating source or a cooling source object controlled to a predetermined temperature and a part or all of the circumference of the surface of the steel wire. The method for heating or cooling an object according to claim 1, wherein continuous heating or continuous cooling is performed while slidingly contacting the steel wire in the axial direction.

【0014】第4の発明は加熱もしくは冷却される物体
が平板状の鋼材であり、所定温度に制御さた加熱源もし
くは冷却源物体が平板状であって該鋼材の表面の一部も
しくは全面に圧着、接触させて回分式に加熱もしくは冷
却することを特徴とする請求項1に記載の物体の加熱も
しくは冷却方法である。
According to a fourth aspect of the present invention, the object to be heated or cooled is a flat steel material, and the heating source or cooling source object controlled at a predetermined temperature is flat and a part or the entire surface of the steel material is provided. The method for heating or cooling an object according to claim 1, wherein the object is heated or cooled in a batchwise manner by pressing and contacting.

【0015】第5の発明は上述の如き物体の加熱もしく
は冷却方法を実施する装置を提供する。
According to a fifth aspect of the present invention, there is provided an apparatus for performing the above-described method of heating or cooling an object.

【0016】[0016]

【発明の実施の形態】図1は第1の発明の概念的説明図
であって図の左半は本発明、右半は従来方法を示す。1
は被冷却物体、2は冷却源物体であって図の上半は両物
体の接触状態、下半は近接状態を示す。本発明において
は、冷却物体2はその内部を通る水素ガスの通路を有す
ると共にその放出口は被冷却物体1との熱の授受部分に
設けられている。こうして両物体の間隙には本発明では
水素ガスが充満しており、従来方法では空気、水蒸気な
どが介在している。水素ガスの熱伝導率は空気、水蒸気
その他一般ガスのそれの5〜10倍になるので、間隙部
6の厚さが小さい場合には水素ガスを充満させることに
より両物体間の伝熱性を飛躍的に向上させることができ
る。以下定量的に検討する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual explanatory view of the first invention. The left half of the drawing shows the present invention, and the right half shows a conventional method. 1
Is an object to be cooled, 2 is a cooling source object, the upper half of the figure shows a contact state between the two objects, and the lower half shows a close state. In the present invention, the cooling object 2 has a passage for the hydrogen gas passing through the inside thereof, and its discharge port is provided at a portion where heat is exchanged with the object 1 to be cooled. Thus, the gap between the two bodies is filled with hydrogen gas in the present invention, and air, water vapor, and the like are interposed in the conventional method. Since the thermal conductivity of hydrogen gas is 5 to 10 times that of air, water vapor or other general gas, when the thickness of the gap 6 is small, the heat transfer between the two objects is increased by filling with hydrogen gas. Can be improved. It will be discussed quantitatively below.

【0017】両物体間の接触部3は物理的且つ微視的に
は多数の微少な接合部5とその周辺の間隙部6からなっ
ている。従って両物体間の伝熱は接合部5を介した固体
伝導伝熱と間隙部6のガス層を介した伝導伝熱と放射に
よってなされる。他方近接状態における伝熱は間隙部6
のガス層を介する伝導伝熱と放射だけであり対流は寄与
していない。
The contact portion 3 between the two objects is physically and microscopically composed of a large number of minute joints 5 and a gap 6 therearound. Therefore, the heat transfer between the two objects is performed by the solid state heat transfer through the joint 5 and the heat transfer and radiation through the gas layer in the gap 6. On the other hand, the heat transfer in the proximity state is
Convection does not contribute to the conduction heat and radiation through the gas layer.

【0018】間隙部6の放射分は容易に見積もることが
できる。即ち両物体間の温度差は実用範囲では500〜
1500℃程度であり従って放射による熱伝達率は間隙
の厚さに関係なく高々200(W/mK)である。ガ
ス層の伝導分はガス層の厚さと介在ガスの熱伝導率から
両物体間の熱伝達(=ガスの熱伝導率/ガス層厚)とし
て評価できる。いまガス層厚を1mmとして水素ガスと
空気の500℃における熱伝導率をそれぞれ0.05、
0.35(W/mK)とすると熱伝達率はそれぞれ5
0、350(W/mK)となってガス伝導と放射伝熱
の割合とガス層厚との関係が推量できる。
The radiation of the gap 6 can be easily estimated. That is, the temperature difference between the two objects is 500 to 500 in a practical range.
It is of the order of 1500 ° C. and therefore the heat transfer coefficient by radiation is at most 200 (W / m 2 K), irrespective of the thickness of the gap. The conductive component of the gas layer can be evaluated as heat transfer between both bodies (= thermal conductivity of gas / gas layer thickness) from the thickness of the gas layer and the thermal conductivity of the intervening gas. Now, assuming that the gas layer thickness is 1 mm, the thermal conductivity of hydrogen gas and air at 500 ° C. is 0.05, respectively.
Assuming 0.35 (W / mK), the heat transfer coefficient is 5
It becomes 0, 350 (W / m 2 K), and the relationship between the ratio of gas conduction and radiation heat transfer and the gas layer thickness can be inferred.

【0019】間隙部のガス層厚と総合熱伝達率の関係を
計算した結果を表1にまとめる。表より間隙熱伝達はガ
ス層厚に反比例的であること、水素ガスの効果は一目瞭
然であって、しかもガス膜厚が小さいほど熱伝達率の増
加率、増加量とも著しいことが解る。
Table 1 summarizes the results of calculating the relationship between the gas layer thickness in the gap and the total heat transfer coefficient. From the table, it can be seen that the gap heat transfer is inversely proportional to the gas layer thickness, and that the effect of hydrogen gas is obvious at a glance, and that the smaller the gas film thickness, the greater the rate and amount of increase in the heat transfer coefficient.

【0020】本発明において間隙を2mm以下と限定し
た理由は、2mm以上になると熱伝達率の水素による増
加量及び熱伝達率そのものの値ともあまり大きくないの
で本発明の目的とする高能率の加熱、冷却には適さない
からである。
The reason why the gap is limited to 2 mm or less in the present invention is that, when the gap is 2 mm or more, the amount of increase in heat transfer coefficient due to hydrogen and the value of the heat transfer coefficient itself are not so large. It is not suitable for cooling.

【0021】接触状態や間隙がきわめて小さい場合、被
冷却物体及び冷却源物体の表面に粘着しているガスは容
易には水素ガスと置換せず実用にはそれなりの工夫を要
する。
When the contact state or the gap is extremely small, the gas adhering to the surface of the object to be cooled and the surface of the cooling source object is not easily replaced with hydrogen gas, and a certain measure is required for practical use.

【0022】図2は第1の発明を具体的に応用した第2
の発明を実施する連続鋳造用鋳型を例示する概略側面図
である。溶鋼11が鋳型12に鋳込まれ直ちに鋳片13
の外皮14が形成される。該外皮14は該鋳型12の上
部において、大きな伝熱性を持つ接触冷却により急速に
成長して凝固殻15となるが、数秒以内、距離では液面
下約100mm程度で、凝固による収縮や冷却による熱
変形により該外皮14の一部が該鋳型12の表面から離
れ、いわゆるエア・ギャップ16が発生する。その結果
その部分の冷却性能は急速に且つ大きく低下し凝固殻厚
の不均等化の原因になる。溶鋼熱による再加熱と溶鋼静
圧により該凝固殻15の一部は変形して該鋳型12に再
接触することもある。鋳型の熱変形も絡み、エア・ギャ
ップの形状、厚さ、発生時期などは一定せず異常が異常
を誘発するように最大1mmのギャップも観察される。
FIG. 2 shows a second embodiment in which the first invention is specifically applied.
It is a schematic side view which illustrates the continuous casting mold which implements the invention of FIG. As soon as molten steel 11 is cast into a mold 12,
Is formed. The outer shell 14 grows rapidly at the upper part of the mold 12 by contact cooling having a large heat conductivity to become a solidified shell 15, but within a few seconds, about 100 mm below the liquid level at a distance, due to shrinkage and cooling due to solidification. A part of the outer skin 14 is separated from the surface of the mold 12 due to the thermal deformation, and a so-called air gap 16 is generated. As a result, the cooling performance of that portion is rapidly and greatly reduced, causing unevenness of the solidified shell thickness. A portion of the solidified shell 15 may be deformed and re-contact the mold 12 due to reheating by molten steel heat and molten steel static pressure. The shape and thickness of the air gap are not fixed, and a gap of up to 1 mm is observed so that an abnormality induces an abnormality.

【0023】該鋳型12の上下方向中央部には鋳型壁を
貫通して3mm径のガス導入孔17が4面に設けてあり
該ガス導入孔17から水素ガスが該エア・ギャップ16
に注入される。エア・ギャップ部には通常空気が存在す
るがオイル・キャストの場合は油分解ガスや水蒸気の共
存も考えられる。いずれにしろそれらの熱伝導率は空気
と同様水素ガスに比べ著しく小さい。水素ガスの注入に
より該エア・ギャップ16の断熱性が破られ伝熱性は格
段に向上する結果、位置による凝固進行の差異は抑制さ
れ、さらにそれがエア・ギャップの異常な成長を抑制す
る。
At the center of the mold 12 in the vertical direction, gas introduction holes 17 each having a diameter of 3 mm are provided on four sides through the mold wall, and hydrogen gas is supplied from the gas introduction holes 17 to the air gap 16.
Is injected into. Normally, air exists in the air gap portion. However, in the case of oil casting, coexistence of oil decomposition gas and water vapor may be considered. In any case, their thermal conductivity is much lower than that of hydrogen gas, like air. The injection of hydrogen gas breaks the heat insulation of the air gap 16 and significantly improves the heat transfer. As a result, the difference in solidification progress depending on the position is suppressed, which further suppresses abnormal growth of the air gap.

【0024】次に鋳片表面と鋳型内面間の熱伝達を概算
し水素ガス注入の効果を定量的に検討する。接触冷却に
おける熱流束の値は通常約3〜6×10(W/m
とされており、エア・ギャップ発生領域ではこれが容易
に1×10(W/m2)以下、場合により0.5×1
(W/m)以下にも低下する。この偏差はエア・
ギャップの面積率と厚さに依存していると考えられる。
Next, the heat transfer between the surface of the slab and the inner surface of the mold is roughly estimated to quantitatively examine the effect of hydrogen gas injection. The value of the heat flux in the contact cooling is usually about 3 to 6 × 10 6 (W / m 2 ).
In the air gap generation region, this is easily reduced to 1 × 10 6 (W / m 2) or less, sometimes 0.5 × 1
0 6 (W / m 2) drops below. This deviation is
It is considered that it depends on the area ratio and thickness of the gap.

【0025】これらの値から両面間の熱伝達率を概算す
ると、両面間の温度差は約1000℃程度であるから、
それぞれ約3000〜6000、1000、500(W
/mK)となる。
When the heat transfer coefficient between both surfaces is roughly estimated from these values, the temperature difference between both surfaces is about 1000 ° C.
About 3000-6000, 1000, 500 (W
/ M 2 K).

【0026】表1を参考にして上記の値からエア・ギャ
ップの厚さを推定するとそれぞれ0.02〜0.01,
0.06,0.2mmとなり知られている範囲より小さ
い。しかし鋳型上部だけでなく各所に接触部が存在して
いると考えるとエア・ギャップ厚はもっと大きく見積も
られるので観察とは乖離しない。従って上記の数値より
一層大きなギャップ厚に対して、即ち一層小さな熱伝達
率に対して水素注入による熱伝導率倍数の効果が得られ
ることになる。
Referring to Table 1, the thickness of the air gap is estimated from the above values to be 0.02 to 0.01,
0.06, 0.2 mm, which is smaller than the known range. However, considering that there are contact portions not only at the upper part of the mold but also at various places, the air gap thickness is more greatly estimated, so that it does not deviate from the observation. Therefore, the effect of the thermal conductivity multiple by hydrogen implantation can be obtained for a gap thickness larger than the above value, that is, for a smaller heat transfer coefficient.

【0027】第3の発明を図3に従って説明する。加熱
される鋼線21は円筒状の加熱装置22の軸芯部を貫通
しつつ走行している。加熱装置22は円筒状発熱体23
と該発熱体23に内接し軸芯部に貫通孔25を持つ円柱
状の伝熱体24からなる。該加熱装置22は全長が半円
柱状に2分割されていてヒンジ26を介して開閉可能と
なっている。閉鎖時にはばね27を介して両分割面が押
し合う。該貫通孔25は2個の溝28で形成されるの
で、該溝28を適切な寸法、形状例えばV型にすること
により該鋼線21を圧するように挟み摺動させることが
でき、しかも摺動接触幅を大きくてきるとともに、非接
触部分における該鋼線21と溝28との間隙をより小さ
くすることができる。該加熱装置22の内部にはガス導
入孔29が設けられその放出口は鋼線21との熱の授受
部分に設けられている。該ガス導入孔29より水素ガス
が注入され、鋼線21、伝熱体24、発熱体23間の伝
熱を促進させる。30はガスケットで水素ガスの漏れを
防ぐ。発熱体としては常用されている種々の手段、例え
ば抵抗発熱体を使えばよく、伝熱体には耐熱性、耐摩
性、伝熱性等の観点より硬質黒鉛が適切である。
The third invention will be described with reference to FIG. The steel wire 21 to be heated runs while penetrating the shaft core of the cylindrical heating device 22. The heating device 22 includes a cylindrical heating element 23.
And a columnar heat transfer body 24 inscribed in the heating element 23 and having a through hole 25 in a shaft core portion. The heating device 22 is divided into two half-columns in total length, and can be opened and closed via a hinge 26. At the time of closing, the two divided surfaces press against each other via the spring 27. Since the through hole 25 is formed by two grooves 28, the steel wire 21 can be pinched and slid by pressing the steel wire 21 by forming the groove 28 into an appropriate size and shape, for example, a V-shape. The dynamic contact width can be increased, and the gap between the steel wire 21 and the groove 28 in the non-contact portion can be further reduced. A gas introduction hole 29 is provided inside the heating device 22, and a discharge port thereof is provided at a portion where heat is exchanged with the steel wire 21. Hydrogen gas is injected from the gas introduction hole 29 to promote heat transfer between the steel wire 21, the heat transfer body 24, and the heating element 23. Reference numeral 30 denotes a gasket for preventing hydrogen gas from leaking. As the heating element, various means that are commonly used, for example, a resistance heating element may be used. Hard graphite is suitable for the heat transfer element from the viewpoint of heat resistance, abrasion resistance, heat transfer property and the like.

【0028】上記の方法および装置により容易に100
0(W/mK)以上の熱伝達率を得ることができ、溶
融鉛浴、溶融塩浴と同様の均一且つ高能率の加熱が可能
となり、しかも鋼線表面の劣化、汚染は生じないので特
にプレス・テンパーの処理には適切である。上記の装置
において該発熱体23を冷却体、例えば水冷管にすると
該加熱装置22は冷却装置として使用でき、特にプレス
・クエンチ処理には適切である。
With the above method and apparatus, 100
A heat transfer coefficient of 0 (W / m 2 K) or more can be obtained, and uniform and high-efficiency heating similar to a molten lead bath or a molten salt bath can be performed, and furthermore, deterioration and contamination of the steel wire surface do not occur. Therefore, it is particularly suitable for the processing of press temper. When the heating element 23 is a cooling body, for example, a water cooling tube in the above-described apparatus, the heating apparatus 22 can be used as a cooling apparatus, and is particularly suitable for press quench processing.

【0029】第4の発明を図4に従って説明する。冷却
装置31は互いに対面する板状の冷却面32を持つ2個
の冷却体33と該冷却体33を互いに平行して接近、離
反させるプッシャー34から構成されている。加熱され
た板状の鋼材35を両冷却面32の間に装入し両プッシ
ャー34を押し出してそれぞれ該鋼材35の表裏に接近
させるとともに冷却体33を貫通しているガス導入孔3
6により水素ガスを吹き出して冷却面32と鋼材35面
の間隙37を水素ガスで充満させる。さらに該冷却体3
3で鋼材35を一層強く圧下すると通常の接触冷却以上
の冷却能で焼入れされるとともに焼入れに伴う変形も拘
束されプレス・クエンチがなされる。冷却体33には冷
却水系38が付設されているが冷却体33の温度を適切
に設定すると噴流水冷却では困難な所定温度の恒温変態
処理も容易にできる。
The fourth invention will be described with reference to FIG. The cooling device 31 includes two cooling members 33 having plate-shaped cooling surfaces 32 facing each other, and a pusher 34 for moving the cooling members 33 toward and away from each other in parallel. A heated plate-like steel material 35 is inserted between the cooling surfaces 32 and both pushers 34 are pushed out so as to approach the front and back of the steel material 35, respectively, and the gas introduction holes 3 penetrating through the cooling body 33.
The hydrogen gas is blown out by 6 to fill the gap 37 between the cooling surface 32 and the steel material 35 surface with the hydrogen gas. Further, the cooling body 3
When the steel material 35 is more strongly reduced in 3, the steel material 35 is quenched with a cooling capacity higher than the normal contact cooling, and deformation due to quenching is restrained, and press quench is performed. The cooling body 33 is provided with a cooling water system 38, but if the temperature of the cooling body 33 is appropriately set, a constant temperature transformation process at a predetermined temperature, which is difficult with jet water cooling, can be easily performed.

【0030】[0030]

【実施例】第1の発明を鋼のビレット連続鋳造における
鋳型部位に応用試験した。鋳造条件を以下に示す。 鋳型方式 ;チューブラ湾曲式 鋳型寸法 ;115mm角×700mm 鋳込み鋼種;S45C 引抜き速度;2.5m/min 通常鋳込み時における鋳型部位の抜熱量は8200kc
al/minであったが鋳型の上下中央部の各面に設け
た鋳型銅板を貫通するガス導入孔より水素ガスをエア・
ギャップ部に注入すると抜熱量は10100Kcal/
minに増加した。以上から本発明が基づいている原理
の有効性が明らかとなった。鋳型各部の冷却能に及ぼす
テーパー、鋼種、鋳型変形、水素ガス量、引抜き速度、
冷却水温・水量などの要因の寄与の定量化は今後の調査
に委ねる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first invention was applied to a mold portion in continuous billet casting of steel. The casting conditions are shown below. Mold type: Tubular curved type Mold dimensions: 115 mm square x 700 mm Cast steel type: S45C Pulling speed: 2.5 m / min The amount of heat removed from the mold part during normal casting is 8,200 kc
al / min, but hydrogen gas was supplied from the gas introduction hole through the mold copper plate provided on each of the upper and lower central portions of the mold.
When injected into the gap, the heat removal is 10100 Kcal /
min. From the above, the effectiveness of the principle based on the present invention has been clarified. Effects of taper, steel type, mold deformation, hydrogen gas amount, drawing speed,
Quantification of the contribution of factors such as cooling water temperature and water volume will be left to future studies.

【0031】[0031]

【発明の効果】第1の発明では被加熱もしくは被冷却物
体と加熱源もしくは冷却源物体とが接触ないし近接状態
で熱の授受を行うに当たり両物体間の間隙を高熱伝導の
水素ガスで満たすので間隙が小さい場合には伝熱性が飛
躍向上する。間隙発生による伝熱の急減も抑制し高能
率、均一の加熱、冷却が容易となる。
According to the first aspect of the present invention, when the object to be heated or cooled and the object of the heating source or the object of the cooling source contact or approach each other to transfer heat, the gap between the two objects is filled with hydrogen gas having high thermal conductivity. When the gap is small, the heat transfer is greatly improved. A rapid decrease in heat transfer due to the generation of gaps is suppressed, and high efficiency, uniform heating and cooling are facilitated.

【0032】第2の発明では連続鋳造における鋳型部位
の冷却能に強く悪影響しているエア・ギャップの断熱性
を解消ないし緩和するので冷却能とその均一性が向上し
て鋳造能率が改善される。
According to the second aspect of the present invention, the heat insulating property of the air gap, which has a strong adverse effect on the cooling ability of the mold part in the continuous casting, is eliminated or relaxed, so that the cooling ability and its uniformity are improved and the casting efficiency is improved. .

【0033】第3、第4の発明では鋼線及び鋼板の熱処
理において伝熱性とその均一性の向上により生産能率お
よび品質とも改善される。
According to the third and fourth aspects of the present invention, in the heat treatment of the steel wire and the steel sheet, the productivity and the quality are improved by improving the heat conductivity and the uniformity thereof.

【0034】第5の発明では上述の如き物体の加熱もし
くは冷却方法を実施する装置が提供され、各発明を具体
的効果をもって実施することができる。
According to the fifth aspect of the present invention, there is provided an apparatus for performing the above-described method of heating or cooling an object, and each invention can be implemented with specific effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明を概念的に説明する図。FIG. 1 is a diagram conceptually illustrating a first invention.

【図2】第2の発明を実施する連続鋳造における鋳型部
の概略側面図。
FIG. 2 is a schematic side view of a mold portion in continuous casting for implementing the second invention.

【図3】第3の発明を実施する鋼線加熱装置を例示する
概略側面、断面図。
FIG. 3 is a schematic side view and a cross-sectional view illustrating a steel wire heating device embodying the third invention.

【図4】同様に第4の発明を実施する鋼板冷却装置を例
示する概略側面図。
FIG. 4 is a schematic side view exemplifying a steel plate cooling device embodying the fourth invention.

【符号の説明】[Explanation of symbols]

1:被冷却物体 2:冷却源物体 3:接触部
4:近接部 5:接合部 6:間隙部 11:溶
鋼 12:鋳型 13:鋳片14:外皮 15:
凝固殻 16:エア・ギャップ 17:ガス導入孔 21:鋼線 22:加熱装置 23:発熱体 2
4:伝熱体 25:貫通孔 26:ヒンジ 2
7:ばね 28:溝 29:ガス導入孔 30:ガスケット 31:冷却装置 32:冷却面
33:冷却体 34:プッシャー 35:鋼材
36:ガス導入孔 37:間隙 38:冷却水
1: Object to be cooled 2: Object of cooling source 3: Contact part
4: Proximity 5: Joint 6: Gap 11: Molten steel 12: Mold 13: Slab 14: Skin 15:
Solidification shell 16: Air gap 17: Gas introduction hole 21: Steel wire 22: Heating device 23: Heating element 2
4: Heat transfer body 25: Through hole 26: Hinge 2
7: Spring 28: Groove 29: Gas introduction hole 30: Gasket 31: Cooling device 32: Cooling surface 33: Cooling body 34: Pusher 35: Steel material 36: Gas introduction hole 37: Gap 38: Cooling water system

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被加熱もしくは被冷却物体と加熱源もし
くは冷却源物体とが接触もしくは近接状態で熱の授受を
行う方法において、該被加熱もしくは被冷却物体と該加
熱源もしくは該冷却源物体を伝熱面において圧着状態も
しくは2mm以下の間隔とし且つ該両物体の間隙に水素
ガスを充満させることを特徴とする物体の加熱もしくは
冷却方法。
1. A method for transferring heat in a state where a heated or cooled object and a heating source or a cooling source object are in contact with or in close proximity to each other, wherein the heated or cooled object and the heating source or the cooling source object are connected to each other. A method for heating or cooling an object, characterized in that the heat transfer surface is in a compressed state or at an interval of 2 mm or less and a gap between the two objects is filled with hydrogen gas.
【請求項2】 被冷却物体が連続鋳造中の鋼の鋳片であ
り冷却源物体が連続鋳造用鋳型である請求項1に記載の
物体の冷却方法。
2. The method for cooling an object according to claim 1, wherein the object to be cooled is a steel slab being continuously cast and the cooling source object is a casting mold for continuous casting.
【請求項3】 被加熱もしくは被冷却物体が走行してい
る鋼線であり、所定温度に制御された加熱源もしくは冷
却源物体と該鋼線表面円周の一部もしくは全周で鋼線軸
方向に摺動接触しつつ連続加熱もしくは連続冷却するこ
とを特徴とする請求項1に記載の物体の加熱もしくは冷
却方法。
3. A steel wire in which an object to be heated or cooled is running, and a heating source or cooling source object controlled at a predetermined temperature and a part or the entire circumference of the surface of the steel wire in the axial direction of the steel wire. 2. The method for heating or cooling an object according to claim 1, wherein the object is continuously heated or continuously cooled while being in sliding contact with the object.
【請求項4】 被加熱もしくは被冷却物体が平板状の鋼
材であり、所定温度に制御さた加熱源もしくは冷却源物
体が平板状であって該鋼材の表面の一部もしくは全面に
圧着、接触させて回分式に加熱もしくは冷却することを
特徴とする請求項1に記載の物体の加熱もしくは冷却方
法。
4. An object to be heated or cooled is a flat steel material, and a heating source or a cooling source object controlled at a predetermined temperature is flat and is pressed and contacted on a part or the whole surface of the steel material. The method for heating or cooling an object according to claim 1, wherein the heating or cooling is performed batchwise.
【請求項5】 被加熱もしくは被冷却物体と加熱源もし
くは冷却源物体とが接触もしくは近接状態で熱の授受を
行う装置において、前記加熱源又は冷却源物体はその内
部を通る水素ガスの通路を有すると共に前記通路の放出
口を前記被加熱もしくは被冷却物体との熱の授受部分に
設けてなることを特徴とする物体の加熱もしくは冷却装
置。
5. An apparatus for exchanging heat in a state where a heated or cooled object and a heating or cooling source object are in contact with or in close proximity to each other, wherein the heating or cooling source object has a hydrogen gas passage passing therethrough. And a discharge port of the passage is provided at a portion where heat is exchanged with the object to be heated or cooled.
JP27321197A 1997-09-01 1997-09-01 Method for heating and cooling metal and device therefor Pending JPH1180841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27321197A JPH1180841A (en) 1997-09-01 1997-09-01 Method for heating and cooling metal and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27321197A JPH1180841A (en) 1997-09-01 1997-09-01 Method for heating and cooling metal and device therefor

Publications (1)

Publication Number Publication Date
JPH1180841A true JPH1180841A (en) 1999-03-26

Family

ID=17524656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27321197A Pending JPH1180841A (en) 1997-09-01 1997-09-01 Method for heating and cooling metal and device therefor

Country Status (1)

Country Link
JP (1) JPH1180841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040612A1 (en) * 2013-08-08 2015-02-12 Corning Incorporated Method of making glass articles
WO2018084193A1 (en) * 2016-11-04 2018-05-11 Metglas, Inc. Apparatus for annealing alloy ribbon and method of producing annealed alloy ribbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150040612A1 (en) * 2013-08-08 2015-02-12 Corning Incorporated Method of making glass articles
US9522837B2 (en) * 2013-08-08 2016-12-20 Corning Incorporated Method of making glass articles
WO2018084193A1 (en) * 2016-11-04 2018-05-11 Metglas, Inc. Apparatus for annealing alloy ribbon and method of producing annealed alloy ribbon

Similar Documents

Publication Publication Date Title
US4549599A (en) Preventing mold and casting cracking in high rate directional solidification processes
JPH1180841A (en) Method for heating and cooling metal and device therefor
US4911226A (en) Method and apparatus for continuously casting strip steel
JPS6277152A (en) Method and apparatus for continuous casting of thin sheet using twin rolls
KR100419884B1 (en) Cooling system of mold and cast in the electromagnetic casting
JPH07113115A (en) Carbon roll
JPS61199568A (en) Production of cylinder liner
JPH01170551A (en) Mold for continuously casting steel
JP3157641B2 (en) Steel continuous casting equipment
JPS61276744A (en) Method and apparatus for producing hollow steel ingot
JPH02229651A (en) Complex mold for continuous casting
JPS63126645A (en) Twin roll type continuous casting machine
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH02197352A (en) Mold for continuous casting
KR970073799A (en) Continuous casting method of metal and its apparatus
CN114054693A (en) Crystallizer for horizontal continuous casting of non-ferrous alloy
US905558A (en) Process of and apparatus for making compound metal objects.
JPH04187344A (en) Mold for continuous casting
CN113909462A (en) Rapid hot demolding method for cast ingot
JPH0464776B2 (en)
JPH04327342A (en) Apparatus for continuously casting molten metal
JPH02192856A (en) Mold for continuous casting
JPH05245588A (en) Casting mold for continuous casting
JPH10328785A (en) Method for continuously casting steel
JPS6064752A (en) Method for preheating stationary side plate refractories of continuous casting machine for thin walled billet