JPH1165662A - Method for controlling unmanned traveling vehicle and device thereof - Google Patents

Method for controlling unmanned traveling vehicle and device thereof

Info

Publication number
JPH1165662A
JPH1165662A JP9216229A JP21622997A JPH1165662A JP H1165662 A JPH1165662 A JP H1165662A JP 9216229 A JP9216229 A JP 9216229A JP 21622997 A JP21622997 A JP 21622997A JP H1165662 A JPH1165662 A JP H1165662A
Authority
JP
Japan
Prior art keywords
steering angle
speed
wheels
master
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9216229A
Other languages
Japanese (ja)
Other versions
JP3952548B2 (en
Inventor
Naomichi Fujinaga
直道 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP21622997A priority Critical patent/JP3952548B2/en
Publication of JPH1165662A publication Critical patent/JPH1165662A/en
Application granted granted Critical
Publication of JP3952548B2 publication Critical patent/JP3952548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method and device for suppressing the interference of each wheel to a minimum with respect to an unmanned traveling vehicle, having two master wheel and one or more slave wheels whose speeds and steering angles can be controlled independently. SOLUTION: A slave wheel controlling part 5 controls the steering angle of a slave wheel, based on the real measured values of the steering angles of both master wheels, and controls the moving speed of the slave wheel based on the rear measured value of the steering angles and moving speeds of the both master wheels. Then, an estimating part 6 estimates the present position, attitude, and proceeding direction of a vehicle based on the detected steering angles and moving speeds of both the master wheels, and a master wheel controlling part 8 controls the speeds and steering angles of both the master wheels, so that a deviation between the position, processing direction, and attitude of the vehicle on a traveling path which have been previously stored in a map information storing part 7 and the present position, proceeding direction, and attitude of the vehicle estimated by the estimating part 6 can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,それぞれ独立して
速度及び操舵角の制御が可能な2つのマスタ輪と,それ
ぞれ独立して速度及び操舵角の制御が可能な1つ以上の
スレーブ輪とを有する無人走行車を,所定の走行経路に
沿って走行させる無人走行車の制御方法及びその装置に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to two master wheels capable of independently controlling the speed and the steering angle, and one or more slave wheels capable of independently controlling the speed and the steering angle. The present invention relates to a method and an apparatus for controlling an unmanned traveling vehicle that causes an unmanned traveling vehicle having a vehicle to travel along a predetermined traveling route.

【0002】[0002]

【従来の技術】例えば,図6に示すような,それぞれ独
立して速度及び操舵角の制御が可能な3つ以上の車輪W
(図6ではW1〜W3の3つ)を有する無人走行車B0
を,所定の走行経路に沿って走行させる場合,従来は,
上記各車輪W1〜W3の操舵角α1〜α3及び速度V1
〜V3に基づいて車体B0の位置・姿勢・進行方向を推
定し,該推定値と,予め記憶されている上記所定の走行
経路情報との偏差を小さくするように,各車輪W1〜W
3の操舵角α1〜α3及び速度V1〜V3を制御してい
た。その際,上記車体B0の位置・姿勢・進行方向の推
定値は,車輪W1〜W3の軸線の交点として求められた
車体の回転中心位置C,各車輪W1〜W3の速度V1〜
V3,及び前回得られた車体の位置・姿勢・進行方向の
値から求められていた。また,各車輪の操舵角及び速度
を制御する際には,各車輪の軸線が,車体の目標回転中
心位置C′を通るように各車輪の操舵角α1〜α3が制
御され,上記目標回転中心位置C′から各車輪W1〜W
3までの距離に応じて各車輪の速度V1〜V3が制御さ
れていた。
2. Description of the Related Art For example, as shown in FIG. 6, three or more wheels W each capable of independently controlling a speed and a steering angle.
(In FIG. 6, three of W1 to W3).
When traveling along a predetermined traveling route, conventionally,
The steering angles α1 to α3 and the speed V1 of the respective wheels W1 to W3
Estimate the position, attitude, and traveling direction of the vehicle body B0 on the basis of V1 to V3, and reduce the deviation between the estimated value and the predetermined traveling route information stored in advance so as to reduce the deviation.
The three steering angles α1 to α3 and the velocities V1 to V3 were controlled. At this time, the estimated values of the position, posture, and traveling direction of the vehicle body B0 are determined by the rotation center position C of the vehicle body determined as the intersection of the axes of the wheels W1 to W3, and the speeds V1 to V3 of the wheels W1 to W3.
V3 and the values of the position, attitude, and traveling direction of the vehicle body obtained last time. When controlling the steering angle and speed of each wheel, the steering angles α1 to α3 of each wheel are controlled so that the axis of each wheel passes through the target rotation center position C ′ of the vehicle body. Each wheel W1 to W from position C '
The speeds V1 to V3 of the respective wheels are controlled according to the distance up to 3.

【0003】[0003]

【発明が解決しようとする課題】ところで,車体B0が
進行方向を変えながら走行している場合には,車体B0
は必ずある点を回転中心として走行するため,上述のよ
うに,上記各車輪W1〜W3は原則としてその軸線が一
点(上記回転中心)で交差するようにそれぞれの操舵角
α1〜α3が制御される。しかしながら,各車輪の操舵
モータの応答性の違いや外乱などにより,上記各車輪W
1〜W3の軸線が一点で交わらない場合には(図7参
照),全車輪の交点の平均位置を車体の回転中心と推定
して車体の位置・姿勢・進行方向が推定される。ところ
が,上記各車輪の操舵モータの応答性の違いや外乱など
が大きく,各車輪の軸線の交点のズレが大きくなると,
車輪同士の進行方向が大きく干渉し,各車輪のモータや
車軸に過負荷がかかったり,車体が振動するなどの不具
合が発生する場合があった。本発明は上記事情に鑑みて
なされたものであり,その目的とするところは,それぞ
れ独立して速度及び操舵角の制御が可能な2つのマスタ
輪と,それぞれ独立して速度及び操舵角の制御が可能な
1つ以上のスレーブ輪とを有する無人走行車において,
各車輪同士の干渉を最小限に抑えることが可能な無人走
行車の制御方法及びその装置を提供することである。
By the way, when the vehicle body B0 is traveling while changing its traveling direction, the vehicle body B0
Since the vehicle always travels around a certain point as the center of rotation, as described above, the steering angles α1 to α3 of the wheels W1 to W3 are controlled such that their axes intersect at one point (the center of rotation) in principle. You. However, due to differences in the responsiveness of the steering motor of each wheel and disturbances, the above-mentioned wheel W
If the axes 1 to W3 do not intersect at one point (see FIG. 7), the average position of the intersection of all the wheels is estimated as the rotation center of the vehicle body, and the position, attitude, and traveling direction of the vehicle body are estimated. However, if the difference in the response of the steering motor of each wheel or disturbance is large, and the deviation of the intersection of the axis of each wheel becomes large,
In some cases, the traveling directions of the wheels greatly interfere with each other, causing problems such as overloading the motor and axle of each wheel and vibration of the vehicle body. The present invention has been made in view of the above circumstances, and has as its object to control two master wheels capable of independently controlling the speed and the steering angle, and independently controlling the speed and the steering angle. In an unmanned vehicle with one or more slave wheels capable of
An object of the present invention is to provide an unmanned traveling vehicle control method and apparatus capable of minimizing interference between wheels.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の方法は,それぞれ独立して速度及び操舵角の
制御が可能な2つのマスタ輪と,それぞれ独立して速度
及び操舵角の制御が可能な1つ以上のスレーブ輪とを有
する無人走行車を,所定の走行経路に沿って走行させる
無人走行車の制御方法において,上記2つのマスタ輪の
操舵角を検出する操舵角検出工程と,上記操舵角検出工
程で検出された上記マスタ輪の操舵角に基づいて,上記
スレーブ輪の操舵角を制御するスレーブ輪制御工程と,
上記2つのマスタ輪の速度を検出する速度検出工程と,
上記操舵角検出工程及び上記速度検出工程で検出された
上記両マスタ輪の速度及び操舵角に基づいて,車体の走
行軌跡を推定する推定工程と,上記推定工程で推定され
た車体の走行軌跡と上記所定の走行経路とに基づいて,
上記マスタ輪の速度及び操舵角を制御する走行制御工程
とを具備し,上記スレーブ輪制御工程において,上記操
舵角検出工程で検出された上記両マスタ輪の操舵角よ
り,該両マスタ輪の軸線の交点を求め,上記スレーブ輪
の軸線が上記交点を通るように上記スレーブ輪の操舵角
を制御すると共に,上記操舵角検出工程及び上記速度検
出工程で検出された上記マスタ輪の速度及び操舵角に基
づいて,上記スレーブ輪の速度を制御することを特徴と
する無人走行車の制御方法として構成されている。ま
た,上記スレーブ輪制御工程は,例えば上記操舵角検出
工程で検出された上記両マスタ輪の操舵角より該両マス
タ輪の軸線の交点を求め,上記速度検出工程で検出され
た上記両マスタ輪の速度と,上記交点から各車輪までの
距離の比とを用いて,上記スレーブ輪の速度を制御する
ように構成できる。更に,上記推定工程は,例えば上記
両マスタ輪の軸線の交点より車体の回転中心位置を求
め,上記回転中心位置と上記両マスタ輪との距離,及び
上記両マスタ輪の速度を用いて,車体座標系における車
体の並進速度,回転速度,及び進行方向を求め,上記車
体座標系における車体の並進速度,回転速度,及び進行
方向と,前回の制御時における車体の推定位置・姿勢・
進行方向とに基づいて,現在の車体の推定位置・姿勢・
進行方向を求めるように構成できる。
In order to achieve the above object, the method of the present invention comprises two master wheels, each of which can independently control the speed and the steering angle, and each of which independently controls the speed and the steering angle. A steering angle detecting step of detecting a steering angle of the two master wheels in a method of controlling an unmanned traveling vehicle having at least one controllable slave wheel along a predetermined traveling route; A slave wheel control step of controlling the steering angle of the slave wheel based on the steering angle of the master wheel detected in the steering angle detection step;
A speed detecting step of detecting the speed of the two master wheels;
An estimating step of estimating a traveling locus of the vehicle body based on the speed and the steering angle of the two master wheels detected in the steering angle detecting step and the speed detecting step; Based on the predetermined traveling route,
A traveling control step of controlling the speed and the steering angle of the master wheel, wherein in the slave wheel control step, the axes of the master wheels are determined based on the steering angles of the master wheels detected in the steering angle detection step. The steering angle of the slave wheel is controlled so that the axis of the slave wheel passes through the intersection, and the speed and steering angle of the master wheel detected in the steering angle detecting step and the speed detecting step are obtained. Based on the above, the speed of the slave wheel is controlled, and the method is configured as a control method of an unmanned traveling vehicle. In the slave wheel control step, for example, an intersection of the axes of the master wheels is obtained from the steering angles of the master wheels detected in the steering angle detection step, and the master wheels detected in the speed detection step are determined. The speed of the slave wheel can be controlled using the speed of the vehicle and the ratio of the distance from the intersection to each wheel. Further, in the estimating step, for example, a rotation center position of the vehicle body is obtained from an intersection of the axes of the two master wheels, and a distance between the rotation center position and the two master wheels and a speed of the two master wheels are used. The translation speed, rotation speed, and traveling direction of the vehicle body in the coordinate system are determined, and the translation speed, rotation speed, and traveling direction of the vehicle body in the vehicle body coordinate system, and the estimated position, posture, and
Based on the traveling direction, the current estimated position, posture,
It can be configured to determine the traveling direction.

【0005】また,上記目的を達成するために本発明の
装置は,それぞれ独立して速度及び操舵角の制御が可能
な2つのマスタ輪と,それぞれ独立して速度及び操舵角
の制御が可能な1つ以上のスレーブ輪とを有する無人走
行車を,所定の走行経路に沿って走行させる無人走行車
の制御装置において,上記所定の走行経路の情報が予め
記憶された地図情報記憶手段と,上記2つのマスタ輪の
操舵角を検出する操舵角検出手段と,上記操舵角検出手
段で検出された上記両マスタ輪の操舵角に基づいて,上
記スレーブ輪の操舵角を制御するスレーブ輪制御手段
と,上記2つのマスタ輪の速度を検出する速度検出手段
と,上記操舵角検出手段及び上記速度検出手段で検出さ
れた上記両マスタ輪の速度及び操舵角に基づいて,車体
の走行軌跡を推定する推定手段と,上記推定手段で推定
された車体の走行軌跡と上記地図情報記憶手段に記憶さ
れた上記所定の走行経路とに基づいて,上記マスタ輪の
速度及び操舵角を制御する走行制御手段とを具備し,上
記スレーブ輪制御手段が,上記操舵角検出手段で検出さ
れた上記両マスタ輪の操舵角より,該両マスタ輪の軸線
の交点を求め,上記スレーブ輪の軸線が上記交点を通る
ように上記スレーブ輪の操舵角を制御すると共に,上記
操舵角検出手段及び上記速度検出手段で検出された上記
両マスタ輪の速度及び操舵角に基づいて,上記スレーブ
輪の速度を制御することを特徴とする無人走行車の制御
装置として構成されている。
In order to achieve the above object, the apparatus of the present invention comprises two master wheels capable of independently controlling the speed and the steering angle, and capable of independently controlling the speed and the steering angle. An unmanned traveling vehicle control device for causing an unmanned traveling vehicle having one or more slave wheels to travel along a predetermined traveling route; a map information storage means in which information on the predetermined traveling route is stored in advance; Steering angle detecting means for detecting the steering angles of the two master wheels; slave wheel control means for controlling the steering angles of the slave wheels based on the steering angles of the two master wheels detected by the steering angle detecting means; A speed detecting means for detecting the speeds of the two master wheels, and a traveling locus of the vehicle body is estimated based on the steering angle detecting means and the speeds and the steering angles of the two master wheels detected by the speed detecting means. Estimating means, traveling control means for controlling a speed and a steering angle of the master wheel based on the traveling locus of the vehicle body estimated by the estimating means and the predetermined traveling route stored in the map information storage means. Wherein the slave wheel control means determines an intersection of the axes of the master wheels from the steering angles of the master wheels detected by the steering angle detection means, and the axis of the slave wheels passes through the intersection. Controlling the steering angle of the slave wheel as described above, and controlling the speed of the slave wheel based on the speed and the steering angle of both master wheels detected by the steering angle detecting means and the speed detecting means. It is configured as a control device for an unmanned traveling vehicle.

【0006】[0006]

【作用】本発明に係る無人走行車の制御装置では,無人
走行車の走行中,まず操舵角検出手段及び速度検出手段
により,両マスタ輪の操舵角及び移動速度が検出され
る。そして,スレーブ輪制御手段により,上記両マスタ
輪の操舵角の実測値に基づいて,スレーブ輪の操舵角が
制御される。その方法としては,例えば上記操舵角検出
手段で検出された上記両マスタ輪の操舵角より該両マス
タ輪の軸線の交点が求められ,スレーブ輪の軸線が上記
交点を通るように上記スレーブ輪の操舵角が制御され
る。また,スレーブ輪の移動速度は,上記両マスタ輪の
操舵角及び移動速度の実測値に基づいて制御される。そ
の方法としては,例えば上記操舵角検出手段で検出され
た両マスタ輪の操舵角より該両マスタ輪の軸線の交点が
求められ,上記速度検出手段で検出された両マスタ輪の
速度と,上記交点から各車輪までの距離の比とを用い
て,スレーブ輪の速度が制御される。このように,スレ
ーブ輪の操舵角及び移動速度が,両マスタ輪の操舵角及
び移動速度の実測値に基づいて制御されるため,従来の
制御装置のように各車輪の軸線の交点がズレて車輪同士
の進行方向の干渉が大きくなり,各車輪のモータや車軸
に過負荷がかかったり車体が振動するなどの不具合が防
止される。
In the control device for an unmanned traveling vehicle according to the present invention, during traveling of the unmanned traveling vehicle, first, the steering angle and the moving speed of both master wheels are detected by the steering angle detecting means and the speed detecting means. Then, the slave wheel control means controls the steering angles of the slave wheels based on the measured values of the steering angles of both master wheels. For example, the intersection of the axes of the master wheels is obtained from the steering angles of the master wheels detected by the steering angle detection means, and the axis of the slave wheels passes through the intersection so that the axis of the slave wheels passes through the intersection. The steering angle is controlled. The moving speed of the slave wheels is controlled based on the measured values of the steering angle and the moving speed of the master wheels. For example, the intersection of the axes of the two master wheels is obtained from the steering angles of the two master wheels detected by the steering angle detecting means, and the speeds of the two master wheels detected by the speed detecting means are calculated. The speed of the slave wheel is controlled using the ratio of the distance from the intersection to each wheel. As described above, since the steering angle and the moving speed of the slave wheels are controlled based on the measured values of the steering angle and the moving speed of both master wheels, the intersection of the axis of each wheel is shifted as in the conventional control device. Interference in the traveling direction between the wheels is increased, and problems such as overloading the motor and axle of each wheel and vibration of the vehicle body are prevented.

【0007】続いて,推定手段により,上記操舵角検出
手段及び速度検出手段で検出された両マスタ輪の操舵角
及び移動速度に基づいて,車体の走行軌跡,例えば現在
の位置・姿勢・進行方向が推定される。その方法として
は,例えば上記両マスタ輪の軸線の交点より車体の回転
中心位置が求められ,上記回転中心位置と上記両マスタ
輪との距離,及び上記両マスタ輪の速度を用いて,車体
座標系における車体の並進速度,回転速度,及び進行方
向が求められ,上記車体座標系における車体の並進速
度,回転速度,及び進行方向と,前回の制御時における
車体の推定位置・姿勢・進行方向とに基づいて,現在の
車体の推定位置・姿勢・進行方向が求められる。続い
て,マスタ輪制御手段により,地図情報記憶手段に予め
記憶された走行経路上での車体の位置・進行方向・姿勢
と,上記推定手段で推定された車体の現在の位置・進行
方向・姿勢との偏差を小さくするように両マスタ輪の速
度及び操舵角が制御される。このように,2つのマスタ
輪のみを用いて車体の現在の位置・姿勢・進行方向が推
定され,更に所定の走行経路に近付ける制御についても
上記2つのマスタ輪に対して行われるため,上記従来の
制御装置のように各車輪の操舵モータの応答性の違いや
外乱などが大きくなっても,車体の回転中心は必ず1点
に決められ,正確な推定が行える。
Then, based on the steering angle and the moving speed of the two master wheels detected by the steering angle detecting means and the speed detecting means, the estimating means calculates the traveling locus of the vehicle body, for example, the current position, attitude, and traveling direction. Is estimated. For example, the position of the center of rotation of the vehicle body is determined from the intersection of the axes of the two master wheels, and the distance between the center of rotation and the two master wheels and the speed of the two master wheels are used to calculate the body coordinates. The translation speed, rotation speed, and traveling direction of the vehicle body in the coordinate system are obtained, and the translation speed, rotation speed, and traveling direction of the vehicle body in the vehicle body coordinate system, and the estimated position, attitude, and traveling direction of the vehicle body at the time of the previous control are obtained. , The current estimated position, posture, and traveling direction of the vehicle body are obtained. Subsequently, the master wheel control means controls the position, traveling direction, and attitude of the vehicle body on the traveling route stored in the map information storage means, and the current position, traveling direction, and attitude of the vehicle body estimated by the estimating means. The speed and the steering angle of both master wheels are controlled so as to reduce the deviation from. As described above, the current position, posture, and traveling direction of the vehicle body are estimated using only the two master wheels, and control for approaching a predetermined traveling route is also performed on the two master wheels. Even if the response of the steering motor of each wheel is different or disturbance is large as in the control device of the above, the rotation center of the vehicle body is always determined to be one point and accurate estimation can be performed.

【0008】[0008]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る無人走行車の制御装置A1の概略構成を示す模
式図,図2は本発明の実施の形態に係る無人走行車の制
御方法の概略処理手順を示すフローチャート,図3は上
記制御装置A1による無人走行車B1の制御手順の説明
図,図4は上記制御装置A1による無人走行車B1の制
御手順の説明図,図5は無人走行車B1の推定位置の算
出方法の説明図である。本実施の形態において制御対象
とする無人走行車B1は,図3に示すように,3つの車
輪W1〜W3を有している。これら3つの車輪W1〜W
3にはそれぞれ図示しない操舵モータと駆動モータとが
接続されており,それぞれ独立して速度及び操舵角の制
御が可能である。また,上記3つの車輪W1〜W3のう
ち,W1とW2をマスタ輪,W3をスレーブ輪とする。
上記無人走行車B1の走行制御を行う制御装置A1は,
図1に示すように,無人走行車B1のマスタ輪W1,W
2の操舵角検出センサ1,3と,マスタ輪W1,W2の
移動速度検出センサ2,4と,上記各検出センサ1〜4
に接続されたスレーブ輪制御部5と,上記各検出センサ
1〜4に接続された推定部6と,地図情報記憶部7と,
上記推定部6及び上記地図情報記憶部7に接続されたマ
スタ輪制御部8と,上記マスタ輪制御部8に接続された
マスタ輪W1,W2の操舵モータコントローラ9,1
1,及びマスタ輪W1,W2の駆動モータコントローラ
10,12と,上記スレーブ輪制御部5に接続されたス
レーブ輪W3の操舵モータコントローラ13及び駆動モ
ータコントローラ14とで構成されている。上記マスタ
輪W1,W2の操舵角検出センサ1,3はそれぞれマス
タ輪W1,W2の操舵角を検出し,マスタ輪W1,W2
の移動速度検出センサ2,4はそれぞれマスタ輪W1,
W2の移動速度を検出する。上記スレーブ輪制御部5
は,上記検出センサ1〜4で検出された両マスタ輪の操
舵角及び移動速度に基づいて,スレーブ輪W3の操舵角
及び移動速度を求め,上記スレーブ輪W3の操舵モータ
コントローラ13及び駆動モータコントローラ14に操
舵角及び移動速度の変更を指示する。上記推定部6は,
上記検出センサ1〜4で検出された両マスタ輪の操舵角
及び移動速度に基づいて,車体B1の現在の位置・姿勢
・進行方向を推定する。上記マスタ輪制御部8では,上
記地図情報記憶部7に予め記憶されている車体B1の走
行経路情報と,上記推定部6で推定された車体B1の現
在の位置・姿勢・進行方向との偏差を小さくするような
両マスタ輪W1,W2の速度及び操舵角を求め,上記マ
スタ輪W1,W2の操舵モータコントローラ9,11及
び駆動モータコントローラ10,12に操舵角及び移動
速度の変更を指示する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a schematic configuration of an unmanned traveling vehicle control device A1 according to an embodiment of the present invention, and FIG. 2 is a schematic processing procedure of an unmanned traveling vehicle control method according to an embodiment of the present invention. 3 is an explanatory diagram of a control procedure of the unmanned traveling vehicle B1 by the control device A1, FIG. 4 is an explanatory diagram of a control procedure of the unmanned traveling vehicle B1 by the control device A1, and FIG. FIG. 4 is an explanatory diagram of a calculation method of an estimated position. The unmanned traveling vehicle B1 to be controlled in the present embodiment has three wheels W1 to W3 as shown in FIG. These three wheels W1 to W
A steering motor and a drive motor (not shown) are connected to each of the motors 3, and the speed and the steering angle can be independently controlled. Of the three wheels W1 to W3, W1 and W2 are master wheels, and W3 is a slave wheel.
The control device A1 for controlling the traveling of the unmanned traveling vehicle B1 includes:
As shown in FIG. 1, the master wheels W1, W of the unmanned traveling vehicle B1
2, the steering angle detection sensors 1 and 3, the moving speed detection sensors 2 and 4 for the master wheels W1 and W2, and the above detection sensors 1 to 4
, A estimation unit 6 connected to each of the detection sensors 1 to 4, a map information storage unit 7,
A master wheel control unit 8 connected to the estimating unit 6 and the map information storage unit 7, and a steering motor controller 9, 1 for the master wheels W1, W2 connected to the master wheel control unit 8.
1 and the drive motor controllers 10 and 12 for the master wheels W1 and W2, and the steering motor controller 13 and the drive motor controller 14 for the slave wheel W3 connected to the slave wheel control unit 5. The steering angle detection sensors 1 and 3 for the master wheels W1 and W2 detect the steering angles of the master wheels W1 and W2, respectively.
The moving speed detection sensors 2 and 4 of the master wheel W1,
The moving speed of W2 is detected. Slave wheel controller 5
Calculates the steering angle and the moving speed of the slave wheel W3 based on the steering angle and the moving speed of both master wheels detected by the detection sensors 1 to 4, and calculates the steering motor controller 13 and the drive motor controller of the slave wheel W3. 14 is instructed to change the steering angle and the moving speed. The estimating unit 6
The current position, posture, and traveling direction of the vehicle body B1 are estimated based on the steering angles and moving speeds of both master wheels detected by the detection sensors 1 to 4. The master wheel control unit 8 calculates a deviation between the traveling route information of the vehicle body B1 stored in the map information storage unit 7 in advance and the current position, posture, and traveling direction of the vehicle body B1 estimated by the estimation unit 6. The speed and the steering angle of both master wheels W1 and W2 are determined so as to reduce the steering angle. .

【0009】以下,上記制御装置A1による無人走行車
B1の制御動作について,図2に示すフローチャート,
及び図3,図4に示す説明図を用いて詳述する。無人走
行車B1の走行中,まず上記両マスタ輪W1,W2の操
舵角,移動速度検出センサ1〜4により,両マスタ輪の
操舵角α1 ,α2 及び移動速度V1 ,V 2 が検出される
(ステップS1)。続いて,スレーブ輪制御部5は,上
記各検出センサ1〜4で検出された両マスタ輪の操舵角
及び移動速度に基づいて,以下のようにスレーブ輪W3
の操舵角及び移動速度を求める(ステップS2)。図3
に示すように,車体中心を原点とする車体座標系におけ
る上記両マスタ輪の操舵角α1 ,α2 ,及び座標値(X
1 ,Y1 ),(X2 ,Y2 )を用いて,車体の回転中心
座標(Xp ,Yp )を上記車体座標系で表すと次のよう
になる。
Hereinafter, an unmanned traveling vehicle using the control device A1 will be described.
The control operation of B1 is shown in the flowchart of FIG.
This will be described in detail with reference to FIGS. Unmanned running
During traveling of the traveling vehicle B1, first, the operation of the two master wheels W1 and W2 is performed.
The steering angle and moving speed detection sensors 1 to 4
Steering angle α1, ΑTwoAnd moving speed V1, V TwoIs detected
(Step S1). Subsequently, the slave wheel control unit 5
The steering angles of both master wheels detected by the respective detection sensors 1 to 4
And the slave wheel W3 based on the
Then, the steering angle and the moving speed are obtained (step S2). FIG.
As shown in the figure, in the body coordinate system with the body center as the origin,
Steering angle α of both master wheels1, ΑTwo, And coordinate values (X
1, Y1), (XTwo, YTwo), The center of rotation of the vehicle body
Coordinates (Xp, Yp) In the vehicle body coordinate system is as follows:
become.

【数1】 また,車体B1の並進速度Vc ,回転速度ωc ,進行方
向θc-bodyを上記車体座標系に対して算出すると次のよ
うになる。
(Equation 1) Further, the translational velocity V c of the vehicle body B1, the rotational speed omega c, the traveling direction theta c-body when calculated with respect to the vehicle body coordinate system is as follows.

【数2】 上記車体の回転中心座標(Xp ,Yp )と車輪W3(座
標(X3 ,Y3 ))とを結んだ直線に対して,車輪W3
が垂直になるように,車輪W3の操舵角α3 を次式によ
り求める。 α3 =tan-1((X3 −Xp )/(Yp −Y3 )) …(6) また,車輪W3の移動速度V3 は, Vc /R0 =V3 /R3 =ωc …(7) の関係より,次のように求められる。
(Equation 2) A straight line connecting the rotation center coordinates (X p , Y p ) of the vehicle body and the wheel W3 (coordinates (X 3 , Y 3 )) corresponds to the wheel W3
As it is perpendicular to determine the steering angle alpha 3 of the wheel W3 by the following equation. α 3 = tan −1 ((X 3 −X p ) / (Y p −Y 3 )) (6) Further, the moving speed V 3 of the wheel W3 is represented by V c / R 0 = V 3 / R 3 = From the relationship of ω c (7), it can be obtained as follows.

【数3】 以上のようにして車輪W3の操舵角α3 及び移動速度V
3 が求められると,上記スレーブ輪制御部5は,車輪W
3の操舵,駆動モータコントローラ13,14に対し
て,車輪W3の操舵角及び移動速度をそれぞれ上記
α3 ,V3 とするように指示する。このように,スレー
ブ輪W3は,両マスタ輪W1,W2の操舵角及び移動速
度の実測値に基づいて得られた車体B1の回転中心,並
進速度,回転速度に合わせて操舵角及び駆動速度が制御
されるため,従来の制御装置のように各車輪の軸線の交
点がズレて車輪同士の進行方向の干渉が大きくなり,各
車輪のモータや車軸に過負荷がかかったり車体が振動す
るなどの不具合が防止できる。
(Equation 3) As described above, the steering angle α 3 and the moving speed V of the wheel W3 are obtained.
3 is obtained, the slave wheel control unit 5
3 of the steering, the drive motor controller 13, an instruction to the steering angle and the moving speed of the wheel W3, respectively, and the alpha 3, V 3. In this way, the slave wheel W3 has a steering angle and a driving speed corresponding to the rotation center, the translation speed, and the rotation speed of the vehicle body B1 obtained based on the measured values of the steering angle and the moving speed of the master wheels W1 and W2. As a result, the intersections of the axes of the wheels are displaced and interference in the direction of travel between the wheels is increased, as in the case of conventional control devices, and the motors and axles of the wheels are overloaded and the vehicle body vibrates. Failure can be prevented.

【0010】続いて,推定部6は,上記各検出センサ1
〜4で検出された両マスタ輪の操舵角及び移動速度に基
づいて,以下のように車体B1の現在の位置・姿勢・進
行方向を推定する。(ステップS3)。車体B1は,上
式(1)〜(5)に示すように,回転中心を(Xp ,Y
p )として,並進速度Vc ,回転速度ωc ,進行方向θ
c-body(全て車体座標系)で走行している。そこで,上
式(1)〜(5)を用いて,経路座標系における車体B
1の位置・進行方向・姿勢(Xn ,Yn ,θn ,φn
を求める。車体B1は回転速度ωc で回転しているか
ら,微小単位時間ΔTの間にはωcΔTだけ車体姿勢が
変化する。従って,車体姿勢φn は,前回の算出結果φ
n-1に変化分を加算することにより次のように求められ
る。 φn =φn-1 +ωc ΔT …(9) 進行方向θn は,車体姿勢φn に車体座標系での進行方
向θc-bodyを加算することにより次のように求められ
る。 θn =θc-body+φn …(10) 車体の位置(Xn ,Yn )は,微小時間内での走行軌跡
を円弧と仮定し,前回の算出結果(Xn-1 ,Yn-1 )に
位置の変化分を加算することにより次のように求められ
る。 Xn =Xn-1 +d・cos(θn-1 +Δθ/2) …(11) Yn =Yn-1 +d・sin(θn-1 +Δθ/2) …(12) ここで,Δθ≠0のとき(回転走行のとき),Δs=R
0 Δθ,d=2R0 sin(Δθ/2)より(図5参
照), d=(sin(Δθ/2)/(Δθ/2))・Δs Δθ=0(直線走行のとき), d=Δs 但し,Δθ=θn −θn-1 , Δs=((Vn −Vn-1 )/2)・ΔT 以上のように,車体B1の経路座標系における位置・進
行方向・姿勢(Xn ,Yn ,θn ,φn )が求められ
た。
Subsequently, the estimating unit 6 is configured to detect each of the detection sensors 1
Based on the steering angles and moving speeds of the two master wheels detected in steps (1) to (4), the current position, posture, and traveling direction of the vehicle body B1 are estimated as follows. (Step S3). As shown in the above equations (1) to (5), the vehicle body B1 has its center of rotation ( Xp , Y
p ), translation speed V c , rotation speed ω c , traveling direction θ
You are traveling in c-body (all body coordinates). Therefore, using the above equations (1) to (5), the vehicle B in the route coordinate system
1 position, direction and orientation (X n, Y n, θ n, φ n)
Ask for. Body B1 is from rotating at a rotational speed omega c, between the minute unit time [Delta] T is the body attitude only omega c [Delta] T changes. Therefore, the body posture φ n is calculated by the previous calculation result φ
It is obtained as follows by adding the variation to n-1 . φ n = φ n-1 + ω c ΔT (9) The traveling direction θ n is obtained as follows by adding the traveling direction θ c-body in the vehicle body coordinate system to the vehicle body posture φ n . θ n = θ c-body + φ n (10) The position (X n , Y n ) of the vehicle body is calculated on the basis of the previous calculation result (X n−1 , Y n -1 ) is obtained as follows by adding the change in position to: X n = X n-1 + d · cos (θ n-1 + Δθ / 2) (11) Y n = Y n-1 + d · sin (θ n-1 + Δθ / 2) (12) where Δθ When ≠ 0 (when rotating), Δs = R
0 Δθ, d = 2R 0 From sin (Δθ / 2) (see FIG. 5), d = (sin (Δθ / 2) / (Δθ / 2)) · Δs Δθ = 0 (for straight running), d = Δs where Δθ = θ n −θ n−1 , Δs = ((V n −V n−1 ) / 2) · ΔT As described above, the position, traveling direction, and posture (X n , Y n , θ n , φ n ).

【0011】続いて,マスタ輪制御部8では,地図情報
記憶部7に予め記憶されている走行経路上での車体B1
の位置・進行方向・姿勢(Xr ,Yr ,θr ,φr
と,上記推定部6で推定された車体B1の現在の位置・
進行方向・姿勢(Xn ,Yn ,θn ,φn )との偏差
(Xe ,Ye ,θe ,φe )を小さくするような両マス
タ輪W1,W2の速度V1 ′,V2 ′及び操舵角
α1 ′,α2 ′を以下のように求める(ステップS
4)。まず,上記偏差(Xe ,Ye ,θe ,φe )が小
さくなるような車体B1の並進速度V0 ,回転速度
ω0 ,進行方向θ0 (図4参照)を,車体座標系に対し
て算出する。ここで,基本的な考え方として,X方向の
偏差は並進速度で,Y方向の偏差は進行方向で,車体姿
勢の偏差は角速度でそれぞれ補正する。 V0 =Vr +Kx・Xe …(13) ω0 =ωr +Kφ・φe …(14) θ0-body=θr-body+Ky・Ye …(15) 但し,Vr :目標速度 ωr :目標各速度 θr-body:車体座標系における目標進行方向(=θr
φr ) Kx:X方向偏差の補正ゲイン(正の定数) Ky:Y方向偏差の補正ゲイン(正の定数) Kφ:車体姿勢偏差の補正ゲイン(正の定数)
Subsequently, in the master wheel control section 8, the vehicle body B1 on the traveling route stored in the map information storage section 7 in advance.
Position, direction and orientation of the (X r, Y r, θ r, φ r)
And the current position of the vehicle body B1 estimated by the estimation unit 6
The speed V 1 ′ of the two master wheels W 1, W 2, such that the deviation (X e , Y e , θ e , φ e ) from the traveling direction / posture (X n , Y n , θ n , φ n ) is reduced. V 2 ′ and steering angles α 1 ′, α 2 ′ are obtained as follows (step S:
4). First, the translation speed V 0 , the rotation speed ω 0 , and the traveling direction θ 0 (see FIG. 4) of the vehicle body B1 such that the deviations (X e , Y e , θ e , φ e ) are reduced are represented in the vehicle body coordinate system. Calculated for Here, as a basic idea, the deviation in the X direction is corrected by the translation speed, the deviation in the Y direction is corrected by the traveling direction, and the deviation of the vehicle body posture is corrected by the angular velocity. V 0 = V r + Kx · X e ... (13) ω 0 = ω r + Kφ · φ e ... (14) θ 0-body = θ r-body + Ky · Y e ... (15) However, V r: target speed ω r : target speeds θ r-body : target traveling direction in the body coordinate system (= θ r
φ r ) Kx: X direction deviation correction gain (positive constant) Ky: Y direction deviation correction gain (positive constant) Kφ: Body posture deviation correction gain (positive constant)

【0012】次に,上記(13)〜(15)式を用い
て,次のようにマスタ輪W1,W2の速度V1 ′,
2 ′,及び操舵角α1 ′,α2 ′を求める(図4参
照)。まず,車体B1の回転半径R0 ′は, R0 ′=V0 /ω0 …(16) であるため,車体B1の回転中心座標(Xp ′,
p ′)は次式で表せる。 Xp ′=−R0 ′・sinθ0-body …(17) Yp ′=R0 ′・cosθ0-body …(18) そこで,マスタ輪W1,W2の速度V1 ′,V2 ′,及
び操舵角α1 ′,α2′は次式により求められる。
Next, using the above equations (13) to (15), the speed V 1 'of the master wheels W1 and W2,
V 2 ′ and steering angles α 1 ′ and α 2 ′ are obtained (see FIG. 4). First, since the turning radius R 0 ′ of the vehicle body B1 is R 0 ′ = V 0 / ω 0 (16), the rotation center coordinates (X p ′,
Y p ') can be expressed by the following equation. X p ′ = −R 0 ′ · sin θ 0 -body (17) Y p ′ = R 0 ′ · cos θ 0 -body (18) Therefore, the velocities V 1 ′, V 2 ′ of the master wheels W 1, W 2 . And the steering angles α 1 ′ and α 2 ′ are obtained by the following equations.

【数4】 以上のようにして,マスタ輪W1,W2の速度及び操舵
角が求められると,上記マスタ輪制御部8は,マスタ輪
W1,W2の操舵,駆動モータコントローラ9〜12に
対して,マスタ輪W1,W2の操舵角及び駆動速度をそ
れぞれ上記V1′,V2 ′,α1 ′,α2 ′とするよう
に指示する。上記ステップS4が終了すると,上記ステ
ップS1へ戻り,制御後の両マスタ輪の操舵角及び移動
速度が検出され,ステップS2において上記検出値に基
づいてスレーブ輪W3の制御が行われる。
(Equation 4) When the speed and the steering angle of the master wheels W1 and W2 are obtained as described above, the master wheel control unit 8 sends the master wheel W1 to the steering and drive motor controllers 9 to 12 of the master wheels W1 and W2. , W2 are instructed to be the above-mentioned V 1 ′, V 2 ′, α 1 ′ and α 2 ′, respectively. When the step S4 is completed, the process returns to the step S1, the steering angles and the moving speeds of the two master wheels after the control are detected, and the control of the slave wheel W3 is performed based on the detected values in the step S2.

【0013】以上のように,推定部6では,2つのマス
タ輪W1,W2のみを用いて車体B1の現在の位置・姿
勢・進行方向が推定され,更に所定の走行経路に近付け
る制御についても上記2つのマスタ輪に対して行われる
ため,上記従来の制御装置のように各車輪の操舵モータ
の応答性の違いや外乱などが大きくなっても,車体B1
の回転中心は必ず1点に決めることができ,正確な推定
が行える。以上説明したように,本実施の形態に係る制
御装置A1では,スレーブ輪W3の操舵角及び移動速度
が,両マスタ輪W1,W2の操舵角及び移動速度の実測
値に基づいて制御されるため,従来の制御装置のように
各車輪の軸線の交点がズレて車輪同士の進行方向の干渉
が大きくなり,各車輪のモータや車軸に過負荷がかかっ
たり車体が振動するなどの不具合が防止できる。また,
2つのマスタ輪W1,W2のみを用いて車体B1の現在
の位置・姿勢・進行方向が推定され,更に所定の走行経
路に近付ける制御についても上記2つのマスタ輪に対し
て行われるため,上記従来の制御装置のように各車輪の
操舵モータの応答性の違いや外乱などが大きくなって
も,車体B1の回転中心は必ず1点に決めることがで
き,正確な推定を行うことができる。
As described above, the estimating unit 6 estimates the current position, posture, and traveling direction of the vehicle body B1 using only the two master wheels W1 and W2, and further performs control for approaching a predetermined traveling route. Since the operation is performed for two master wheels, the vehicle body B1 is not affected even if the difference in the response of the steering motor of each wheel or the disturbance increases as in the conventional control device.
The rotation center can always be determined at one point, and accurate estimation can be performed. As described above, in the control device A1 according to the present embodiment, the steering angle and the moving speed of the slave wheel W3 are controlled based on the actually measured values of the steering angle and the moving speed of the master wheels W1 and W2. As in the case of the conventional control device, the intersection of the axis of each wheel is displaced, so that interference in the traveling direction between the wheels becomes large, and problems such as overloading the motor and axle of each wheel and vibration of the vehicle body can be prevented. . Also,
The current position, posture, and traveling direction of the vehicle body B1 are estimated using only the two master wheels W1 and W2, and control for approaching a predetermined traveling route is also performed on the two master wheels. Even if the difference in the response of the steering motor of each wheel or the disturbance becomes large as in the control device of the above, the rotation center of the vehicle body B1 can always be determined to one point, and accurate estimation can be performed.

【0014】[0014]

【実施例】上記実施の形態では,スレーブ輪が1つの場
合を取り上げたが,スレーブ輪が2つ以上の場合も全く
同様に適用できる。その場合,各スレーブ輪の操舵角及
び移動速度は,上記(6),(8)式内の座標値
(X3 ,Y3 )を各スレーブ輪の座標値に入れ替えるこ
とにより求められる。
In the above embodiment, the case where the number of slave wheels is one is described, but the case where there are two or more slave wheels can be applied in the same manner. In this case, the steering angle and the moving speed of each slave wheel are obtained by replacing the coordinate values (X 3 , Y 3 ) in the above equations (6) and (8) with the coordinate values of each slave wheel.

【0015】[0015]

【発明の効果】以上説明したように,本発明に係る無人
走行車の制御方法は,それぞれ独立して速度及び操舵角
の制御が可能な2つのマスタ輪と,それぞれ独立して速
度及び操舵角の制御が可能な1つ以上のスレーブ輪とを
有する無人走行車を,所定の走行経路に沿って走行させ
る無人走行車の制御方法において,上記2つのマスタ輪
の操舵角を検出する操舵角検出工程と,上記操舵角検出
工程で検出された上記マスタ輪の操舵角に基づいて,上
記スレーブ輪の操舵角を制御するスレーブ輪制御工程
と,上記2つのマスタ輪の速度を検出する速度検出工程
と,上記操舵角検出工程及び上記速度検出工程で検出さ
れた上記両マスタ輪の速度及び操舵角に基づいて,車体
の走行軌跡を推定する推定工程と,上記推定工程で推定
された車体の走行軌跡と上記所定の走行経路とに基づい
て,上記マスタ輪の速度及び操舵角を制御する走行制御
工程とを具備し,上記スレーブ輪制御工程において,上
記操舵角検出工程で検出された上記両マスタ輪の操舵角
より,該両マスタ輪の軸線の交点を求め,上記スレーブ
輪の軸線が上記交点を通るように上記スレーブ輪の操舵
角を制御すると共に,上記操舵角検出工程及び上記速度
検出工程で検出された上記マスタ輪の速度及び操舵角に
基づいて,上記スレーブ輪の速度を制御することを特徴
とする無人走行車の制御方法として構成されているた
め,スレーブ輪の操舵角が両マスタ輪の操舵角の実測値
に基づいて制御され,各車輪の軸線の交点がズレて車輪
同士の進行方向の干渉が大きくなっても,各車輪のモー
タや車軸に過負荷がかかったり車体が振動するなどの不
具合が防止できる。また,2つのマスタ輪のみを用いて
車体の現在の位置・姿勢・進行方向が推定され,更に所
定の走行経路に近付ける制御についても上記2つのマス
タ輪に対して行われるため,各車輪の操舵モータの応答
性の違いや外乱などが大きくなっても,車体の回転中心
は必ず1点に決めることができ,正確な推定を行うこと
ができる。
As described above, the method for controlling an unmanned vehicle according to the present invention comprises two master wheels capable of controlling the speed and the steering angle independently of each other, and the speed and the steering angle independently of each other. Steering angle detection for detecting the steering angles of the two master wheels in a method of controlling an unmanned traveling vehicle having one or more slave wheels capable of controlling the vehicle along a predetermined traveling route. A slave wheel control step of controlling a steering angle of the slave wheel based on a steering angle of the master wheel detected in the steering angle detecting step; and a speed detecting step of detecting speeds of the two master wheels. An estimation step of estimating a traveling locus of the vehicle body based on the speed and the steering angle of the two master wheels detected in the steering angle detection step and the speed detection step; Gauge A traveling control step of controlling the speed and the steering angle of the master wheel based on the predetermined traveling route and the predetermined traveling path. In the slave wheel control step, the two master wheels detected in the steering angle detection step are provided. The intersection of the axes of the two master wheels is determined from the steering angle of the two wheels, the steering angle of the slave wheel is controlled so that the axis of the slave wheel passes through the intersection, and the steering angle detection step and the speed detection step are performed. Since the control method of the unmanned vehicle is characterized by controlling the speed of the slave wheel based on the detected speed and steering angle of the master wheel, the steering angle of the slave wheel is controlled by the two master wheels. Even if the intersection of the axes of the wheels is displaced and the interference between the wheels in the traveling direction becomes large, the motor or axle of each wheel is overloaded or the body is shaken. Problems such as can be prevented. In addition, the current position, posture, and traveling direction of the vehicle body are estimated using only the two master wheels, and control for approaching a predetermined traveling route is also performed for the two master wheels. Even if the difference in the response of the motor or the disturbance becomes large, the rotation center of the vehicle body can always be determined to one point, and accurate estimation can be performed.

【0016】また,上記制御方法を適用可能な制御装置
として,本発明の装置は,それぞれ独立して速度及び操
舵角の制御が可能な2つのマスタ輪と,それぞれ独立し
て速度及び操舵角の制御が可能な1つ以上のスレーブ輪
とを有する無人走行車を,所定の走行経路に沿って走行
させる無人走行車の制御装置において,上記所定の走行
経路の情報が予め記憶された地図情報記憶手段と,上記
2つのマスタ輪の操舵角を検出する操舵角検出手段と,
上記操舵角検出手段で検出された上記両マスタ輪の操舵
角に基づいて,上記スレーブ輪の操舵角を制御するスレ
ーブ輪制御手段と,上記2つのマスタ輪の速度を検出す
る速度検出手段と,上記操舵角検出手段及び上記速度検
出手段で検出された上記両マスタ輪の速度及び操舵角に
基づいて,車体の走行軌跡を推定する推定手段と,上記
推定手段で推定された車体の走行軌跡と上記地図情報記
憶手段に記憶された上記所定の走行経路とに基づいて,
上記マスタ輪の速度及び操舵角を制御する走行制御手段
とを具備し,上記スレーブ輪制御手段が,上記操舵角検
出手段で検出された上記両マスタ輪の操舵角より,該両
マスタ輪の軸線の交点を求め,上記スレーブ輪の軸線が
上記交点を通るように上記スレーブ輪の操舵角を制御す
ると共に,上記操舵角検出手段及び上記速度検出手段で
検出された上記両マスタ輪の速度及び操舵角に基づい
て,上記スレーブ輪の速度を制御することを特徴とする
無人走行車の制御装置として構成されているため,スレ
ーブ輪の操舵角が両マスタ輪の操舵角の実測値に基づい
て制御され,各車輪の軸線の交点がズレて車輪同士の進
行方向の干渉が大きくなっても,各車輪のモータや車軸
に過負荷がかかったり車体が振動するなどの不具合が防
止できる。更に,2つのマスタ輪のみを用いて車体の走
行軌跡が推定され,更に所定の走行経路に近付ける制御
についても上記2つのマスタ輪に対して行われるため,
各車輪の操舵モータの応答性の違いや外乱などが大きく
なっても,車体の回転中心は必ず1点に決めることがで
き,正確な推定を行うことができる。
As a control device to which the above-described control method can be applied, the device of the present invention includes two master wheels capable of independently controlling the speed and the steering angle, and two independent speed and steering angle control devices. In an unmanned vehicle control device for causing an unmanned vehicle having at least one controllable slave wheel to travel along a predetermined traveling route, a map information storage in which information on the predetermined traveling route is stored in advance. Means, steering angle detecting means for detecting the steering angles of the two master wheels,
Slave wheel control means for controlling the steering angle of the slave wheels based on the steering angles of both master wheels detected by the steering angle detection means; speed detection means for detecting the speeds of the two master wheels; Estimating means for estimating a running locus of the vehicle body based on the speed and the steering angle of the two master wheels detected by the steering angle detecting means and the speed detecting means; On the basis of the predetermined traveling route stored in the map information storage means,
Traveling control means for controlling the speed and the steering angle of the master wheel, wherein the slave wheel control means determines the axis of the master wheel based on the steering angles of the master wheels detected by the steering angle detection means. The steering angle of the slave wheel is controlled so that the axis of the slave wheel passes through the intersection, and the speed and steering of both master wheels detected by the steering angle detecting means and the speed detecting means are determined. Since the control device for an unmanned vehicle is configured to control the speed of the slave wheel based on the angle, the steering angle of the slave wheel is controlled based on the measured steering angle of both master wheels. Therefore, even if the intersection of the axes of the wheels is displaced and interference in the traveling direction between the wheels is increased, problems such as overloading the motor and axle of each wheel and vibration of the vehicle body can be prevented. Furthermore, the traveling locus of the vehicle body is estimated using only the two master wheels, and control for approaching a predetermined traveling route is also performed on the two master wheels.
Even if the response of the steering motor of each wheel or the disturbance increases, the center of rotation of the vehicle body can always be determined to one point, and accurate estimation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る無人走行車の制御
装置A1の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a control device A1 for an unmanned traveling vehicle according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係る無人走行車の制御
方法の概略処理手順を示すフローチャート。
FIG. 2 is a flowchart showing a schematic processing procedure of a method for controlling an unmanned traveling vehicle according to an embodiment of the present invention.

【図3】 上記制御装置A1による無人走行車B1の制
御手順の説明図。
FIG. 3 is an explanatory diagram of a control procedure of the unmanned traveling vehicle B1 by the control device A1.

【図4】 上記制御装置A1による無人走行車B1の制
御手順の説明図。
FIG. 4 is an explanatory diagram of a control procedure of the unmanned traveling vehicle B1 by the control device A1.

【図5】 無人走行車B1の推定位置の算出方法の説明
図。
FIG. 5 is an explanatory diagram of a calculation method of an estimated position of the unmanned traveling vehicle B1.

【図6】 従来の無人走行車B0の走行制御方法の説明
図。
FIG. 6 is an explanatory diagram of a traveling control method of a conventional unmanned traveling vehicle B0.

【図7】 従来の無人走行車B0の走行制御方法の説明
図。
FIG. 7 is an explanatory diagram of a conventional traveling control method for an unmanned traveling vehicle B0.

【符号の説明】[Explanation of symbols]

1…車輪W1の操舵角検出センサ 2…車輪W1の移動速度検出センサ 3…車輪W2の操舵角検出センサ 4…車輪W2の移動速度検出センサ 5…スレーブ輪制御部 6…推定部 7…地図情報記憶部 8…マスタ輪制御部 9…車輪W1の操舵モータコントローラ 10…車輪W1の駆動モータコントローラ 11…車輪W2の操舵モータコントローラ 12…車輪W2の駆動モータコントローラ 13…車輪W3の操舵モータコントローラ 14…車輪W3の駆動モータコントローラ B1…無人走行車 W1,W2…マスタ輪 W3…スレーブ輪 DESCRIPTION OF SYMBOLS 1 ... Steering angle detection sensor of wheel W1 2 ... Moving speed detection sensor of wheel W1 3 ... Steering angle detection sensor of wheel W2 4 ... Moving speed detection sensor of wheel W2 5 ... Slave wheel control unit 6 ... Estimation unit 7 ... Map information Storage unit 8 Master wheel control unit 9 Steering motor controller for wheel W1 10 Drive motor controller for wheel W1 11 Steering motor controller for wheel W2 12 Drive motor controller for wheel W2 13 Steering motor controller for wheel W3 14 ... Drive motor controller for wheel W3 B1: unmanned vehicle W1, W2: master wheel W3: slave wheel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ独立して速度及び操舵角の制御
が可能な2つのマスタ輪と,それぞれ独立して速度及び
操舵角の制御が可能な1つ以上のスレーブ輪とを有する
無人走行車を,所定の走行経路に沿って走行させる無人
走行車の制御方法において,上記2つのマスタ輪の操舵
角を検出する操舵角検出工程と,上記操舵角検出工程で
検出された上記マスタ輪の操舵角に基づいて,上記スレ
ーブ輪の操舵角を制御するスレーブ輪制御工程と,上記
2つのマスタ輪の速度を検出する速度検出工程と,上記
操舵角検出工程及び上記速度検出工程で検出された上記
両マスタ輪の速度及び操舵角に基づいて,車体の走行軌
跡を推定する推定工程と,上記推定工程で推定された車
体の走行軌跡と上記所定の走行経路とに基づいて,上記
マスタ輪の速度及び操舵角を制御する走行制御工程とを
具備し,上記スレーブ輪制御工程において,上記操舵角
検出工程で検出された上記両マスタ輪の操舵角より,該
両マスタ輪の軸線の交点を求め,上記スレーブ輪の軸線
が上記交点を通るように上記スレーブ輪の操舵角を制御
すると共に,上記操舵角検出工程及び上記速度検出工程
で検出された上記マスタ輪の速度及び操舵角に基づい
て,上記スレーブ輪の速度を制御することを特徴とする
無人走行車の制御方法。
1. An unmanned vehicle having two master wheels capable of independently controlling the speed and the steering angle and one or more slave wheels capable of independently controlling the speed and the steering angle. A method of controlling an unmanned traveling vehicle traveling along a predetermined traveling route, wherein a steering angle detecting step of detecting a steering angle of the two master wheels, and a steering angle of the master wheel detected in the steering angle detecting step. , A slave wheel control step of controlling the steering angle of the slave wheel, a speed detection step of detecting the speeds of the two master wheels, and a steering angle detection step of the two master wheels. An estimating step of estimating a traveling locus of the vehicle body based on the speed and the steering angle of the master wheel; and a speed and a speed of the master wheel based on the traveling locus of the vehicle body estimated in the estimating step and the predetermined traveling route. And a traveling control step of controlling a steering angle. In the slave wheel control step, an intersection of the axes of both master wheels is obtained from the steering angles of both master wheels detected in the steering angle detection step. The steering angle of the slave wheel is controlled so that the axis of the slave wheel passes through the intersection. Based on the speed and the steering angle of the master wheel detected in the steering angle detecting step and the speed detecting step, the slave wheel is controlled. A method for controlling an unmanned vehicle, comprising controlling the speed of wheels.
【請求項2】 上記スレーブ輪制御工程が,上記操舵角
検出工程で検出された上記両マスタ輪の操舵角より,該
両マスタ輪の軸線の交点を求め,上記速度検出工程で検
出された上記両マスタ輪の速度と,上記交点から各車輪
までの距離の比とを用いて,上記スレーブ輪の速度を制
御するものである請求項1記載の無人走行車の制御方
法。
2. The slave wheel control step determines an intersection of the axes of the master wheels from the steering angles of the master wheels detected in the steering angle detection step, and determines the intersection of the axes of the master wheels. 2. The control method for an unmanned traveling vehicle according to claim 1, wherein the speed of the slave wheels is controlled using a speed of both master wheels and a ratio of a distance from the intersection to each wheel.
【請求項3】 上記推定工程が,上記両マスタ輪の軸線
の交点より車体の回転中心位置を求め,上記回転中心位
置と上記両マスタ輪との距離,及び上記両マスタ輪の速
度を用いて,車体座標系における車体の並進速度,回転
速度,及び進行方向を求め,上記車体座標系における車
体の並進速度,回転速度,及び進行方向と,前回の制御
時における車体の推定位置・姿勢・進行方向とに基づい
て,現在の車体の推定位置・姿勢・進行方向を求めるも
のである請求項1又は2記載の無人走行車の制御方法。
3. The estimating step obtains a rotation center position of the vehicle body from an intersection of axes of the master wheels, and uses a distance between the rotation center position and the master wheels and a speed of the master wheels. The translation speed, rotation speed, and traveling direction of the vehicle body in the vehicle body coordinate system are obtained, and the translation speed, rotation speed, and traveling direction of the vehicle body in the vehicle body coordinate system, and the estimated position, posture, and traveling of the vehicle body in the previous control. 3. The control method for an unmanned traveling vehicle according to claim 1, wherein an estimated position, attitude, and traveling direction of the current vehicle body are obtained based on the direction.
【請求項4】 それぞれ独立して速度及び操舵角の制御
が可能な2つのマスタ輪と,それぞれ独立して速度及び
操舵角の制御が可能な1つ以上のスレーブ輪とを有する
無人走行車を,所定の走行経路に沿って走行させる無人
走行車の制御装置において,上記所定の走行経路の情報
が予め記憶された地図情報記憶手段と,上記2つのマス
タ輪の操舵角を検出する操舵角検出手段と,上記操舵角
検出手段で検出された上記両マスタ輪の操舵角に基づい
て,上記スレーブ輪の操舵角を制御するスレーブ輪制御
手段と,上記2つのマスタ輪の速度を検出する速度検出
手段と,上記操舵角検出手段及び上記速度検出手段で検
出された上記両マスタ輪の速度及び操舵角に基づいて,
車体の走行軌跡を推定する推定手段と,上記推定手段で
推定された車体の走行軌跡と上記地図情報記憶手段に記
憶された上記所定の走行経路とに基づいて,上記マスタ
輪の速度及び操舵角を制御する走行制御手段とを具備
し,上記スレーブ輪制御手段が,上記操舵角検出手段で
検出された上記両マスタ輪の操舵角より,該両マスタ輪
の軸線の交点を求め,上記スレーブ輪の軸線が上記交点
を通るように上記スレーブ輪の操舵角を制御すると共
に,上記操舵角検出手段及び上記速度検出手段で検出さ
れた上記両マスタ輪の速度及び操舵角に基づいて,上記
スレーブ輪の速度を制御することを特徴とする無人走行
車の制御装置。
4. An unmanned vehicle having two master wheels each capable of independently controlling the speed and the steering angle and one or more slave wheels capable of independently controlling the speed and the steering angle. A control device for an unmanned traveling vehicle traveling along a predetermined traveling route, a map information storage means in which information of the predetermined traveling route is stored in advance, and a steering angle detection for detecting a steering angle of the two master wheels. Means, slave wheel control means for controlling the steering angle of the slave wheels based on the steering angles of both master wheels detected by the steering angle detection means, and speed detection for detecting the speeds of the two master wheels. Based on the speed and the steering angle of the two master wheels detected by the steering angle detecting means and the speed detecting means.
Estimating means for estimating the traveling locus of the vehicle body, and the speed and steering angle of the master wheel based on the traveling locus of the vehicle body estimated by the estimating means and the predetermined traveling route stored in the map information storage means. The slave wheel control means obtains the intersection of the axes of the master wheels from the steering angles of the master wheels detected by the steering angle detection means, The steering angle of the slave wheel is controlled so that the axis of the slave wheel passes through the intersection, and the slave wheel is controlled based on the speed and the steering angle of both master wheels detected by the steering angle detecting means and the speed detecting means. A control device for an unmanned traveling vehicle, which controls the speed of a vehicle.
JP21622997A 1997-08-11 1997-08-11 Method and apparatus for controlling unmanned vehicle Expired - Fee Related JP3952548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21622997A JP3952548B2 (en) 1997-08-11 1997-08-11 Method and apparatus for controlling unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21622997A JP3952548B2 (en) 1997-08-11 1997-08-11 Method and apparatus for controlling unmanned vehicle

Publications (2)

Publication Number Publication Date
JPH1165662A true JPH1165662A (en) 1999-03-09
JP3952548B2 JP3952548B2 (en) 2007-08-01

Family

ID=16685312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21622997A Expired - Fee Related JP3952548B2 (en) 1997-08-11 1997-08-11 Method and apparatus for controlling unmanned vehicle

Country Status (1)

Country Link
JP (1) JP3952548B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle
JP2019109864A (en) * 2017-12-20 2019-07-04 株式会社明電舎 Drive steering device of unmanned carrier
CN110377017A (en) * 2018-08-15 2019-10-25 北京京东尚科信息技术有限公司 A kind of method and apparatus controlling unmanned equipment turning
JP6970264B1 (en) * 2020-10-06 2021-11-24 株式会社Nichijo vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method
JP2010256941A (en) * 2009-04-21 2010-11-11 Meidensha Corp Steering drive method and device for automated guided vehicle
JP2019109864A (en) * 2017-12-20 2019-07-04 株式会社明電舎 Drive steering device of unmanned carrier
CN110377017A (en) * 2018-08-15 2019-10-25 北京京东尚科信息技术有限公司 A kind of method and apparatus controlling unmanned equipment turning
CN110377017B (en) * 2018-08-15 2022-11-08 北京京东乾石科技有限公司 Method and device for controlling unmanned equipment to turn
JP6970264B1 (en) * 2020-10-06 2021-11-24 株式会社Nichijo vehicle
WO2022074887A1 (en) * 2020-10-06 2022-04-14 株式会社Nichijo Vehicle
JP2022061293A (en) * 2020-10-06 2022-04-18 株式会社Nichijo vehicle

Also Published As

Publication number Publication date
JP3952548B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP2001255937A (en) Automatic traveling controller for vehicle
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JP2017222312A (en) Parking support device
JPH0895638A (en) Travel controller for mobile working robot
JP4264399B2 (en) Automated guided vehicle
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JPH075922A (en) Steering control method for unmanned work vehicle
JPH10119807A (en) Vehicle travel controlling device
JP3902448B2 (en) Straight traveling control device and straight traveling control method for trackless traveling body
JPH0687348A (en) Slip detection device for vehicle
JP6970264B1 (en) vehicle
JP2940300B2 (en) Direction indication method for autonomous guided vehicle
JP2878498B2 (en) Angular acceleration detector
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP2000153988A (en) Trackless road surface traveling body and container terminal
JP7020750B2 (en) How to generate a target trajectory
JP2002108453A (en) Unmanned vehicle
WO2023054212A1 (en) Control method and control system
JP2934770B2 (en) Method and apparatus for measuring wheel diameter of mobile robot
JPH11231939A (en) Method and device for controlling steering of unmanned vehicle
WO2023054213A1 (en) Control method and control system
JP2008197922A (en) Unmanned carrier
JP2728392B2 (en) Handle control device
JP2640446B2 (en) Guidance device of unmanned mobile machine by point tracking method
JPH03248210A (en) Automatic running system for running vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees