JPH1180835A - Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss

Info

Publication number
JPH1180835A
JPH1180835A JP9262789A JP26278997A JPH1180835A JP H1180835 A JPH1180835 A JP H1180835A JP 9262789 A JP9262789 A JP 9262789A JP 26278997 A JP26278997 A JP 26278997A JP H1180835 A JPH1180835 A JP H1180835A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
flux density
magnetic flux
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9262789A
Other languages
Japanese (ja)
Inventor
Yasuyuki Hayakawa
康之 早川
Mitsumasa Kurosawa
光正 黒沢
Kazuaki Tamura
和章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9262789A priority Critical patent/JPH1180835A/en
Publication of JPH1180835A publication Critical patent/JPH1180835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon steel sheet excellent in formation of forsterite film at finish annealing and stably having extremely low iron loss by incorporating specific amounts of B and N and specific amounts of V and Nb into a slab of steel of specific composition to be heated to a specific temp. or above and hot-rolled and also performing decarburizing annealing under specific conditions. SOLUTION: A steel slab which has a composition containing, by weight, 0.03-0.10% C, 2.5-4.5% Si, 0.05-1.5% Mn, and 0.010-0.040%, in total, of S and/or Se and satisfying Mn/(S+Se)>=2.5, is heated to >=1350 deg.C and hot-rolled, by which a silicon steel sheet is obtained. At this time, 0.0010-0.0060% B and 0.0050-0.0100% N are incorporated into the steel slab and N-(14/10.8)×B>=0.0020% is satisfied, and further, V and/or Nb is incorporated by 0.001 to 0.020%, respectively. Moreover, decarburizing annealing is carried out by performing holding at 800-860 deg.C in a wet hydrogen atmosphere, holding at 860-1050 deg.C in an atmosphere containing >=20% nitrogen, and cooling through the temp. region between 800 and 500 deg.C at >=10 deg.C/sec cooling rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器や発電機の鉄
心に利用される方向性電磁鋼板の製造方法、特に磁束密
度が高く、鉄損が極めて低い方向性電磁鋼板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density and an extremely low iron loss.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が{11
0}〈001〉方位や{100}〈001〉方位に配向
した方向性電磁鋼板は優れた軟磁気特性を有するため商
用周波数域での各種鉄心材料として広く用いられてい
る。かかる電磁鋼板に要求される特性としては、50H
zの周波数で1.7Tに磁化させた場合の鉄損であるW
17/50が低いことが重要である。一般に材料の鉄損
を低減するには、渦電流損を低下させることが有効であ
り、そのためSiの含有量を増加し電気抵抗を高める方
法、鋼板板厚を低減する方法、製品の結晶粒径を低減す
る方法、さらに結晶方位の集積度を高めて磁束密度を向
上させる方法が知られている。このうちSi含有量を増
加させる方法については、Siを過度に含有させると圧
延性や加工性を劣化させるため限界があり、また鋼板板
厚を低減する方法、結晶粒径を低減する方法も極端な製
造コストの増大をもたらすので好ましくない。
2. Description of the Related Art Si is contained and the crystal orientation is # 11.
Grain-oriented electrical steel sheets oriented in the 0 ° <001> direction and the {100} <001> direction have excellent soft magnetic properties and are therefore widely used as various core materials in the commercial frequency range. The characteristics required for such an electromagnetic steel sheet include 50H
W which is iron loss when magnetized to 1.7T at the frequency of z
It is important that 17/50 is low. In general, it is effective to reduce the eddy current loss to reduce the iron loss of the material. Therefore, the method of increasing the Si content to increase the electric resistance, the method of reducing the thickness of the steel sheet, the grain size of the product And a method of increasing the degree of integration of the crystal orientation to improve the magnetic flux density. Among them, the method of increasing the Si content is limited because excessively containing Si deteriorates the rollability and workability, and there is a limit, and the method of reducing the steel sheet thickness and the method of reducing the crystal grain size are extremely extreme. It is not preferable because it leads to an increase in production cost.

【0003】結晶方位の集積度を高め、磁束密度を向上
させる方法については、従来多くの研究がなされてお
り、例えば、特公昭46−23820号公報には鋼中に
Alを添加し熱間圧延後1000〜1200℃の高温の
熱延板焼鈍とそれに伴う急冷処理によって微細なAlN
を析出させ、さらに80〜95%の圧下率を施す技術が
開示され、これによってB10値が1.95Tの極めて高
い磁束密度の値を得ている。この方法は、微細に分散析
出したAlNが1次再結晶粒の成長を抑制するインヒビ
ターとしての強い作用を有することを利用し、結晶方位
の優れた核のみを2次再結晶させることにより集積度の
高い結晶組織を有する製品を得るものである。しかしな
がら、この方法では一般に2次再結晶粒径が粗大化し、
低い鉄損の値を得ることが難しく、また熱延板焼鈍にお
いて完全にAlNを固溶させることが困難であるため、
安定して高磁束密度の製品を得がたいという問題があ
る。さらに酸化しやすいAlの含有は脱炭焼鈍における
サブスケール生成、仕上げ焼鈍でのフォルステライト被
膜の生成を著しく困難にしている。
There have been many studies on methods for increasing the degree of integration of crystal orientations and improving magnetic flux density. For example, Japanese Patent Publication No. 46-23820 discloses a method of adding Al to steel and performing hot rolling. Fine AlN is formed by hot strip annealing at a high temperature of 1000 to 1200 ° C. and a subsequent quenching treatment.
Precipitating, it discloses a technique of further subjecting 80 to 95% of the reduction ratio, whereby 10 value B is the value obtained is very high magnetic flux density of 1.95 T. This method makes use of the fact that AlN finely dispersed and precipitated has a strong effect as an inhibitor for suppressing the growth of primary recrystallized grains. To obtain a product having a high crystal structure. However, in this method, the secondary recrystallized grain size generally becomes coarse,
It is difficult to obtain a low iron loss value, and it is difficult to completely dissolve AlN in hot-rolled sheet annealing.
There is a problem that it is difficult to stably obtain a product having a high magnetic flux density. Further, the content of Al which is easily oxidized makes the formation of subscale in decarburizing annealing and the formation of a forsterite film in finish annealing extremely difficult.

【0004】また、特公昭58−42244号公報、特
公昭60−55570号公報には0.0003〜0.0
035%のBと0.0030〜0.0070%のNを含
有する鋼を用い、それぞれMn/Sを1.8あるいは
2.1以下とすることによりB8値が1.85〜1.9
2Tの磁束密度を得る技術が開示されている。このBN
をインヒビターとする方法は、高い磁束密度が得られる
可能性は高いが、Mnを低くするためコスト上昇につな
がるばかりか、熱延工程において熱間割れを引き起こす
ため工業化が困難があるいう問題があった。さらに特公
昭60−54371号公報、特公平7−68581号公
報にはB量を0.0018%以下まで低減することによ
りそれぞれMn/Sを1.8あるいは2.5を超えるこ
ととする改善技術が開示されている。さらに特開昭57
−114615号公報ではBがBNとして析出するのに
必要な当量分のNを除いた残りのN量を溶解N量として
定義し、これを0.0020%以下とすることによりM
n/Sを2.1以上としても高磁束密度が得られること
が開示されているが、なお良好な2次再結晶を有する方
向性電磁鋼板を工業的に安定して得ることはできていな
い。
Further, JP-B-58-42244 and JP-B-60-55570 disclose 0.0003 to 0.0.
Using 035% B and steel containing from 0.0030 to 0.0070% of N, 8 value B by the Mn / S and 1.8 or 2.1 or less each from 1.85 to 1.9
A technique for obtaining a magnetic flux density of 2T is disclosed. This BN
Is an inhibitor, there is a high possibility that a high magnetic flux density can be obtained, but it not only leads to an increase in cost due to the reduction of Mn, but also has a problem that it is difficult to industrialize because it causes hot cracking in the hot rolling process. Was. Furthermore, Japanese Patent Publication No. 60-54371 and Japanese Patent Publication No. 7-68581 disclose an improvement technique in which the Mn / S exceeds 1.8 or 2.5 by reducing the B content to 0.0018% or less, respectively. Is disclosed. Furthermore, Japanese Patent Laid-Open No. 57
In JP-A-114615, the remaining amount of N excluding the equivalent amount of N required for B to precipitate as BN is defined as the amount of dissolved N, and by setting this to 0.0020% or less, M
It is disclosed that a high magnetic flux density can be obtained even when n / S is 2.1 or more, but a grain-oriented electrical steel sheet having good secondary recrystallization has not yet been industrially stably obtained. .

【0005】[0005]

【発明が解決しようとする課題】本発明は上記BNをイ
ンヒビターとして含有する方向性電磁鋼板の磁束密度の
向上における優位性に着目し、さらに結晶方位の集積度
を高めて高磁束密度を有する鋼板を得ること、また、上
記方向性電磁鋼板の製造上の問題点を解決して仕上げ焼
鈍におけるフォルステライト被膜の生成に優れ、安定し
て極めて低い鉄損値を有する方向性電磁鋼板を得ること
のできる方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention focuses on the superiority in improving the magnetic flux density of a grain-oriented electrical steel sheet containing BN as an inhibitor, and further increases the degree of integration of the crystal orientation to provide a steel sheet having a high magnetic flux density. To obtain a grain-oriented electrical steel sheet having excellent production of a forsterite film in finish annealing by solving the above-mentioned problems in the production of a grain-oriented electrical steel sheet, and having a stable and extremely low iron loss value. It is an object to provide a method that can be used.

【0006】ところで、正常粒の粒成長の抑制を効果的
に行うためには、析出物の大きさ、形態および分散状態
を適正に制御することが不可欠であり、そのためB、N
b、Vの窒化物を利用することも知られている。しかし
ながらこれらの元素を含有する鋼は、2次再結晶は安定
して起こるものの、磁束密度が低いという問題があっ
た。本発明者らの研究によれば、これらの元素を添加し
た場合にはそれらの析出量が著しく増大し、そのため1
次再結晶粒が著しく微細化し、そのため2次再結晶粒の
粒成長の駆動力が大きくなりすぎ(110)[001]
方位への集積度が低下し、磁束密度が低下する。かかる
問題を解決するためには1次再結晶粒の粒径をある程度
大きくすることが考えられ、そのための手段として析出
物の量を減少させることや熱延板焼鈍や中間焼鈍を高温
で行い析出物の分散状態を調整することが考えられる。
しかしながらかかる手段によっては良好な磁束密度を得
ることはできない。本来利用すべき窒化物元素による1
次粒粒成長の抑制力が打ち消されてしまうからである。
したがって本発明はB、Nb、Vの窒化物をインヒビタ
ーとして利用するときに生ずる上記1次粒の粒径が小さ
くなりすぎるという問題を解決し、これらの元素を利用
しながら集積度の高い方向性電磁鋼板の製造を可能にす
るものである。
In order to effectively control the growth of normal grains, it is essential to properly control the size, morphology, and dispersion state of precipitates.
It is also known to use nitrides of b and V. However, steel containing these elements has a problem in that although secondary recrystallization occurs stably, the magnetic flux density is low. According to the study of the present inventors, when these elements are added, the amount of their precipitation increases remarkably.
The secondary recrystallized grains are extremely fine, so that the driving force for grain growth of the secondary recrystallized grains becomes too large (110) [001].
The degree of integration in the direction decreases, and the magnetic flux density decreases. In order to solve such a problem, it is conceivable to increase the particle size of the primary recrystallized grains to some extent. To that end, it is necessary to reduce the amount of precipitates or to perform hot-rolled sheet annealing or intermediate annealing at a high temperature. It is conceivable to adjust the dispersion state of the object.
However, good magnetic flux density cannot be obtained by such means. 1 depending on the nitride element that should be used
This is because the suppressing power of the next grain growth is negated.
Therefore, the present invention solves the problem that the particle size of the primary particles becomes too small when using nitrides of B, Nb, and V as an inhibitor, and uses these elements to increase the degree of integration. This makes it possible to manufacture electrical steel sheets.

【0007】[0007]

【課題を解決するための手段】本発明者等は、B、N
b、VNの窒化物をインヒビターとした場合には2次再
結晶のゴス方位への集積度が低下するという問題を解消
すべく、これら窒化物の析出挙動、さらには2次再結晶
粒成長に対する影響を鋭意研究した結果、従来とは全く
異なった利用方法を見出し、これを有効に活用して本発
明を完成させたものである。すなわち、BNのほかに高
温安定性の優れるVおよびNbの窒化物をインヒビター
として利用するとともに、脱炭焼鈍条件を適正化するこ
とにより、BNあるいはSi34のNbCあるいはVN
への転換を図るとともに、1次再結晶粒径の粒径を増大
させながら粒成長抑制力を強化し、これによってゴス方
位への集積度の高い2次再結晶粒を得るものである。
Means for Solving the Problems The present inventors have proposed B, N
(b) In order to solve the problem that the degree of integration of secondary recrystallization in the goss orientation is reduced when the nitride of VN is used as an inhibitor, the precipitation behavior of these nitrides and the growth of secondary recrystallized grains are further reduced. As a result of earnestly studying the effects, the present inventor has found a completely different use method from the prior art, and has effectively utilized the method to complete the present invention. That is, in addition to using BN, nitrides of V and Nb having excellent high-temperature stability are used as inhibitors, and NbC or VN of BN or Si 3 N 4 is obtained by optimizing decarburization annealing conditions.
In addition to increasing the primary recrystallized grain size, the grain growth suppressing force is enhanced while increasing the primary recrystallized grain size, whereby secondary recrystallized grains having a high degree of integration in the Goss orientation are obtained.

【0008】具体的には、磁束密度が高く鉄損が極めて
低い方向性電磁鋼板の製造方法として、重量比で、C:
0.03〜0.10%、Si:2.5〜4.5%、M
n:0.05〜1.5%、Sおよび/またはSe:合計
0.010〜0.040%を含有し、かつ、Mn/(S
+Se)≧2.5を満足する鋼スラブに対し、1350
℃以上に加熱後熱延を行ない、必要に応じて熱延板焼鈍
を施した後、1回あるいは中間焼鈍を挟んで2回以上の
冷間圧延を施して最終板厚とし、1次再結晶を兼ねた脱
炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を
塗布して2次再結晶および純化処理する最終仕上焼鈍を
行なう一連の工程からなる方向性電磁鋼板の製造方法に
おいて、前記鋼スラブには、B:0.0010〜0.0
060%、N:0.0050〜0.0100%を含有さ
せ、かつ、N−(14/10.8)×B≧0.0020
%の関係を満足させるとともに、さらにVおよび/また
はNbをそれぞれ0.001〜0.020%を含有さ
せ、かつ、前記脱炭焼鈍は、湿潤水素雰囲気において8
00〜860℃に保持した後、窒素を20%以上含有す
る雰囲気において860〜1050℃に保持し、しかる
後800〜500℃の間を10℃/s以上の冷却速度で
冷却することとするものである。さらに上記発明におい
てインヒビターとしてCu、Sb、Sn、Bi、Moか
ら選ばれた1種または2種以上を合計量で0.005〜
0.30%含有させ、冷間圧延過程において時効処理を
行ない、あるいは2次再結晶後の鋼板に対し磁区細分化
処理を施すことを好適とするものである。
Specifically, as a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density and an extremely low iron loss, C:
0.03 to 0.10%, Si: 2.5 to 4.5%, M
n: 0.05 to 1.5%, S and / or Se: 0.010 to 0.040% in total, and Mn / (S
+ Se) 1350 for steel slabs satisfying ≧ 2.5
After hot-rolling after heating to ℃ or more, hot-rolled sheet annealing is performed as necessary, and then cold rolling is performed once or twice or more with intermediate annealing sandwiched to obtain a final sheet thickness and primary recrystallization. The method for producing a grain-oriented electrical steel sheet according to the present invention comprises a series of steps of performing a final finish annealing for applying an annealing separator containing MgO as a main component, performing a secondary recrystallization and purifying after applying a decarburizing annealing also serving as B: 0.0010 to 0.0
060%, N: 0.0050 to 0.0100%, and N− (14 / 10.8) × B ≧ 0.0020
% And further contain 0.001 to 0.020% of V and / or Nb, respectively, and the decarburizing annealing is performed in a wet hydrogen atmosphere at 8%.
After the temperature is maintained at 00 to 860 ° C, the temperature is maintained at 860 to 1050 ° C in an atmosphere containing 20% or more of nitrogen, and then the temperature is cooled between 800 to 500 ° C at a cooling rate of 10 ° C / s or more. It is. Further, in the above invention, one or more selected from Cu, Sb, Sn, Bi, and Mo as inhibitors may be used in a total amount of 0.005 to 0.005.
0.30% is contained, and it is preferable to perform aging treatment in the cold rolling process or to subject the steel sheet after the secondary recrystallization to magnetic domain refining treatment.

【0009】[0009]

【発明の実施の形態】以下本発明についてその基礎とな
る実験結果について説明し、ついで具体的実施形態を実
施例とともに説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the experimental results on which the present invention is based will be described, and then specific embodiments will be described together with examples.

【0010】(基礎実験)表1に示す成分を含有する鋼
塊を作成し、1430℃で60分間加熱後、2.6mm
の熱延板に仕上げた。熱延板に1100℃で60秒間の
焼鈍を施した後、0.23mmの最終板厚を有する冷延
板に仕上げた。得られた冷延板に対し、まず825℃の
温度で100秒間、水素50%、窒素50%、露点60
℃の雰囲気に保持し、しかる後830〜1100℃の温
度で60秒間、露点40℃の窒素雰囲気に均熱した後、
800〜500℃の間を25℃/sで冷却する脱炭焼鈍
を施した。すなわち脱炭焼鈍の前半と後半では焼鈍温度
および焼鈍雰囲気が変えられている。脱炭焼鈍された鋼
板に対し、MgOを焼鈍分離剤として塗布し、まず窒素
中で25℃/hrの加熱速度で1200℃まで加熱し、
その温度で水素中で5時間均熱して純化する仕上げ焼鈍
を行った。得られた鋼板に対し、800℃で2時間の歪
取焼鈍を行った後、磁束密度の測定を行った。なお、前
記脱炭焼鈍終了後の鋼板についてその結晶粒径および集
合組織を調査した。
(Basic Experiment) A steel ingot containing the components shown in Table 1 was prepared, heated at 1430 ° C. for 60 minutes, and then heated to 2.6 mm.
Hot rolled sheet. After the hot-rolled sheet was annealed at 1100 ° C. for 60 seconds, it was finished into a cold-rolled sheet having a final thickness of 0.23 mm. The obtained cold-rolled sheet was first subjected to a temperature of 825 ° C. for 100 seconds, 50% of hydrogen, 50% of nitrogen, and a dew point of 60%.
C., and then soaked in a nitrogen atmosphere with a dew point of 40 ° C. at a temperature of 830 to 1100 ° C. for 60 seconds.
Decarburization annealing was performed to cool between 800 and 500 ° C at 25 ° C / s. That is, the annealing temperature and the annealing atmosphere are changed in the first half and the second half of the decarburizing annealing. To the decarburized annealed steel sheet, MgO is applied as an annealing separator, and first heated to 1200 ° C. at a heating rate of 25 ° C./hr in nitrogen.
Finish annealing was performed at that temperature for 5 hours soaking in hydrogen for purification. The obtained steel sheet was subjected to strain relief annealing at 800 ° C. for 2 hours, and then the magnetic flux density was measured. In addition, the crystal grain size and texture of the steel sheet after the decarburizing annealing were examined.

【0011】[0011]

【表1】 [Table 1]

【0012】図1は上記実験により得られた脱炭焼鈍後
半の温度と磁束密度の関係線図である。ここに示される
ようにBとともにNbまたはVを添加した鋼B、Cは脱
炭焼鈍後半の温度が860から1040℃の範囲におい
て磁気特性の著しい向上が認められるが、NbおよびV
を含有しない鋼Aでは860℃を越えると磁束密度の低
下する現象が認められる。
FIG. 1 is a graph showing the relationship between the temperature and the magnetic flux density in the latter half of the decarburization annealing obtained by the above experiment. As shown here, steels B and C to which Nb or V was added together with B showed remarkable improvement in magnetic properties when the temperature in the latter half of the decarburization annealing was in the range of 860 to 1040 ° C.
In steel A containing no, a phenomenon in which the magnetic flux density decreases when the temperature exceeds 860 ° C. is observed.

【0013】このようにBとともにNbまたはVを添加
した鋼B、Cについて磁束密度が向上した理由は必ずし
も明らかではないが、脱炭焼鈍後半の温度が十分高い場
合には、均熱過程において1次粒の粒径が増大するとと
もに、BNあるいはSi34などの窒化物が高温におい
てより安定なNbNあるいはVNへ転換、再析出し抑制
力が強化されたためであろうと推定される。事実電子顕
微鏡観察の結果、脱炭焼鈍後半の温度が高い場合にはN
bNあるいはVNの窒化物析出量が増加しており、上記
推定を裏付けている。
The reason why the magnetic flux density of steels B and C to which Nb or V is added together with B is not necessarily clear, but if the temperature in the latter half of the decarburizing annealing is sufficiently high, 1% in the soaking process. It is presumed that the increase in the particle size of the secondary grains and the conversion of nitrides such as BN or Si 3 N 4 into NbN or VN, which are more stable at high temperatures, re-precipitated and strengthened the suppressing power. In fact, as a result of electron microscopic observation, if the temperature in the latter half of the decarburizing annealing is high, N
The amount of nitride precipitation of bN or VN is increasing, supporting the above estimation.

【0014】本発明者等はさらに、上記基礎実験と同様
の実験を、Nb、Vを0.01%に固定し、一方Bおよ
びNの添加量を幅広く変化させ、後半の均熱温度を90
0℃固定して行った結果、図2に示す関係を得た。すな
わち、高い磁束密度を得るためには、NのうちBによっ
て固定されない余剰N(N*と表記する)が0.002
0%(20ppm)以上必要であることが明らかとなっ
た。換言すれば、 N*=N−(14/10.8)×B≧0.0020% の条件を満たすときに、BNあるいはSi34などの窒
化物がNbNあるいはVNの窒化物に転換・再析出し、
1次結晶粒の粒径が大きくなるにもかかわらず、抑制力
が強化され、それによって高い磁束密度が得られること
になると推定される。
The present inventors further conducted an experiment similar to the above-mentioned basic experiment by fixing Nb and V at 0.01%, while changing the addition amounts of B and N widely, and increasing the soaking temperature in the latter half to 90%.
As a result of fixing at 0 ° C., the relationship shown in FIG. 2 was obtained. That is, in order to obtain a high magnetic flux density, the surplus N (denoted as N * ) of N that is not fixed by B is 0.002.
It became clear that 0% (20 ppm) or more was necessary. In other words, when the condition of N * = N− (14 / 10.8) × B ≧ 0.0020% is satisfied, nitride such as BN or Si 3 N 4 is converted into nitride of NbN or VN. Redeposited,
It is presumed that despite the increase in the primary crystal grain size, the suppressing force is strengthened, and thereby a high magnetic flux density is obtained.

【0015】上記N*(余剰窒素)量および脱炭焼鈍後
半の均熱温度についての条件を満たすことが本発明の要
点であるが、以下本発明の実施の態様を、組成、圧延、
熱処理等について具体的に示す。
It is an essential point of the present invention that the above-mentioned conditions of the amount of N * (excess nitrogen) and the soaking temperature in the latter half of the decarburization annealing are satisfied.
The heat treatment and the like will be specifically described.

【0016】C:0.03〜0.10% Cの含有量は0.03〜0.10%とする。Cが、0.
10%を超えるとγ変態量が過剰となり、熱間圧延中の
Bの分布が不均一となりBNの分布の均一性を阻害する
結果となり有害である。また、脱炭焼鈍の負荷も増大し
脱炭不良を発生しやすくなる。一方0.03%未満では
組織改良効果が得られず2次再結晶が不完全となり同じ
く磁気特性が劣化する。従って、Cは0.03〜0.1
0%の範囲に限定される。
C: 0.03 to 0.10% The content of C is 0.03 to 0.10%. C is 0.
If it exceeds 10%, the amount of γ transformation becomes excessive, the distribution of B during hot rolling becomes uneven, and the uniformity of BN distribution is impaired, which is harmful. In addition, the load of decarburization annealing also increases, and poor decarburization is likely to occur. On the other hand, if it is less than 0.03%, the effect of improving the structure cannot be obtained, and the secondary recrystallization becomes incomplete, and the magnetic properties also deteriorate. Therefore, C is 0.03-0.1.
It is limited to the range of 0%.

【0017】Si:2.5〜4.5% Siは電気抵抗を増加させ鉄損を低減するための必須元
素であり、このためには2.5%以上含有させることが
必要であるが、4.5%を超えると加工性が劣化し冷間
圧延や、製品の加工が極めて困難になるので2.5〜
4.5%の範囲とする。
Si: 2.5 to 4.5% Si is an essential element for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 2.5% or more. If it exceeds 4.5%, the workability is deteriorated, and it becomes extremely difficult to perform cold rolling and product processing.
The range is 4.5%.

【0018】Mn:0.05〜1.5% Mnも同じく電気抵抗を高め、また、製造時の熱間加工
性を向上させるので必要な元素である。この目的のため
には0.05%以上の含有が必要であるが1.5%を超
えて含有した場合はγ変態を誘起して磁気特性が劣化す
るので、0.05〜1.5%の範囲とする。
Mn: 0.05 to 1.5% Mn is also an element necessary for increasing electric resistance and improving hot workability during production. For this purpose, the content of 0.05% or more is necessary. However, if the content exceeds 1.5%, γ transformation is induced to deteriorate magnetic properties. Range.

【0019】Seおよび/またはS:合計で0.010
〜0.040% インヒビター成分としてSe、Sを単独もしくは複合で
含有させることが必要である。これらの成分は鋼中にM
n化合物あるいはCu化合物として析出するが、抑制効
果を維持するには合計で0.010%以上が必要である
が、0.040%を超えると高温のスラブ加熱でも完全
に固溶させることができず粗大な析出物となるためかえ
って有害である。従って、合計で0.010〜0.04
0%の範囲とする。なおこのとき、Mn/(Se+S)
が2.5より小さいと熱間圧延中に粒界割れや耳荒れが
著しく増加するため、Mn/(Se+S)≧2.5とす
ることが実用上必要である。
Se and / or S: 0.010 in total
0.00.040% It is necessary to contain Se or S alone or in combination as an inhibitor component. These components are present in the steel in M
It precipitates as an n-compound or a Cu compound, but a total amount of 0.010% or more is required to maintain the suppression effect. However, if it exceeds 0.040%, a complete solid solution can be obtained even by high-temperature slab heating. It is rather harmful because it becomes coarse precipitates. Therefore, a total of 0.010 to 0.04
The range is 0%. At this time, Mn / (Se + S)
Is smaller than 2.5, grain boundary cracks and edge roughness increase significantly during hot rolling, so that Mn / (Se + S) ≧ 2.5 is practically necessary.

【0020】B:0.0010〜0.0060% Bは0.0010〜0.0060%含有させることが必
要である。Bが0.0010%未満であるとBNの析出
量が不足し、良好な2次再結晶組織を得ることができな
いためであり、一方0.0060%を越えるとN*が不
足しNbN、あるいはVNの生成が困難になるからであ
る。
B: 0.0010 to 0.0060% B needs to be contained in an amount of 0.0010 to 0.0060%. If B is less than 0.0010%, the precipitation amount of BN is insufficient, and a good secondary recrystallized structure cannot be obtained. On the other hand, if B exceeds 0.0060%, N * becomes insufficient and NbN or This is because generation of VN becomes difficult.

【0021】N:0.0050〜0.100% Nは0.0050〜0.100%含有させることが必要
である。0.0050%未満ではBNあるいはさらにN
bN、VNの生成量が不足するためであり、一方、0.
010%を越えるとNが鋼中でガス化し、いわゆる「フ
クレ」等の欠陥が生ずるからである。また上述したよう
にN*を0.020%以上とすることが必要である。
N: 0.0050 to 0.100% N must be contained in an amount of 0.0050 to 0.100%. If less than 0.0050%, BN or even N
This is because the amount of bN and VN generated is insufficient.
If the content exceeds 010%, N is gasified in the steel, causing defects such as so-called "swelling". Further, as described above, N * needs to be 0.020% or more.

【0022】Nb、V:0.001〜0.020% Nbおよび/またはVはそれぞれ0.001〜0.02
0%含有させる。これらの含有量が0.001%未満で
あると、NbNあるいはVNの析出量が少なくなりす
ぎ、抑制力不足となるからであり、一方、0.020%
を越えると熱延過程あるいは冷延過程における再結晶が
著しく阻害されるので、これらの含有量はいずれも0.
001〜0.020%の範囲に限定される。なお、これ
らは上記範囲内で、単独あるいは複合して添加される。
Nb, V: 0.001 to 0.020% Nb and / or V are 0.001 to 0.02, respectively.
0% is contained. If the content is less than 0.001%, the precipitation amount of NbN or VN becomes too small, and the suppressing power becomes insufficient. On the other hand, 0.020%
If the content exceeds 0.1%, recrystallization in the hot rolling process or the cold rolling process is significantly inhibited.
It is limited to the range of 001 to 0.020%. These are added alone or in combination within the above range.

【0023】Cu、Sb、Sn、Bi、Mo、Ni、C
o Cu、Sb、Sn、Bi、Moはインヒビターとして抑
制力を強化する補助的働きを有するので鋼中に随時添加
することが好ましい。このために好適な値としては合計
量で0.005〜0.30%である。また、NiやCo
の添加などは鋼板の表面性状を改善する効果があるので
適宜含有させることが好ましい。
Cu, Sb, Sn, Bi, Mo, Ni, C
o Cu, Sb, Sn, Bi, and Mo have an auxiliary function as an inhibitor to reinforce the inhibitory force, and thus are preferably added to steel at any time. Suitable values for this are 0.005 to 0.30% in total. Also, Ni or Co
Is effective for improving the surface properties of the steel sheet, so that it is preferable to appropriately add it.

【0024】以上の成分に調整された鋼は通常スラブ加
熱に供されたのち熱間圧延により熱延コイルとされる
が、このときスラブ加熱温度を1350℃以上とするこ
とが重要である。スラブ加熱温度が1350℃未満の場
合インヒビターの固溶が十分でなく、Mn(Se、
S)、BNの微細均一な分散析出状態が得られない。熱
間圧延に際してはスラブ加熱前後において組織均一化の
ための厚み低減処理や幅圧下処理など公知の技術を随時
加えることは可能である。
The steel adjusted to the above components is usually subjected to slab heating and then hot-rolled to form a hot-rolled coil. At this time, it is important that the slab heating temperature be 1350 ° C. or higher. When the slab heating temperature is lower than 1350 ° C., the solid solution of the inhibitor is not sufficient, and Mn (Se,
S) Fine and uniform dispersion and precipitation of BN cannot be obtained. At the time of hot rolling, a known technique such as a thickness reduction process or a width reduction process for uniformizing the structure can be added before and after the slab heating as needed.

【0025】冷延工程については、熱延板焼鈍後1回の
冷間圧延により最終板厚とする冷延1回法、および必要
に応じて熱延板焼鈍を施した後第1回目の冷間圧延、中
間焼鈍を行ない第2回目の冷間圧延を施す冷延2回法が
採用できる。冷間圧延の圧下率については特に制限され
ず、従来公知の範囲で行えばよい。一般的には冷延2回
法の第1回目の圧延は15〜60%の圧下率とし、最終
圧延の圧下率は80〜90%とするのがよい。また、冷
間圧延を公知のように100〜350℃での温間圧延と
し、あるいはパス間において100〜350℃で10〜
60分間の時効処理を施すことにより、より1次再結晶
の集合組織を改善するも可能である。さらに最終冷間圧
延後、磁区細分化のため鋼板表面に線状の溝を設ける処
理を行うことも可能であり、これにより、より鉄損の低
い電磁鋼板が得られる。
In the cold rolling step, the cold rolling process is performed once to obtain a final sheet thickness by one cold rolling after the hot rolling sheet annealing, and, if necessary, the first cold rolling is performed after the hot rolling sheet annealing is performed. A cold rolling twice method in which cold rolling and intermediate annealing are performed and a second cold rolling is performed can be employed. The rolling reduction of the cold rolling is not particularly limited, and may be performed in a conventionally known range. In general, the first rolling in the cold rolling twice method is preferably performed at a rolling reduction of 15 to 60%, and the rolling reduction at the final rolling is preferably 80 to 90%. In addition, cold rolling is performed as warm rolling at 100 to 350 ° C as is known, or 10 to 10 at 350 to 350 ° C between passes.
By performing the aging treatment for 60 minutes, the texture of the primary recrystallization can be further improved. Furthermore, after the final cold rolling, it is also possible to perform a process of providing a linear groove on the surface of the steel sheet for magnetic domain refining, whereby an electromagnetic steel sheet with lower iron loss can be obtained.

【0026】最終板厚とした鋼板には、本発明固有の方
法により脱炭を兼ねる1次再結晶焼鈍が施される。まず
前段においては湿潤水素雰囲気の下、800〜860℃
の温度範囲で脱炭を主たる目的とした処理が行われる。
湿潤雰囲気とするのは脱炭を速やかに行わせるためであ
り、一般に露点50℃前後の水素雰囲気が用いられる。
この段階での加熱温度を800℃以上とするのは、それ
より低い温度では脱炭速度が小さすぎるからであり、8
60℃以下とするのはそれより高い温度では脱炭過程に
おいて鋼板表面に酸化膜が生成し脱炭が阻害されるから
である。脱炭焼鈍の後段の温度は、860〜1050℃
の範囲とする。860℃未満ではSi34のNbNある
いはVNへの転換再析出が不十分であるため磁気特性の
向上が不十分であり、一方1050℃を越えるとNbN
等の析出物が粗大化し抑制力が減少して磁気特性が劣化
するからである。上記脱炭焼鈍後段の雰囲気は窒素を2
0%以上含有する雰囲気とする。窒素が20%未満の場
合はNbNあるいはVNの析出が不十分となるからであ
る。脱炭完了後の冷却は、800〜500℃の間の冷却
速度を10℃/s以上とする。冷却速度が遅い場合、N
bNあるいはVNが粗大化して磁気特性を劣化させるか
らである。
The steel sheet having the final thickness is subjected to primary recrystallization annealing also serving as decarburization by a method unique to the present invention. First, in the first stage, under a wet hydrogen atmosphere, at 800 to 860 ° C
In the above temperature range, the treatment mainly for decarburization is performed.
The moist atmosphere is used to quickly perform decarburization, and a hydrogen atmosphere having a dew point of about 50 ° C. is generally used.
The heating temperature at this stage is set to 800 ° C. or higher because at a lower temperature, the decarburization rate is too low.
The reason for setting the temperature to 60 ° C. or lower is that if the temperature is higher than that, an oxide film is formed on the surface of the steel sheet during the decarburization process, and the decarburization is hindered. The temperature after the decarburizing annealing is 860 to 1050 ° C
Range. If the temperature is lower than 860 ° C., the conversion and reprecipitation of Si 3 N 4 into NbN or VN is insufficient, so that the improvement of the magnetic properties is insufficient.
This is because the precipitates such as are coarsened, the suppressing power is reduced, and the magnetic properties are deteriorated. The atmosphere after the above decarburization annealing is nitrogen 2
The atmosphere contains 0% or more. If the nitrogen content is less than 20%, the precipitation of NbN or VN becomes insufficient. Cooling after completion of decarburization is performed at a cooling rate of 800C to 500C of 10C / s or more. If the cooling rate is slow, N
This is because bN or VN becomes coarse and deteriorates magnetic characteristics.

【0027】脱炭焼鈍後の鋼板には、MgOを主成分と
する焼鈍分離剤を表面に塗布し最終仕上げ焼鈍に供され
るが、その際、Ti化合物を添加したり、CaやBを焼
鈍分離剤中に含有させることは磁気特性をさらに向上さ
せる効果があり好ましい結果を得ることができる。最終
仕上焼鈍の条件は一般に採用されている条件でよく特に
制限はない。最終仕上焼鈍後は未反応分離剤を除去した
後、鋼板表面に絶縁コーティングを塗布して製品となす
が、必要に応じコーティング塗布前に鋼板表面を鏡面化
してもよいし、また、絶縁コーティングとして張力コー
ティングを用いてもよい。また、コーティングの塗布焼
き付処理を平坦化処理と兼ねてもよい。さらに、2次再
結晶後の鋼板には鉄損低減効果を得るため、公知の磁区
細分化処理、すなわちプラズマジェットやレーザー照射
を線状領域に施したり、突起ロールによる線状のへこみ
領域を設けたりする処理を施すこともできる。
On the steel sheet after decarburizing annealing, an annealing separator containing MgO as a main component is applied to the surface and subjected to final finish annealing. At this time, a Ti compound is added or Ca or B is annealed. The inclusion in the separating agent has the effect of further improving the magnetic properties, and can provide favorable results. The conditions for the final finish annealing may be those generally used and are not particularly limited. After the final finish annealing, after removing the unreacted separating agent, an insulating coating is applied to the steel sheet surface to form a product, but if necessary, the steel sheet surface may be mirror-finished before coating, or as an insulating coating. A tension coating may be used. Further, the coating baking process of the coating may also serve as the flattening process. Further, in order to obtain an iron loss reducing effect on the steel sheet after the secondary recrystallization, a known magnetic domain refining treatment, that is, plasma jet or laser irradiation is applied to a linear area, or a linear dent area is provided by a projection roll. Or other processing can be performed.

【0028】[0028]

【実施例】【Example】

【実施例1】C:0.06%、Si:3.43%、M
n:0.065%、Se:0.018%、Sb:0.0
20%、B:0.0032%、N:0.0083%、
V:0.007%、Nb:0.012%、Mo:0.0
21%、残部Feおよび不可避的不純物からなる鋼スラ
ブを11本製造し、1420℃に加熱した後熱延し2.
6mmの板厚とし、600℃でコイル状に巻き取り熱延
板とした。この熱延板を1000℃まで昇温し、その温
度で70秒間保持する熱延板焼鈍を施し、25℃/sで
急冷した。熱延板は酸洗し、200℃の温間圧延で0.
34mm厚に1回の圧延で冷延板に仕上げた。得られた
冷延板に脱脂処理を施し、表2に示す条件により脱炭焼
鈍を施し、さらに、0.5%のCaと0.09%のBを
含有するMgOにSr(OH)2を2%、TiO2を3%
添加してなる焼鈍分離剤を塗布し、最終仕上焼鈍を行な
った。最終仕上焼鈍は850℃まで窒素中で20℃/h
で昇温したのち、850℃から1050℃まで25%窒
素と75%水素の混合雰囲気中で12.5℃/hの昇温
し、さらに、水素中で20℃/hの速度で1200℃ま
で昇温後、1200℃で8時間保持した後、600℃ま
で水素中で降温する方法をとった。最終仕上焼鈍後、未
反応の焼鈍分離剤を除去し、50%コロイダルシリカを
含有するリン酸マグネシウムを張力コーティングとして
塗布し、850℃で焼き付け、製品とした。これらの製
品の磁気特性を併せて表2に示す。
Example 1 C: 0.06%, Si: 3.43%, M
n: 0.065%, Se: 0.018%, Sb: 0.0
20%, B: 0.0032%, N: 0.0083%,
V: 0.007%, Nb: 0.012%, Mo: 0.0
1. 11 steel slabs comprising 21%, balance Fe and inevitable impurities were produced, heated to 1420 ° C., and then hot-rolled.
The sheet was made 6 mm thick and wound into a coil at 600 ° C. to obtain a hot-rolled sheet. This hot-rolled sheet was heated to 1000 ° C., subjected to hot-rolled sheet annealing maintained at that temperature for 70 seconds, and rapidly cooled at 25 ° C./s. The hot-rolled sheet is pickled and warm-rolled at 200 ° C. to a temperature of 0.1 mm.
It was finished to a cold-rolled sheet by rolling once to a thickness of 34 mm. The obtained cold-rolled sheet was subjected to degreasing treatment, decarburization annealing under the conditions shown in Table 2, and further, Sr (OH) 2 was added to MgO containing 0.5% Ca and 0.09% B. 2%, TiO 2 3%
The added annealing separator was applied, and final finishing annealing was performed. Final finish annealing in nitrogen up to 850 ° C at 20 ° C / h
, The temperature is raised from 850 ° C to 1050 ° C at a rate of 12.5 ° C / h in a mixed atmosphere of 25% nitrogen and 75% hydrogen, and further increased to 1200 ° C at a rate of 20 ° C / h in hydrogen. After the temperature was raised, the temperature was held at 1200 ° C. for 8 hours, and then the temperature was lowered to 600 ° C. in hydrogen. After the final finish annealing, the unreacted annealing separating agent was removed, magnesium phosphate containing 50% colloidal silica was applied as a tension coating, and baked at 850 ° C. to obtain a product. Table 2 also shows the magnetic properties of these products.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【実施例2】C:0.052%、Si:3.41%、M
n:0.062%、S:0.020%、Cu:0.10
%、Sn:0.15%、B:0.0040%、N:0.
0090%、V:0.010%、Mo:0.015%、
残部Feおよび不可避的不純物からなる鋼スラブを8本
製造し、1400℃に加熱した後熱延し2.6mmの板
厚とし、550℃でコイル状に巻き取り熱延板とした。
この熱延板を950℃まで昇温し、その温度で60秒間
保持する熱延板焼鈍を施し、20℃/sで急冷した。熱
延板は酸洗し、1回目の冷延で1.8mmに仕上げた後
1100℃まで昇温しその温度で60秒間保持したのち
25℃/sで急冷する中間焼鈍を施し、さらに圧延途中
で300℃での時効処理を施しながら2回目の冷延を行
い、0.23mmの最終厚さに仕上げた。その後、脱脂
処理を施し、表3に示す条件により脱炭焼鈍を施し、さ
らに、0.5%のCaと0.09%のBを含有するMg
OにSrSO4を2%、TiO2を7%添加してなる焼鈍
分離剤を塗布し、最終仕上焼鈍を行なった。最終仕上焼
鈍は850℃まで窒素中で30℃/hで昇温したのち、
850℃から1050℃まで25%窒素と75%水素の
混合雰囲気中で12.5℃/hの昇温し、さらに、水素
中で25℃/hの速度で1200℃まで昇温後、8時間
保持した後、600℃までは水素中で、その後は窒素中
で降温する方法をとった。最終仕上焼鈍後、未反応の焼
鈍分離剤を除去し、50%コロイダルシリカを含有する
リン酸マグネシウムを張力コーティングとして塗布し、
850℃で焼き付け、製品とした。これらの製品の磁気
特性を併せて表3に示す。
Example 2 C: 0.052%, Si: 3.41%, M
n: 0.062%, S: 0.020%, Cu: 0.10
%, Sn: 0.15%, B: 0.0040%, N: 0.
0090%, V: 0.010%, Mo: 0.015%,
Eight steel slabs consisting of the remainder Fe and unavoidable impurities were produced, heated to 1400 ° C., hot rolled to a sheet thickness of 2.6 mm, and coiled at 550 ° C. to form a hot rolled sheet.
This hot-rolled sheet was heated to 950 ° C., subjected to hot-rolled sheet annealing for 60 seconds, and rapidly cooled at 20 ° C./s. The hot-rolled sheet was pickled, finished to 1.8 mm by the first cold rolling, heated to 1100 ° C., held at that temperature for 60 seconds, and then subjected to intermediate annealing in which it was rapidly cooled at 25 ° C./s. The second cold rolling was performed while performing the aging treatment at 300 ° C. at a final thickness of 0.23 mm. Thereafter, a degreasing treatment is performed, a decarburizing annealing is performed under the conditions shown in Table 3, and a Mg containing 0.5% Ca and 0.09% B is further added.
An annealing separator made by adding 2% of SrSO 4 and 7% of TiO 2 to O was applied, and final finish annealing was performed. After the final finish annealing, the temperature is raised to 850 ° C in nitrogen at 30 ° C / h,
The temperature was raised from 850 ° C. to 1050 ° C. at a rate of 12.5 ° C./h in a mixed atmosphere of 25% nitrogen and 75% hydrogen, and further raised to 1200 ° C. at a rate of 25 ° C./h in hydrogen for 8 hours. After the temperature was maintained, the temperature was lowered to 600 ° C. in hydrogen and then to nitrogen. After the final finish annealing, the unreacted annealing separating agent is removed, and magnesium phosphate containing 50% colloidal silica is applied as a tension coating,
It was baked at 850 ° C. to obtain a product. Table 3 also shows the magnetic properties of these products.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【実施例3】表4に示す組成の鋼スラブを、1420℃
に加熱した後熱延し2.2mmの板厚とし、550℃で
コイル状に巻き取り熱延板とした。この熱延板を100
0℃まで昇温し、その温度で60秒間保持する熱延板焼
鈍を施し、20℃/sで急冷した。熱延板に対し酸洗を
施し、1回目の冷延で1.5mmに仕上げた後1010
℃まで昇温しその温度で60秒間保持したのち50℃/
sで急冷する中間焼鈍を施した後、さらに圧延途中で3
00℃での時効処理を施して2回目の冷延を行い、0.
23mmの最終厚さに仕上げた。脱脂処理を施した後、
脱炭焼鈍を施した。その条件は前半は水素55%、窒素
45%、露点60℃の雰囲気の下、840℃に60秒間
保持し、後半は窒素100%、露点35℃の雰囲気中9
00℃で30秒間保持するものとした。脱炭焼鈍板に
は、MgOにSrSO4を2%、TiO2を8%添加して
なる焼鈍分離剤を塗布して最終仕上焼鈍を行なった。最
終仕上焼鈍は850℃まで窒素中で30℃/hで昇温し
たのち、850℃から1050℃まで25%窒素と75
%水素の混合雰囲気中で12.5℃/hの昇温し、さら
に、水素中で25℃/hの速度で1200℃まで昇温
し、8時間保持した後、600℃までは水素中で、その
後は窒素中で降温する方法をとった。最終仕上焼鈍後、
未反応の焼鈍分離剤を除去し、50%コロイダルシリカ
を含有するリン酸マグネシウムを張力コーティングとし
て塗布し、850℃で焼き付け、製品とした。これらの
製品の磁気特性を表5に示す。
Example 3 A steel slab having the composition shown in Table 4 was heated at 1420 ° C.
After hot-rolling, the sheet was rolled to a thickness of 2.2 mm and wound into a coil at 550 ° C. to form a hot-rolled sheet. This hot rolled sheet is
The temperature was raised to 0 ° C., the sheet was annealed at a temperature of 60 ° C. for 60 seconds, and rapidly cooled at 20 ° C./s. After pickling the hot-rolled sheet and finishing it to 1.5 mm by the first cold rolling, 1010
℃ and maintained at that temperature for 60 seconds.
After the intermediate annealing of rapid cooling in s,
Aging treatment was performed at 00 ° C. to perform a second cold rolling.
Finished to a final thickness of 23 mm. After degreasing,
Decarburization annealing was performed. The first half was held at 840 ° C. for 60 seconds in an atmosphere of 55% hydrogen, 45% nitrogen and a dew point of 60 ° C., and the second half was an atmosphere of 100% nitrogen and a dew point of 35 ° C.
The temperature was kept at 00 ° C. for 30 seconds. The decarburized annealed plate was subjected to a final finish annealing by applying an annealing separator made by adding 2% of SrSO 4 and 8% of TiO 2 to MgO. In the final finish annealing, the temperature is raised to 850 ° C. in nitrogen at 30 ° C./h, and then from 850 ° C. to 1050 ° C. with 25% nitrogen and 75%.
% Hydrogen in a mixed atmosphere of 12.5 ° C./h, and further heated up to 1200 ° C. in hydrogen at a rate of 25 ° C./h and kept for 8 hours. Then, the temperature was lowered in nitrogen. After final annealing,
The unreacted annealing separator was removed, magnesium phosphate containing 50% colloidal silica was applied as a tension coating, and baked at 850 ° C. to obtain a product. Table 5 shows the magnetic properties of these products.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【発明の効果】本発明はインヒビターとして上記の構成
をとったので、磁束密度が従来に比べて高く、かつ、鉄
損が極めて低い方向性電磁鋼板を安定して製造すること
ができる。またAlNを使用しないので、脱炭焼鈍にお
けるサブスケールの生成、仕上げ焼鈍でのフォルステラ
イト被膜の生成が安定して行われる。
According to the present invention, since the above-mentioned structure is employed as the inhibitor, a grain-oriented electrical steel sheet having a higher magnetic flux density and an extremely low iron loss can be stably manufactured. Further, since AlN is not used, the formation of sub-scale in decarburizing annealing and the formation of forsterite film in finishing annealing are performed stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】BおよびNを含有する鋼にNbまたはBを添加
した場合の脱炭焼鈍温度と磁束密度の関係線図である。
FIG. 1 is a graph showing the relationship between the decarburizing annealing temperature and the magnetic flux density when Nb or B is added to steel containing B and N.

【図2】本発明にかかる成分系におけるN*(余剰N)
と磁束密度との関係線図である。
FIG. 2 shows N * (excess N) in the component system according to the present invention.
FIG. 3 is a relationship diagram between the magnetic flux density and the magnetic flux density.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.03〜0.10%、
Si:2.5〜4.5%、Mn:0.05〜1.5%、
Sおよび/またはSe:合計0.010〜0.040%
を含有し、かつ、Mn/(S+Se)≧2.5を満足す
る鋼スラブに対し、1350℃以上に加熱後熱延を行な
い、必要に応じて熱延板焼鈍を施した後、1回あるいは
中間焼鈍を挟んで2回以上の冷間圧延を施して最終板厚
とし、1次再結晶を兼ねた脱炭焼鈍を施した後、MgO
を主成分とする焼鈍分離剤を塗布して2次再結晶および
純化処理する最終仕上焼鈍を行なう一連の工程からなる
方向性電磁鋼板の製造方法において、 前記鋼スラブには、B:0.0010〜0.0060
%、N:0.0050〜0.0100%を含有させ、か
つ、N−(14/10.8)×B≧0.0020%の関
係を満足させるとともに、さらにVおよび/またはNb
をそれぞれ0.001〜0.020%を含有させ、 かつ、前記脱炭焼鈍は、湿潤水素雰囲気において800
〜860℃に保持した後、窒素を20%以上含有する雰
囲気において860〜1050℃に保持し、しかる後8
00〜500℃の間を10℃/s以上の冷却速度で冷却
するものとすることを特徴とする磁束密度が高く、鉄損
が極めて低い方向性電磁鋼板の製造方法。
C: 0.03 to 0.10% by weight,
Si: 2.5 to 4.5%, Mn: 0.05 to 1.5%,
S and / or Se: 0.010 to 0.040% in total
, And hot-rolled after heating to 1350 ° C or higher, and if necessary, after hot-rolled sheet annealing, once or Cold rolling is performed two or more times with the intermediate annealing interposed therebetween to obtain the final thickness, and after decarburizing annealing also serving as primary recrystallization, MgO
A method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing a final finish annealing in which an annealing separating agent containing as a main component is applied and subjected to a secondary recrystallization and a purification treatment. ~ 0.0060
%, N: 0.0050 to 0.0100%, and the relationship of N− (14 / 10.8) × B ≧ 0.0020% is satisfied, and further, V and / or Nb
, Respectively, and the decarburization annealing is performed in a wet hydrogen atmosphere at 800
After maintaining the temperature at 860 ° C. to 860 ° C., the temperature is maintained at 860 to 1050 ° C. in an atmosphere containing 20% or more of nitrogen.
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density and an extremely low iron loss, wherein cooling is performed at a cooling rate of 10 ° C / s or more between 00 and 500 ° C.
【請求項2】 インヒビターとしてCu、Sb、Sn、
Bi、Moから選ばれた1種または2種以上を合計量で
0.005〜0.30%含有することを特徴とする請求
項1記載の磁束密度が高く、鉄損が極めて低い方向性電
磁鋼板の製造方法。
2. As an inhibitor, Cu, Sb, Sn,
2. A directional electromagnetic element having a high magnetic flux density and an extremely low iron loss according to claim 1, wherein one or more elements selected from Bi and Mo are contained in a total amount of 0.005 to 0.30%. Steel plate manufacturing method.
【請求項3】 冷間圧延過程において時効処理を行うこ
とを特徴とする請求項1または2記載の磁束密度が高
く、鉄損が極めて低い方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the aging treatment is performed in a cold rolling process.
【請求項4】 2次再結晶後の鋼板に対し磁区細分化処
理を施すことを特徴とする請求項1、2または3記載の
磁束密度が高く、鉄損が極めて低い方向性電磁鋼板の製
造方法。
4. A grain-oriented magnetic steel sheet having a high magnetic flux density and an extremely low iron loss according to claim 1, wherein the steel sheet after the secondary recrystallization is subjected to a magnetic domain refining treatment. Method.
JP9262789A 1997-09-10 1997-09-10 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss Pending JPH1180835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262789A JPH1180835A (en) 1997-09-10 1997-09-10 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262789A JPH1180835A (en) 1997-09-10 1997-09-10 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss

Publications (1)

Publication Number Publication Date
JPH1180835A true JPH1180835A (en) 1999-03-26

Family

ID=17380634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262789A Pending JPH1180835A (en) 1997-09-10 1997-09-10 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH1180835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
CN102584513A (en) * 2012-02-27 2012-07-18 江西师范大学 Method for preparing ketal by catalysis of ionic liquid and dehydration of acid-resistant molecular sieve membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
CN102584513A (en) * 2012-02-27 2012-07-18 江西师范大学 Method for preparing ketal by catalysis of ionic liquid and dehydration of acid-resistant molecular sieve membrane

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3368310B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH1180835A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070911

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees