JPH1164525A - Fluorescent glass dosimeter - Google Patents

Fluorescent glass dosimeter

Info

Publication number
JPH1164525A
JPH1164525A JP23776597A JP23776597A JPH1164525A JP H1164525 A JPH1164525 A JP H1164525A JP 23776597 A JP23776597 A JP 23776597A JP 23776597 A JP23776597 A JP 23776597A JP H1164525 A JPH1164525 A JP H1164525A
Authority
JP
Japan
Prior art keywords
pulse
fluorescent glass
glass element
reflected
excitation ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23776597A
Other languages
Japanese (ja)
Other versions
JP3169346B2 (en
Inventor
Tatsuyo Ishidoya
達世 石戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP23776597A priority Critical patent/JP3169346B2/en
Publication of JPH1164525A publication Critical patent/JPH1164525A/en
Application granted granted Critical
Publication of JP3169346B2 publication Critical patent/JP3169346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a highly precise measurement by preventing a part of an exited ultraviolet ray pulse reflected and spectrally diffracted by the surface of a branching means from being superposed with a part of the pulse reflected and spectrally diffracted by the reverse side thereof. SOLUTION: Since a quartz plate 10 provided so as to branch a part of an excited ultraviolet ray pulse prevents the excited ultraviolet ray pulse (pulse) reflected by the surface from being superposed with the pulse reflected by the reverse side thereof, no optical interference occurs between the pulses, so that the intensity of the pulse emitted to a reference fluorescent glass element 5 can be prevented from being changed with the elapse of time by the optical interference. Accordingly, the intensity of the fluorescent pulse generated from the element 5 is regularly proportional to the intensity of the pulse. The pulse is spectrally diffracted after shaped into a prescribed form by a diaphragm 2, and incident on both the element 5 and a fluorescent glass element 8. Therefore, the pulses received by both elements 5, 8 have mutually equal intensity fluctuation and intensity distribution, and proportional intensities. Thus, the intensity of the fluorescent pulse generated from a radiation exposed fluorescent glass element can be corrected, and the exposure can be precisely measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線管理システ
ム等に利用される蛍光ガラス線量計測定装置に係わり、
特に、放射線被曝された蛍光ガラス素子に対する被曝線
量を高精度に測定する蛍光ガラス線量計測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent glass dosimeter measuring device used for a radiation management system and the like.
In particular, the present invention relates to a fluorescent glass dosimeter measuring device that measures the exposure dose to a fluorescent glass element that has been exposed to radiation with high accuracy.

【0002】[0002]

【従来の技術】放射線防護上、原子炉、加速器、X線発
生器、およびラジオアイソトープ等の施設の設置に当た
っては、放射線管理に万全を期す必要があり、また、そ
の施設従事者ないし利用者においては、その放射線被曝
線量を所定の許容範囲内に止める必要がある。そのた
め、施設の複数箇所に設置された各線量計の線量を個別
に測定し、それらの線量データを適切に管理することが
非常に重要となっている。
2. Description of the Related Art In radiation protection, when installing facilities such as a nuclear reactor, an accelerator, an X-ray generator, and a radioisotope, it is necessary to ensure thorough radiation management. Must keep its radiation exposure dose within a predetermined allowable range. For this reason, it is very important to individually measure the dose of each dosimeter installed at a plurality of places in the facility and appropriately manage the dose data.

【0003】従来、この種の被曝線量の測定は、放射線
被曝された蛍光ガラス素子に対し、窒素ガスレーザ装置
等の紫外線励起光源から励起紫外線パルスを照射し、こ
のとき蛍光ガラス素子から発生する蛍光パルスを検出す
ることにより行われている。
Conventionally, this type of exposure dose measurement is performed by irradiating a fluorescent glass element to which radiation has been irradiated with an excitation ultraviolet pulse from an ultraviolet excitation light source such as a nitrogen gas laser device. This is done by detecting

【0004】ところで、窒素ガスレーザ装置等の紫外線
励起光源の出力は、電源変動や経年変化などの要因によ
って変動し、それに伴って励起紫外線パルスの強度も変
動する。このように、励起紫外線パルスの強度が変動す
ると、蛍光ガラス素子から発生する蛍光パルスの強度も
変動するので、これを補償する観点から、従来は、放射
線被曝蛍光ガラス素子に照射する励起紫外線パルスの一
部を標準蛍光ガラス素子に照射して、各蛍光ガラス素子
から発生する蛍光パルスの強度の変動量を求めた後、こ
の変動量に基づいて放射線被曝蛍光ガラス素子から発生
する蛍光パルスの強度を補正し、被曝線量を測定してい
る。
[0004] The output of an ultraviolet excitation light source such as a nitrogen gas laser device fluctuates due to factors such as power supply fluctuation and aging, and the intensity of the excitation ultraviolet pulse fluctuates accordingly. As described above, when the intensity of the excitation ultraviolet pulse fluctuates, the intensity of the fluorescence pulse generated from the fluorescent glass element also fluctuates. From the viewpoint of compensating for this, conventionally, the intensity of the excitation ultraviolet pulse applied to the radiation-exposed fluorescent glass element is conventionally increased. After irradiating a part to the standard fluorescent glass element and calculating the variation of the intensity of the fluorescent pulse generated from each fluorescent glass element, the intensity of the fluorescent pulse generated from the fluorescent glass element exposed to radiation is determined based on this variation. After correcting, the exposure dose is measured.

【0005】また、本発明者は、標準蛍光ガラス素子及
び放射線被曝蛍光ガラス素子の双方に照射する励起紫外
線パルスの面内強度分布を等しくすべく、特開平8−2
20235号に示すような蛍光ガラス線量計測装置を提
案している。すなわち、この蛍光ガラス線量計測装置
は、励起紫外線パルスを所定の形状に整形するためのダ
イアフラムを設け、このダイアフラムを通過した励起紫
外線パルスの一部を分岐して標準蛍光ガラス素子に照射
するとともに、励起紫外線パルスの一部を放射線被曝蛍
光ガラス素子に照射する光学系を設けることにより、両
蛍光ガラス素子に照射する励起紫外線パルスの面内強度
分布を等しくすることを可能にしたものである。
The inventor of the present invention disclosed in Japanese Unexamined Patent Publication No. Hei 8 (1996) -82, in order to equalize the in-plane intensity distribution of the excitation ultraviolet pulse applied to both the standard fluorescent glass element and the radiation-exposed fluorescent glass element.
No. 20235 proposes a fluorescent glass dosimeter. That is, this fluorescent glass dosimetry device is provided with a diaphragm for shaping the excitation ultraviolet pulse into a predetermined shape, and irradiates a part of the excitation ultraviolet pulse that has passed through the diaphragm to the standard fluorescent glass element, By providing an optical system for irradiating a part of the excitation ultraviolet pulse to the radiation-exposed fluorescent glass element, it is possible to equalize the in-plane intensity distribution of the excitation ultraviolet pulse applied to both fluorescent glass elements.

【0006】図4は、かかる蛍光ガラス線量計測定装置
の構成を示す図である。すなわち、励起紫外線パルスを
発生する紫外線励起光源として窒素ガスレーザ装置1が
設けられ、この窒素ガスレーザ装置1の光軸上には、励
起紫外線パルスを所定の形状に整形するためのダイアフ
ラム2が配設されている。
FIG. 4 is a diagram showing a configuration of such a fluorescent glass dosimeter measuring device. That is, a nitrogen gas laser device 1 is provided as an ultraviolet excitation light source for generating an excitation ultraviolet pulse, and a diaphragm 2 for shaping the excitation ultraviolet pulse into a predetermined shape is provided on the optical axis of the nitrogen gas laser device 1. ing.

【0007】また、ダイアフラム2の出射側には、所定
の短い距離或いは接触させた状態で遮光容器3が設けら
れている。この遮光容器3は、ダイアフラム2のスリッ
ト光軸上に、このダイアフラムによって整形された励起
紫外線パルスの幅よりも若干狭幅の入射口と広幅の出射
口を備えている。
A light-shielding container 3 is provided on the emission side of the diaphragm 2 at a predetermined short distance or in contact with the light-shielding container. The light-shielding container 3 has, on the slit optical axis of the diaphragm 2, an entrance and an exit that are slightly narrower than the width of the excitation ultraviolet pulse shaped by the diaphragm.

【0008】さらに、この遮光容器3の内部には、前記
入射口側より出射口側の方向に石英板4、紫外線透過フ
ィルタ7がこの順序で内蔵されている。この石英板4
は、前記励起紫外線パルスの光軸に対して45゜の角度
で配置され、ダイアフラム2から照射される励起紫外線
パルスの一部を直角方向に反射分光するように構成され
ている。
Further, inside the light-shielding container 3, a quartz plate 4 and an ultraviolet transmission filter 7 are built in this order from the entrance side to the exit side. This quartz plate 4
Is arranged at an angle of 45 ° with respect to the optical axis of the excitation ultraviolet pulse, and is configured to reflect and spectrally reflect a part of the excitation ultraviolet pulse emitted from the diaphragm 2 in a right angle direction.

【0009】また、石英板4によって反射分光された光
軸上には、標準蛍光ガラス素子5が配置され、この標準
蛍光ガラス素子5の紫外線入射面と直交する方向の標準
蛍光パルス発生側には、第1の光電変換素子6が配置さ
れている。これら標準蛍光ガラス素子5及び第1の光電
変換素子6は、遮光容器3の内部に収納されているた
め、標準蛍光ガラス素子5から発生する蛍光パルス等は
外部に漏れることなく第1の光電変換素子6に導入され
る。
A standard fluorescent glass element 5 is arranged on the optical axis reflected and reflected by the quartz plate 4, and a standard fluorescent pulse generating side of the standard fluorescent glass element 5 in a direction orthogonal to the ultraviolet incident surface is provided. , A first photoelectric conversion element 6. Since the standard fluorescent glass element 5 and the first photoelectric conversion element 6 are housed inside the light-shielding container 3, the fluorescent pulse or the like generated from the standard fluorescent glass element 5 does not leak out to the first photoelectric conversion element. The element 6 is introduced.

【0010】一方、遮光容器3の外部には、この遮光容
器3の出射口からの光軸上に、放射線被曝蛍光ガラス素
子8が配置されている。すなわち、前記石英板4、紫外
線透過フィルタ7及び放射線被曝蛍光ガラス素子8が、
前記励起紫外線パルスの光軸上にこの順序で配置されて
いる。そして、この放射線被曝蛍光ガラス素子8の紫外
線入射面と直交する方向の被測定蛍光パルス発生側に
は、第2の光電変換素子9が配置されている。
On the other hand, outside the light-shielding container 3, a radiation-exposed fluorescent glass element 8 is arranged on the optical axis from the exit of the light-shielding container 3. That is, the quartz plate 4, the ultraviolet transmission filter 7, and the radiation-exposed fluorescent glass element 8
They are arranged in this order on the optical axis of the excitation ultraviolet pulse. A second photoelectric conversion element 9 is disposed on the side of the fluorescent glass element 8 to be exposed to which the measured fluorescent pulse is generated in a direction orthogonal to the ultraviolet incident surface.

【0011】このような構成を有する蛍光ガラス線量計
測装置は、以下に述べるように作用する。すなわち、窒
素ガスレーザ1からの励起紫外線パルスは、ダイアフラ
ム2を通過して所定の形状に整形された後、遮光容器3
の内部に導入され、石英板4に入射し、石英板4によっ
て分光される。そして、石英板4によって反射分光され
た励起紫外線パルスは、標準蛍光ガラス素子5に照射さ
れ、この標準蛍光ガラス素子5を励起して標準蛍光パル
スを発生させ、この標準蛍光パルスが第1の光電変換素
子6によって検出される。
The fluorescent glass dosimeter having such a configuration operates as described below. That is, the excitation ultraviolet pulse from the nitrogen gas laser 1 passes through the diaphragm 2 and is shaped into a predetermined shape.
, Is incident on the quartz plate 4, and is separated by the quartz plate 4. The excitation ultraviolet pulse reflected and reflected by the quartz plate 4 is applied to the standard fluorescent glass element 5 to excite the standard fluorescent glass element 5 to generate a standard fluorescent pulse. It is detected by the conversion element 6.

【0012】また、石英板4によって透過分光された励
起紫外線パルスは、遮光容器3内の紫外線透過フィルタ
7を介して、遮光容器3の外部の放射線被曝蛍光ガラス
素子8に照射され、この放射線被曝蛍光ガラス素子8を
励起して、放射線被曝量に相当する被測定蛍光パルスを
発生させ、この被測定蛍光パルスが第2の光電変換素子
6によって検出される。
The excitation ultraviolet pulse transmitted through the quartz plate 4 is applied to a radiation-exposed fluorescent glass element 8 outside the light-shielding container 3 via an ultraviolet-ray transmission filter 7 in the light-shielding container 3. The fluorescent glass element 8 is excited to generate a measured fluorescent pulse corresponding to the radiation exposure dose, and the measured fluorescent pulse is detected by the second photoelectric conversion element 6.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の蛍光ガラス線量計測定装置には、以下に
述べるような問題点があった。
However, the conventional fluorescent glass dosimeter measuring apparatus as described above has the following problems.

【0014】すなわち、従来の蛍光ガラス線量計測定装
置に用いられる石英板4の厚さは、励起紫外線パルスの
上下幅の約1/2(0.5倍)に設定されている。その
ため、図5に示したように、石英板4で反射分光されて
標準蛍光ガラス素子5に照射される励起紫外線パルス
は、石英板4の表面から反射する励起紫外線パルスと、
石英板4の裏面から反射する励起紫外線パルスとが殆ど
重なり合い、また、通常使用される励起紫外線パルスは
単色光であることから、光干渉が発生する。
That is, the thickness of the quartz plate 4 used in the conventional fluorescent glass dosimeter measuring device is set to about 1/2 (0.5 times) the vertical width of the excitation ultraviolet pulse. Therefore, as shown in FIG. 5, the excitation ultraviolet pulse reflected and separated by the quartz plate 4 and applied to the standard fluorescent glass element 5 includes an excitation ultraviolet pulse reflected from the surface of the quartz plate 4 and
The excitation ultraviolet pulse reflected from the back surface of the quartz plate 4 almost overlaps, and the excitation ultraviolet pulse generally used is monochromatic light, so that optical interference occurs.

【0015】この光干渉量が常に一定であれば問題はな
いが、周囲温度の変動や振動等によって石英板4の角度
が微小変化した場合、上記両励起紫外線パルス間の光干
渉量が変化し、標準蛍光ガラス素子5に照射される励起
紫外線パルスの強度が経時変動する。その結果、標準蛍
光ガラス素子5から発生する標準蛍光パルスの強度が励
起紫外線パルスの強度に比例しなくなるため、放射線被
曝蛍光ガラス素子8から発生する被測定蛍光パルスの強
度を正しく補正することができず、放射線被曝蛍光ガラ
ス素子8の被曝線量を正しく測定することができないと
いう問題点があった。
There is no problem if the amount of light interference is always constant, but if the angle of the quartz plate 4 is slightly changed due to fluctuations in ambient temperature, vibrations, etc., the amount of light interference between the two excitation ultraviolet pulses changes. The intensity of the excitation ultraviolet pulse applied to the standard fluorescent glass element 5 varies with time. As a result, the intensity of the standard fluorescent pulse generated from the standard fluorescent glass element 5 is not proportional to the intensity of the excitation ultraviolet pulse, so that the intensity of the measured fluorescent pulse generated from the radiation-exposed fluorescent glass element 8 can be correctly corrected. However, there was a problem that the exposure dose of the fluorescent glass element 8 exposed to radiation could not be measured correctly.

【0016】本発明は、上述したような従来技術の問題
点を解消するために提案されたもので、その目的は、励
起紫外線パルスの分岐手段における表裏反射光間の光干
渉を防止し、放射線被曝蛍光ガラス素子の被曝線量を高
精度に測定することを可能とした蛍光ガラス線量計測定
装置を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art. It is an object of the present invention to prevent light interference between reflected light from the front and back of a pumping ultraviolet pulse branching means, An object of the present invention is to provide a fluorescent glass dosimeter measuring device capable of measuring an exposure dose of an exposed fluorescent glass element with high accuracy.

【0017】[0017]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明は、励起紫外線パルスを発
生する紫外線励起光源と、この励起紫外線パルスを受け
てそれぞれ蛍光パルスを発生する標準蛍光ガラス素子お
よび放射線被曝蛍光ガラス素子と、前記励起紫外線パル
スの一部を分岐して前記標準蛍光ガラス素子に照射する
とともに、前記励起紫外線パルスの一部を前記放射線被
曝蛍光ガラス素子に照射する分岐手段を備えた蛍光ガラ
ス線量計測定装置において、前記分岐手段の表面から反
射分光される励起紫外線パルスの一部と、裏面から反射
分光される励起紫外線パルスの一部とが、互いに重なり
合わないように構成されていることを特徴とするもので
ある。
In order to achieve the above object, the invention according to claim 1 provides an ultraviolet excitation light source for generating an excitation ultraviolet pulse, and generates a fluorescent pulse upon receiving the excitation ultraviolet pulse. A standard fluorescent glass element and a radiation-exposed fluorescent glass element, and a part of the excitation ultraviolet pulse is branched and irradiated on the standard fluorescent glass element, and a part of the excitation ultraviolet pulse is irradiated on the radiation-exposed fluorescent glass element. In a fluorescent glass dosimeter measuring device provided with a branching means, a part of the excitation ultraviolet pulse reflected and reflected from the front surface of the branching means and a part of the excitation ultraviolet pulse reflected and reflected from the back surface overlap each other. It is characterized in that it is not configured.

【0018】このような構成を有する請求項1記載の発
明によれば、分岐手段の表面から反射する励起紫外線パ
ルスと、裏面から反射する励起紫外線パルスとが重なり
合わないため、両励起紫外線パルス間で光干渉が発生せ
ず、標準蛍光ガラス素子に照射される励起紫外線パルス
の強度が光干渉により経時変化することがなくなる。
According to the first aspect of the present invention, since the excitation ultraviolet pulse reflected from the front surface of the branching means and the excitation ultraviolet pulse reflected from the back surface do not overlap with each other, the interval between the excitation ultraviolet pulses is not changed. No optical interference occurs, and the intensity of the excitation ultraviolet pulse applied to the standard fluorescent glass element does not change with time due to the optical interference.

【0019】その結果、標準蛍光ガラス素子から発生す
る標準蛍光パルスの強度は、常に励起紫外線パルスの強
度に比例することになるため、標準蛍光ガラス素子から
発生する標準蛍光パルスの強度に基づいて、放射線被曝
蛍光ガラス素子から発生する被測定蛍光パルスの強度を
正しく補正することができるので、放射線被曝蛍光ガラ
ス素子の被曝線量を正しく測定することができる。
As a result, the intensity of the standard fluorescent pulse generated from the standard fluorescent glass element is always proportional to the intensity of the excitation ultraviolet light pulse. Since the intensity of the fluorescent pulse to be measured generated from the fluorescent glass element exposed to radiation can be correctly corrected, the exposure dose of the fluorescent glass element exposed to radiation can be correctly measured.

【0020】また、請求項2に記載の発明は、請求項1
記載の蛍光ガラス線量計測定装置において、前記分岐手
段の厚さが、分岐手段に入射される励起紫外線パルスの
上下幅の約1.3倍以上に設定されていることを特徴と
するものである。
The invention described in claim 2 is the same as the invention described in claim 1.
In the fluorescent glass dosimeter measuring device described above, the thickness of the branching means is set to be about 1.3 times or more the vertical width of the excitation ultraviolet pulse incident on the branching means. .

【0021】このような構成を有する請求項2に記載の
発明によれば、分岐手段の表面から反射分光される励起
紫外線パルスの一部と、裏面から反射分光される励起紫
外線パルスの一部とが、互いに重なり合わないように構
成することができる。
According to the second aspect of the present invention having such a configuration, a part of the excitation ultraviolet pulse reflected and reflected from the front surface of the branching unit and a part of the excitation ultraviolet pulse reflected and reflected from the back surface are provided. Can be configured so that they do not overlap with each other.

【0022】請求項3に記載の発明は、請求項1又は請
求項2に記載の蛍光ガラス線量計測定装置において、前
記分岐手段が、前記励起紫外線パルスの光軸に対して4
5゜の角度で配置されていることを特徴とするものであ
る。
According to a third aspect of the present invention, in the fluorescent glass dosimeter measuring apparatus according to the first or second aspect, the branching means is provided with an optical axis of the excitation ultraviolet pulse having a distance of 4 degrees.
It is characterized by being arranged at an angle of 5 °.

【0023】このような構成を有する請求項3に記載の
発明によれば、分岐手段により反射分光される励起紫外
線パルスの一部は、分岐手段への入射光軸に対して直角
に反射されるので、標準蛍光ガラス素子を正確に設置す
ることができ、また、蛍光ガラス線量計測定装置をコン
パクトに構成することができる。
According to the third aspect of the present invention having such a configuration, a part of the excitation ultraviolet pulse reflected and split by the branching unit is reflected at right angles to the optical axis incident on the branching unit. Therefore, the standard fluorescent glass element can be accurately set, and the fluorescent glass dosimeter measuring device can be made compact.

【0024】請求項4に記載の発明は、請求項1乃至請
求項3のいずれか一に記載の蛍光ガラス線量計測定装置
において、前記分岐手段が、石英板より構成されている
ことを特徴とするものである。
According to a fourth aspect of the present invention, in the fluorescent glass dosimeter measuring apparatus according to any one of the first to third aspects, the branching means is formed of a quartz plate. Is what you do.

【0025】このような構成を有する請求項4に記載の
発明によれば、分岐手段として、屈折率が約1.5であ
る石英板を用いることにより、請求項1乃至請求項3の
発明を容易に実施することができる。
According to the fourth aspect of the present invention having the above-described structure, a quartz plate having a refractive index of about 1.5 is used as the branching means. It can be easily implemented.

【0026】[0026]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して具体的に説明する。なお、図4に示し
た従来形と同一の部材には同一の符号を付して、説明は
省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be specifically described below with reference to the drawings. The same members as those of the conventional type shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.

【0027】本実施形態においては、図1に示したよう
に、励起紫外線パルスの一部を直角方向に反射分光させ
る分岐手段である石英板10は、励起紫外線パルスの光
軸に対して45゜の角度で配置され、また、その厚み
が、励起紫外線パルスの上下幅の約1.5倍以上に設定
されている。
In the present embodiment, as shown in FIG. 1, the quartz plate 10, which is a branching means for reflecting and separating a part of the excitation ultraviolet pulse in the right angle direction, is 45 ° with respect to the optical axis of the excitation ultraviolet pulse. And the thickness thereof is set to about 1.5 times or more the vertical width of the excitation ultraviolet pulse.

【0028】ここで、石英板10の厚みを励起紫外線パ
ルスの上下幅の約1.5倍以上に設定した理由について
説明する。
Here, the reason why the thickness of the quartz plate 10 is set to be about 1.5 times or more the vertical width of the excitation ultraviolet pulse will be described.

【0029】すなわち、図2に示したように、励起紫外
線パルスの上下幅をa、石英板10の厚みをb、石英板
の屈折率を1.5とした場合に、励起紫外線パルスの下
側の入射光11aの内、石英板10の裏側で反射した光
11bが、励起紫外線パルスの上側の入射光12aの
内、石英板10の表面で反射した光12bと重なり合わ
ないようにするには、石英板10の厚みbを、以下のよ
うに設定する必要がある。
That is, as shown in FIG. 2, when the vertical width of the excitation ultraviolet pulse is a, the thickness of the quartz plate 10 is b, and the refractive index of the quartz plate is 1.5, the lower side of the excitation ultraviolet pulse is Of the incident light 11a reflected on the back side of the quartz plate 10 does not overlap with the light 12b reflected on the surface of the quartz plate 10 out of the incident light 12a on the upper side of the excitation ultraviolet pulse. It is necessary to set the thickness b of the quartz plate 10 as follows.

【0030】[0030]

【数1】 このように、石英板10の厚みは、励起紫外線パルスの
上下幅に対して、約1.3倍以上、より好ましくは約
1.5倍以上に設定することが望ましい。一方、石英板
10の厚みが厚すぎると、石英板10の表面で反射した
励起紫外線パルスと裏側で反射した励起紫外線パルスと
が離れすぎるため、これらが照射される標準蛍光ガラス
素子5を大きくする必要が生じ、ひいては、蛍光ガラス
線量計測定装置全体の大型化を余儀なくされることにな
る。このため、石英板10の厚みは、励起紫外線パルス
の上下幅に対して、約3倍以下とすることが望ましい。
(Equation 1) As described above, the thickness of the quartz plate 10 is desirably set to about 1.3 times or more, more preferably about 1.5 times or more, with respect to the vertical width of the excitation ultraviolet pulse. On the other hand, if the thickness of the quartz plate 10 is too thick, the excitation ultraviolet pulse reflected on the surface of the quartz plate 10 and the excitation ultraviolet pulse reflected on the back side are too far apart, so that the standard fluorescent glass element 5 to which these are irradiated is enlarged. The necessity arises, and as a result, the size of the entire fluorescent glass dosimeter measuring device must be increased. For this reason, it is desirable that the thickness of the quartz plate 10 be about three times or less the vertical width of the excitation ultraviolet pulse.

【0031】このような構成を有する本実施形態の蛍光
ガラス線量計測定装置は、以下に述べるように作用す
る。
The fluorescent glass dosimeter measuring apparatus of this embodiment having such a configuration operates as described below.

【0032】すなわち、窒素ガスレーザ1より発生され
た励起紫外線パルスは、ダイアフラム2で所定の形状に
整形されて遮光容器3に入り、石英板10に入射され
る。この場合、本実施形態においては、図3に示したよ
うに、励起紫外線パルスの一部が石英板10の表面と裏
面からそれぞれ反射され、互いに重なり合わずに標準蛍
光ガラス素子5に入射され、これを励起して標準蛍光パ
ルスを発生させる。このとき、標準蛍光ガラス素子5は
遮光容器3および紫外線透過フィルタ7により覆われて
いるので、標準蛍光ガラス素子5が発生する標準蛍光パ
ルスは、遮光容器3の外部にある第2の光電変換素子9
には検出されず、正確な測定が可能となる。
That is, the excitation ultraviolet pulse generated by the nitrogen gas laser 1 is shaped into a predetermined shape by the diaphragm 2, enters the light shielding container 3, and is incident on the quartz plate 10. In this case, in the present embodiment, as shown in FIG. 3, a part of the excitation ultraviolet pulse is reflected from the front and back surfaces of the quartz plate 10, respectively, and is incident on the standard fluorescent glass element 5 without overlapping each other. This is excited to generate a standard fluorescence pulse. At this time, since the standard fluorescent glass element 5 is covered by the light-shielding container 3 and the ultraviolet transmission filter 7, the standard fluorescent pulse generated by the standard fluorescent glass element 5 is transmitted to the second photoelectric conversion element outside the light-shielding container 3. 9
And accurate measurement is possible.

【0033】一方、石英板10を透過した励起紫外線パ
ルスは、紫外線透過フィルタ7を介して遮光容器3の外
に出る。また、遮光容器3の外に出た励起紫外線パルス
は放射線被曝蛍光ガラス素子8に入射され、ここで放射
線被曝量に相当する被測定蛍光パルスを発生し、この被
測定蛍光パルスが第2の光電変換素子9によって検出さ
れる。
On the other hand, the excitation ultraviolet pulse transmitted through the quartz plate 10 goes out of the light shielding container 3 via the ultraviolet transmission filter 7. Further, the excitation ultraviolet pulse that has exited the light-shielding container 3 is incident on the fluorescent glass element 8 exposed to radiation, and generates a fluorescent pulse to be measured corresponding to the amount of radiation exposure. It is detected by the conversion element 9.

【0034】このように、本実施形態によれば、前記励
起紫外線パルスの一部を分岐するために設けられた石英
板10において、その表面から反射した励起紫外線パル
スと、裏面から反射した励起紫外線パルスとが重なり合
わないため、両励起紫外線パルス間で光干渉が発生せ
ず、標準蛍光ガラス素子5に照射される励起紫外線パル
スの強度が光干渉により経時変化することがなくなる。
これにより、標準蛍光ガラス素子5から発生する標準蛍
光パルスの強度は、常に励起紫外線パルスの強度に比例
することになる。
As described above, according to the present embodiment, in the quartz plate 10 provided for branching a part of the excitation ultraviolet pulse, the excitation ultraviolet pulse reflected from the front surface and the excitation ultraviolet light reflected from the back surface are used. Since the pulses do not overlap, optical interference does not occur between both excitation ultraviolet pulses, and the intensity of the excitation ultraviolet pulse applied to the standard fluorescent glass element 5 does not change with time due to the optical interference.
Thus, the intensity of the standard fluorescent pulse generated from the standard fluorescent glass element 5 is always proportional to the intensity of the excitation ultraviolet pulse.

【0035】また、励起紫外線パルスは、ダイアフラム
2で所定の形状に整形された後、分光されて標準蛍光ガ
ラス素子5と放射線被曝蛍光ガラス素子8の双方に入射
される。このため、両蛍光ガラス素子5、8が受ける励
起紫外線パルスは、両蛍光ガラス素子間で常に強度変動
と面内強度分布とがそれぞれ等しく、かつ強度が比例す
ることになる。
The excitation ultraviolet pulse is shaped into a predetermined shape by the diaphragm 2, then split and incident on both the standard fluorescent glass element 5 and the radiation-exposed fluorescent glass element 8. Therefore, the intensity of the excitation ultraviolet pulse received by both fluorescent glass elements 5 and 8 is always equal between the fluorescent glass elements and the in-plane intensity distribution, and the intensity is proportional.

【0036】したがって、標準蛍光ガラス素子5から発
生する標準蛍光パルスの強度に基づいて、放射線被曝蛍
光ガラス素子から発生する被測定蛍光パルスの強度を正
しく補正することができるので、放射線被曝蛍光ガラス
素子の被曝線量を正しく測定することができる。
Therefore, the intensity of the measured fluorescent pulse generated from the radiation-exposed fluorescent glass element can be correctly corrected based on the intensity of the standard fluorescent pulse generated from the standard fluorescent glass element 5, so that the radiation-exposed fluorescent glass element can be corrected. Can be measured correctly.

【0037】[0037]

【他の実施例】なお、本発明は、上述した実施形態に限
定されるものでなく、励起紫外線パルスの一部を直角方
向に反射分光する分岐手段において、その表面から反射
分光される励起紫外線パルスの一部と、裏面から反射分
光される励起紫外線パルスの一部とが、互いに重なり合
わないように構成すれば、分岐手段の材質、屈折率等は
適宜変形することができる。
[Other Embodiments] The present invention is not limited to the above-described embodiment. In the branching means for reflecting and spectroscopically reflecting a part of the excitation ultraviolet light pulse in the perpendicular direction, the excitation ultraviolet light reflected and spectrally reflected from the surface thereof is provided. If a part of the pulse and a part of the excitation ultraviolet pulse reflected and reflected from the back surface are configured not to overlap each other, the material, the refractive index, and the like of the branching unit can be appropriately changed.

【0038】また、前記石英板の代わりに、2個の直角
プリズムを接着して立方体にしたプリズム型ビームスプ
リッターを用いても同様に実施できる。
Further, the present invention can be similarly carried out by using a prism type beam splitter in which two right-angle prisms are bonded to form a cube instead of the quartz plate.

【0039】[0039]

【発明の効果】以上のように、本発明によれば、肉厚の
厚い分岐手段を使用することで、分岐手段における表裏
反射光間の光干渉を防止し、放射線被曝蛍光ガラス素子
の被曝線量を高精度に測定することを可能とした蛍光ガ
ラス線量計測定装置を提供することができる。
As described above, according to the present invention, by using the thick branching means, light interference between the front and back reflected light at the branching means can be prevented, and the radiation exposure dose of the fluorescent glass element exposed to radiation can be prevented. Can be provided with a fluorescent glass dosimeter measuring device capable of measuring the measurement with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蛍光ガラス線量計測定装置の一実施形
態の構成を示す図
FIG. 1 is a diagram showing a configuration of an embodiment of a fluorescent glass dosimeter measuring device of the present invention.

【図2】本発明の蛍光ガラス線量計測定装置の石英板の
厚さを求めるための図
FIG. 2 is a diagram for determining the thickness of a quartz plate of the fluorescent glass dosimeter measuring device of the present invention.

【図3】本発明の蛍光ガラス線量計測定装置の石英板近
傍の詳細を示す図
FIG. 3 is a diagram showing details of a vicinity of a quartz plate of the fluorescent glass dosimeter measuring device of the present invention.

【図4】従来の蛍光ガラス線量計測定装置の構成を示す
FIG. 4 is a diagram showing a configuration of a conventional fluorescent glass dosimeter measuring device.

【図5】従来の蛍光ガラス線量計測定装置の石英板近傍
の詳細を示す図
FIG. 5 is a diagram showing details of the vicinity of a quartz plate of a conventional fluorescent glass dosimeter measuring device.

【符号の説明】[Explanation of symbols]

1…窒素ガスレーザ 2…ダイアフラム 3…遮光容器 4…石英板 5…標準蛍光ガラス素子 6…第1の光電変換素子 7…紫外線透過フィルタ 8…放射線被曝蛍光ガラス素子 9…第2の光電変換素子 10…石英板 DESCRIPTION OF SYMBOLS 1 ... Nitrogen gas laser 2 ... Diaphragm 3 ... Light shielding container 4 ... Quartz plate 5 ... Standard fluorescent glass element 6 ... First photoelectric conversion element 7 ... Ultraviolet transmission filter 8 ... Radiation exposed fluorescent glass element 9 ... Second photoelectric conversion element 10 … Quartz plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 励起紫外線パルスを発生する紫外線励起
光源と、 この励起紫外線パルスを受けてそれぞれ蛍光パルスを発
生する標準蛍光ガラス素子および放射線被曝蛍光ガラス
素子と、 前記励起紫外線パルスの一部を分岐して前記標準蛍光ガ
ラス素子に照射するとともに、前記励起紫外線パルスの
一部を前記放射線被曝蛍光ガラス素子に照射する分岐手
段を備えた蛍光ガラス線量計測定装置において、 前記分岐手段の表面から反射分光される励起紫外線パル
スの一部と、裏面から反射分光される励起紫外線パルス
の一部とが、互いに重なり合わないように構成されてい
ることを特徴とする蛍光ガラス線量計測定装置。
1. An ultraviolet excitation light source for generating an excitation ultraviolet pulse, a standard fluorescent glass element and a radiation-exposed fluorescent glass element for respectively generating a fluorescent pulse in response to the excitation ultraviolet pulse, and branching a part of the excitation ultraviolet pulse. A fluorescent glass dosimeter measuring device provided with branching means for irradiating the standard fluorescent glass element and irradiating a part of the excitation ultraviolet pulse to the radiation-exposed fluorescent glass element, wherein reflection spectroscopy is performed from the surface of the branching means. A part of the excitation ultraviolet pulse to be emitted and a part of the excitation ultraviolet pulse reflected and reflected from the back surface are configured not to overlap each other.
【請求項2】 前記分岐手段の厚さが、分岐手段に入射
される励起紫外線パルスの上下幅の約1.3倍以上に設
定されていることを特徴とする請求項1記載の蛍光ガラ
ス線量計測定装置。
2. The fluorescent glass dose according to claim 1, wherein the thickness of the branching means is set to be about 1.3 times or more the vertical width of the excitation ultraviolet pulse incident on the branching means. Meter measuring device.
【請求項3】 前記分岐手段は、前記励起紫外線パルス
の光軸に対して45゜の角度で配置されていることを特
徴とする請求項1又は請求項2に記載の蛍光ガラス線量
計測定装置。
3. The fluorescent glass dosimeter measuring apparatus according to claim 1, wherein the branching means is arranged at an angle of 45 ° with respect to the optical axis of the excitation ultraviolet pulse. .
【請求項4】 前記分岐手段が、石英板より構成されて
いることを特徴とする請求項1乃至請求項3のいずれか
一に記載の蛍光ガラス線量計測定装置。
4. The fluorescent glass dosimeter measuring apparatus according to claim 1, wherein said branching means is constituted by a quartz plate.
JP23776597A 1997-08-19 1997-08-19 Fluorescent glass dosimeter measuring device Expired - Fee Related JP3169346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23776597A JP3169346B2 (en) 1997-08-19 1997-08-19 Fluorescent glass dosimeter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23776597A JP3169346B2 (en) 1997-08-19 1997-08-19 Fluorescent glass dosimeter measuring device

Publications (2)

Publication Number Publication Date
JPH1164525A true JPH1164525A (en) 1999-03-05
JP3169346B2 JP3169346B2 (en) 2001-05-21

Family

ID=17020122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23776597A Expired - Fee Related JP3169346B2 (en) 1997-08-19 1997-08-19 Fluorescent glass dosimeter measuring device

Country Status (1)

Country Link
JP (1) JP3169346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082067B2 (en) * 2015-01-06 2017-02-15 タボット株式会社 Sheets, cases, and programs used for mobile terminals

Also Published As

Publication number Publication date
JP3169346B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US7038220B2 (en) Dose distribution reading method and reader for glass dosimeter
JPH0131130B2 (en)
CN203848938U (en) Vacuum ultraviolet laser line width measuring device
JP3169346B2 (en) Fluorescent glass dosimeter measuring device
JP3057168B2 (en) Fluorescent glass dosimeter measuring device
Fowler et al. High accuracy measurement of aperture area relative to a standard known aperture
RU2594364C2 (en) System of measuring concentration of boric acid in first circuit of heat carrier of nuclear power reactor
JP3029899B2 (en) Glass dosimeter
JPH0512676B2 (en)
Pruett et al. Gamma-ray to Cerenkov-light conversion efficiency for pure-silica-core optical fibers
JP3204636B2 (en) Fluorescent glass dosimeter measuring device
US6392753B1 (en) Accelerated damage testing method and apparatus for low loss optical materials
Chupp et al. Precision Determination of the Low-Lying Energy Levels of W 182, W 183, W 184, and W 186
RU2367978C1 (en) Method for calibration of scintillation circuit
Missalla et al. Metrology tools for EUV-source characterization and optimization
JPH06138240A (en) Camma ray measuring instrument
JP3221834B2 (en) Fluorescent glass dosimeter reader
JPH08220236A (en) Measuring device for dose of fluorescent glass dosemeter
RU225695U1 (en) TOOL FOR MEASURING THE WIDTH AND DIVERGE ANGLE OF A LASER BEAM
JP4217397B2 (en) Dose reader
JP2737102B2 (en) Fluorescent glass dosimeter measuring device
KC Development of a multiple-pass Raman spectrometer for flame diagnostics
Madden Ultraviolet Transfer Standard Detectors and Evaluation and Calibration of NIOSH UV Hazard Monitor
SU1485075A1 (en) Method for determining refractive index of solid bodies
Klyshko et al. Parametric photometer: a device for standardless nondestructing measurement of radiation spectral brightness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees