JPH1164254A - Fluorescent x-ray analysis and analyzer - Google Patents

Fluorescent x-ray analysis and analyzer

Info

Publication number
JPH1164254A
JPH1164254A JP9229052A JP22905297A JPH1164254A JP H1164254 A JPH1164254 A JP H1164254A JP 9229052 A JP9229052 A JP 9229052A JP 22905297 A JP22905297 A JP 22905297A JP H1164254 A JPH1164254 A JP H1164254A
Authority
JP
Japan
Prior art keywords
sample
fluorescent
intensity
carbon
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9229052A
Other languages
Japanese (ja)
Other versions
JP3369918B2 (en
Inventor
Eiichi Furusawa
衛一 古澤
Hisamasa Kono
久征 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP22905297A priority Critical patent/JP3369918B2/en
Publication of JPH1164254A publication Critical patent/JPH1164254A/en
Application granted granted Critical
Publication of JP3369918B2 publication Critical patent/JP3369918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent X-ray analysis method and a fluorescent X-ray analyzer by which the carbon content of a sample can be found more accurately, by measuring the intensity and hardness of fluorescent X-rays generated from the sample. SOLUTION: In a fluorescent X-ray analysis method, the intensities and hardness of fluorescent X-rays generated from carbon are measured on standard samples 3, and the correlation between the intensities and hardness is found in advance. For a sample 13 containing carbon at an unknown concentration, the intensity and hardness of the fluorescent X-rays generated from the carbon contained in the sample 13 are measured, and the carbon content of the sample 13 is found by applying the above-mentioned correlation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料から発生する
蛍光X線の強度を測定する蛍光X線分析において、より
正確に試料における炭素の含有率を求めることができる
蛍光X線分析方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analysis method and apparatus capable of more accurately determining the carbon content of a sample in X-ray fluorescence analysis for measuring the intensity of X-ray fluorescence generated from the sample. It is about.

【0002】[0002]

【従来の技術】銑鉄や鉄鋼等においては、製造時の冷却
速度により、含有する炭素が、セメンタイト(Fe3C)
として含まれるか、グラファイト(C)として含まれる
かの割合が異なり、それによって、炭素の含有率が同じ
でも、1次X線を照射したときに発生する炭素の蛍光X
線の強度が異なってくる。また、炭素が主にセメンタイ
トとして含まれる場合においても、セメンタイトの結晶
の長さによって、炭素の含有率が同じでも、1次X線を
照射したときに発生する炭素の蛍光X線の強度が異なっ
てくる。
2. Description of the Related Art In pig iron, steel, etc., carbon contained in cementite (Fe 3 C) depends on the cooling rate during production.
, Or graphite (C), so that even if the carbon content is the same, the fluorescence X of carbon generated upon irradiation with primary X-rays
The intensity of the line will be different. Further, even when carbon is mainly contained as cementite, the intensity of fluorescent X-rays of carbon generated when primary X-rays are irradiated is different depending on the length of the crystal of cementite, even if the carbon content is the same. Come.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術で
は、前述したような銑鉄等における組織の状態を考慮し
ないか、あるいは、グラファイトの析出量によって複数
の検量線を用意して適用していた。前者の場合は、正確
に試料(銑鉄等)における炭素の含有率を求めることが
できず、後者の場合は、グラファイトの析出量を定量的
に求めることが容易でなく、また、セメンタイトの結晶
の長さの影響は考慮されないから、十分正確に試料にお
ける炭素の含有率を求めることができない。これに対
し、発明者は、試料におけるセメンタイトの析出量およ
びセメンタイトの結晶の長さが、試料の硬度と相関関係
があることに着目した。
However, in the prior art, the state of the structure in pig iron or the like as described above is not taken into account, or a plurality of calibration curves are prepared and applied depending on the amount of graphite deposited. . In the former case, the carbon content of the sample (pig iron, etc.) cannot be determined accurately, and in the latter case, it is not easy to quantitatively determine the amount of graphite precipitation, and Since the influence of the length is not taken into account, the carbon content in the sample cannot be determined sufficiently accurately. On the other hand, the inventor paid attention to the fact that the amount of cementite precipitated in the sample and the length of the cementite crystal have a correlation with the hardness of the sample.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、試料から発生する蛍光X線の強度を測定する蛍
光X線分析において、より正確に試料における炭素の含
有率を求めることができる蛍光X線分析方法および装置
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to more accurately determine the carbon content of a sample in X-ray fluorescence analysis for measuring the intensity of X-ray fluorescence generated from the sample. An object of the present invention is to provide a fluorescent X-ray analysis method and apparatus.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析方法では、まず、組成が既
知で相異なる複数の標準試料について、1次X線を照射
したときに標準試料中の炭素から発生する蛍光X線の強
度、および硬度を測定し、それら標準試料の蛍光X線強
度および硬度と標準試料における炭素の含有率との相関
関係をあらかじめ求めておく。そして、炭素の含有率が
未知の試料について、1次X線を照射したときに試料中
の炭素から発生する蛍光X線の強度、および硬度を測定
し、その試料の蛍光X線強度および硬度に前記相関関係
を適用して、試料における炭素の含有率を求める。
In order to achieve the above object, in the method of X-ray fluorescence analysis according to claim 1, first, when a plurality of standard samples having different compositions and having different compositions are irradiated with primary X-rays. First, the intensity and hardness of fluorescent X-rays generated from carbon in the standard sample are measured, and the correlation between the fluorescent X-ray intensity and hardness of the standard sample and the carbon content in the standard sample is determined in advance. Then, for a sample whose carbon content is unknown, the intensity and hardness of fluorescent X-rays generated from carbon in the sample when primary X-rays are irradiated are measured, and the fluorescent X-ray intensity and hardness of the sample are measured. The correlation is applied to determine the carbon content in the sample.

【0006】請求項1の方法によれば、蛍光X線強度の
みならず、その蛍光X線強度に影響を及ぼすセメンタイ
トの析出量およびセメンタイトの結晶の長さに関する量
としての、試料の硬度にも基づくので、より正確に試料
における炭素の含有率を求めることができる。
According to the method of the first aspect, not only the intensity of the fluorescent X-rays but also the hardness of the sample as an amount related to the amount of cementite precipitated and the length of the crystals of the cementite affecting the fluorescent X-ray intensity are measured. Therefore, the carbon content in the sample can be determined more accurately.

【0007】請求項2の蛍光X線分析方法では、まず、
組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の炭素から発生する蛍光
X線の強度、およびセメンタイトの結晶の長さを測定
し、それら標準試料の蛍光X線強度およびセメンタイト
の結晶の長さと標準試料における炭素の含有率との相関
関係をあらかじめ求めておく。そして、炭素の含有率が
未知の試料について、1次X線を照射したときに試料中
の炭素から発生する蛍光X線の強度、およびセメンタイ
トの結晶の長さを測定し、その試料の蛍光X線強度およ
びセメンタイトの結晶の長さに前記相関関係を適用し
て、試料における炭素の含有率を求める。
[0007] In the fluorescent X-ray analysis method of the second aspect, first,
For a plurality of standard samples having different compositions, the primary X
The intensity of the fluorescent X-rays generated from the carbon in the standard sample when irradiated with X-rays and the length of the cementite crystal were measured, and the fluorescent X-ray intensity and the length of the cementite crystal of the standard sample and the carbon in the standard sample were measured. In advance is determined in advance. Then, for a sample whose carbon content is unknown, the intensity of fluorescent X-rays generated from carbon in the sample when irradiated with primary X-rays and the length of the cementite crystal are measured, and the fluorescent X-ray of the sample is measured. The correlation is applied to the line strength and the length of the cementite crystal to determine the carbon content in the sample.

【0008】請求項2の方法によれば、蛍光X線強度の
みならず、特に炭素が主にセメンタイトとして含まれる
場合にその蛍光X線強度に影響を及ぼすセメンタイトの
結晶の長さにも基づくので、より正確に試料における炭
素の含有率を求めることができる。
According to the method of claim 2, since not only the fluorescent X-ray intensity but also the length of the cementite crystal which affects the fluorescent X-ray intensity particularly when carbon is mainly contained as cementite, Thus, the carbon content of the sample can be determined more accurately.

【0009】請求項3の蛍光X線分析装置は、まず、試
料が固定される試料台と、試料に1次X線を照射するX
線源と、試料から発生する蛍光X線の強度を測定する検
出手段とを備えている。また、組成が既知で相異なる複
数の標準試料について、1次X線を照射したときに標準
試料中の炭素から発生する蛍光X線の強度および硬度か
らあらかじめ求められた、それら標準試料の蛍光X線強
度および硬度と標準試料における炭素の含有率との相関
関係を記憶する相関記憶手段を備えている。さらに、炭
素の含有率が未知の試料について、1次X線を照射した
ときに試料中の炭素から発生する蛍光X線の強度および
入力された硬度を記憶する試料データ記憶手段と、その
試料データ記憶手段に記憶された試料の蛍光X線強度お
よび硬度に、前記相関記憶手段に記憶された相関関係を
適用して、試料における炭素の含有率を求める算出手段
とを備えている。請求項3の装置によれば、請求項1の
方法と同様の作用効果がある。
According to a third aspect of the present invention, there is provided an X-ray fluorescence analyzer comprising: a sample stage on which a sample is fixed;
The apparatus includes a radiation source and detection means for measuring the intensity of fluorescent X-rays generated from the sample. Further, for a plurality of standard samples having different compositions, the fluorescent X-rays of the standard samples, which are obtained in advance from the intensity and hardness of fluorescent X-rays generated from carbon in the standard samples when primary X-rays are irradiated, Correlation storage means for storing a correlation between the linear strength and hardness and the carbon content in the standard sample is provided. Further, for a sample whose carbon content is unknown, sample data storage means for storing the intensity of fluorescent X-rays generated from carbon in the sample when primary X-rays are irradiated and the input hardness, and the sample data Calculating means for calculating the content of carbon in the sample by applying the correlation stored in the correlation storage means to the fluorescent X-ray intensity and hardness of the sample stored in the storage means. According to the device of the third aspect, the same operation and effect as those of the method of the first aspect are obtained.

【0010】請求項4の蛍光X線分析装置は、まず、試
料が固定される試料台と、試料に1次X線を照射するX
線源と、試料から発生する蛍光X線の強度を測定する検
出手段とを備えている。また、組成が既知で相異なる複
数の標準試料について、1次X線を照射したときに標準
試料中の炭素から発生する蛍光X線の強度およびセメン
タイトの結晶の長さからあらかじめ求められた、それら
標準試料の蛍光X線強度およびセメンタイトの結晶の長
さと標準試料における炭素の含有率との相関関係を記憶
する相関記憶手段を備えている。さらに、炭素の含有率
が未知の試料について、1次X線を照射したときに試料
中の炭素から発生する蛍光X線の強度および入力された
セメンタイトの結晶の長さを記憶する試料データ記憶手
段と、その試料データ記憶手段に記憶された試料の蛍光
X線強度およびセメンタイトの結晶の長さに、前記相関
記憶手段に記憶された相関関係を適用して、試料におけ
る炭素の含有率を求める算出手段とを備えている。請求
項4の装置によれば、請求項2の方法と同様の作用効果
がある。
According to a fourth aspect of the present invention, there is provided an X-ray fluorescence spectrometer comprising: a sample stage on which a sample is fixed;
The apparatus includes a radiation source and detection means for measuring the intensity of fluorescent X-rays generated from the sample. In addition, for a plurality of standard samples having different compositions, the intensity of fluorescent X-rays generated from carbon in the standard sample when primary X-rays were irradiated and the length of the cementite crystal were determined in advance. Correlation storage means is provided for storing the correlation between the fluorescent X-ray intensity of the standard sample and the length of the cementite crystal and the carbon content in the standard sample. Further, for a sample whose carbon content is unknown, sample data storage means for storing the intensity of fluorescent X-rays generated from carbon in the sample when primary X-rays are irradiated and the length of the inputted cementite crystal. And calculating the content of carbon in the sample by applying the correlation stored in the correlation storage means to the fluorescent X-ray intensity and the cementite crystal length of the sample stored in the sample data storage means. Means. According to the device of the fourth aspect, the same operation and effect as those of the method of the second aspect are obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1実施形態であ
る蛍光X線分析方法を説明する。まず、この方法に用い
る蛍光X線分析装置について説明する。図1に示すよう
に、この装置は、まず、試料3,13が固定される試料
台8と、試料3,13に1次X線2を照射するX線源2
と、試料3,13から発生する蛍光X線6の強度を測定
する検出手段9とを備えている。検出手段9は、試料
3,13から発生する2次X線4を分光する分光器5
と、分光された蛍光X線6ごとにその強度を測定する検
出器7で構成される。なお、分光器5を用いずに、エネ
ルギー分解能の高い検出器を検出手段としてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an X-ray fluorescence analysis method according to a first embodiment of the present invention will be described. First, an X-ray fluorescence analyzer used in this method will be described. As shown in FIG. 1, the apparatus comprises a sample stage 8 on which samples 3 and 13 are fixed, and an X-ray source 2 for irradiating samples 3 and 13 with primary X-rays 2.
And a detecting means 9 for measuring the intensity of the fluorescent X-ray 6 generated from the samples 3 and 13. The detecting means 9 includes a spectroscope 5 for separating the secondary X-rays 4 generated from the samples 3 and 13.
And a detector 7 for measuring the intensity of each of the separated fluorescent X-rays 6. Note that a detector having a high energy resolution may be used as the detection unit without using the spectroscope 5.

【0012】また、この装置は、組成が既知で相異なる
複数の標準試料3について、1次X線2を照射したとき
に標準試料3中の炭素から発生する蛍光X線4の強度お
よび硬度からあらかじめ求められた、それら標準試料3
の蛍光X線強度および硬度と標準試料3における炭素の
含有率との相関関係を記憶する相関記憶手段10を備え
ている。さらに、炭素の含有率が未知の試料13につい
て、1次X線2を照射したときに試料13中の炭素から
発生する蛍光X線4の強度および入力された硬度を記憶
する試料データ記憶手段11と、その試料データ記憶手
段11に記憶された試料13の蛍光X線強度および硬度
に、前記相関記憶手段10に記憶された相関関係を適用
して、試料13における炭素の含有率を求める算出手段
12とを備えている。
[0012] This apparatus also measures the intensity and hardness of fluorescent X-rays 4 generated from carbon in standard samples 3 when primary X-rays 2 are irradiated on a plurality of standard samples 3 having different compositions. These standard samples 3 determined in advance
And a correlation storage unit 10 for storing a correlation between the fluorescent X-ray intensity and hardness of the sample and the carbon content in the standard sample 3. Further, for the sample 13 whose carbon content is unknown, sample data storage means 11 for storing the intensity of the fluorescent X-rays 4 generated from the carbon in the sample 13 when the primary X-ray 2 is irradiated and the input hardness. Calculating means for calculating the carbon content of the sample 13 by applying the correlation stored in the correlation storage means 10 to the fluorescence X-ray intensity and hardness of the sample 13 stored in the sample data storage means 11 12 are provided.

【0013】この装置を用いて、第1実施形態の方法で
は、以下のように、未知試料13における炭素の含有率
1 を求める。まず、組成が既知で相異なる複数の銑鉄
等の標準試料3について、X線源1から1次X線2を照
射し、標準試料3中の炭素から発生する蛍光X線6の強
度I(kcps)を測定する。また、第1実施形態の方法で
は、標準試料3のショア硬度HS を周知の方法で測定
し、ショア硬度の逆数1/HS を、標準試料3の硬度D
として用いる。そして、それら標準試料3の炭素の蛍光
X線強度Iおよび硬度Dと標準試料3における炭素の含
有率W(wt%)との相関関係を、次式(1)および
(2)として、あらかじめ求めておく。
Using this apparatus, in the method of the first embodiment, the carbon content W 1 in the unknown sample 13 is obtained as follows. First, an X-ray source 1 irradiates primary X-rays 2 on a plurality of standard samples 3 such as pig irons having known and different compositions, and the intensity I (kcps) of fluorescent X-rays 6 generated from carbon in the standard samples 3 ) Is measured. In the method of the first embodiment, by measuring the Shore hardness H S of the standard sample 3 in a known manner, the reciprocal 1 / H S Shore hardness, hardness D of the standard sample 3
Used as Then, the correlation between the fluorescent X-ray intensity I and hardness D of the carbon of the standard sample 3 and the carbon content W (wt%) in the standard sample 3 is obtained in advance as the following equations (1) and (2). Keep it.

【0014】 XD =αD I+βD …(1)X D = α D I + β D (1)

【0015】 W=XD (1+aD D) …(2)W = X D (1 + a D D) (2)

【0016】すなわち、標準試料3の炭素の蛍光X線強
度I、硬度Dおよび炭素の含有率Wを既知数として、式
(1)および(2)に適合する検量線係数αD ,βD
よび補正係数aD を求める。ここで、基準推定値X
D は、式(2)において炭素の含有率(標準値)Wを硬
度Dを用いて補正した値であり、式(1)は、その基準
推定値XD と蛍光X線強度Iとの相関関係を示す検量線
に相当するものであり、いわば硬度Dを用いて補正した
検量線である。式(1)および(2)は前記相関記憶手
段10に記憶される。
That is, assuming that the fluorescent X-ray intensity I, hardness D and carbon content W of carbon of the standard sample 3 are known numbers, calibration curve coefficients α D , β D and obtaining a correction coefficient a D. Here, the reference estimated value X
D is a value obtained by correcting the carbon content (standard value) W in the equation (2) using the hardness D, and the equation (1) is a correlation between the reference estimated value XD and the fluorescent X-ray intensity I. This corresponds to a calibration curve indicating the relationship, and is a calibration curve corrected using the hardness D. Equations (1) and (2) are stored in the correlation storage means 10.

【0017】そして、炭素の含有率W1 が未知の試料1
3について、1次X線2を照射したときに試料13中の
炭素から発生する蛍光X線6の強度I1 、および硬度D
1 (ショア硬度の逆数1/HS1)を標準試料3と同様に
測定して求める。これら蛍光X線6の強度I1 および硬
度D1 は、前記試料データ記憶手段11に記憶される。
次に、前記算出手段12により、その試料13の蛍光X
線強度I1 および硬度D1 に前記相関関係(前式(1)
および(2))を適用して、すなわち次式(3)から、
試料13における炭素の含有率W1 を求める。
The sample 1 whose carbon content W 1 is unknown
For the sample No. 3 , the intensity I 1 of the fluorescent X-ray 6 generated from the carbon in the sample 13 when irradiated with the primary X-ray 2 and the hardness D
1 (reciprocal of Shore hardness 1 / H S1 ) is measured and determined in the same manner as the standard sample 3. The intensity I 1 and hardness D 1 of the fluorescent X-ray 6 are stored in the sample data storage unit 11.
Next, the fluorescence X of the sample 13 is calculated by the calculation means 12.
The correlation between the linear strength I 1 and the hardness D 1 (formula (1))
And (2)), that is, from the following equation (3),
Request content W 1 of the carbons in the sample 13.

【0018】 W1 =(αD 1 +βD )(1+aD 1 ) …(3)W 1 = (α D I 1 + β D ) (1 + a D D 1 ) (3)

【0019】検量線の正確度、すなわち、各試料におけ
る検量線を適用して求めた含有率と化学分析により求め
た含有率との差の自乗平均について調べてみると、組織
の状態を考慮せずに蛍光X線強度I1 のみから含有率を
求める従来の検量線においては、0.44であったもの
が、第1実施形態の方法の検量線(式(3))において
は、0.17にまで向上した。このように、第1実施形
態の方法によれば、蛍光X線強度I,I1 のみならず、
その蛍光X線強度I,I1 に影響を及ぼすセメンタイト
の析出量およびセメンタイトの結晶の長さに関する量と
しての、試料の硬度D,D1 にも基づくので、より正確
に試料13における炭素の含有率W1 を求めることがで
きる。
When examining the accuracy of the calibration curve, that is, the root mean square of the difference between the content determined by applying the calibration curve in each sample and the content determined by chemical analysis, the state of the tissue is taken into consideration. in the conventional calibration curve for determining the content of only the fluorescent X-ray intensity I 1 without, what was 0.44, in the calibration curve of the method of the first embodiment (equation (3)), 0. It has improved to 17. As described above, according to the method of the first embodiment, not only the fluorescent X-ray intensities I and I 1, but also
The carbon content in the sample 13 is more accurately determined because the hardness of the sample 13 is also based on the hardness D and D 1 of the sample as the amount of cementite which affects the fluorescent X-ray intensity I and I 1 and the length of the cementite crystal. it is possible to determine the rate W 1.

【0020】次に、本発明の第2実施形態である蛍光X
線分析方法を説明する。この方法に用いる蛍光X線分析
装置は、前記第1実施形態の方法に用いる装置におい
て、取り扱う物理量のうち硬度D,D1 をセメンタイト
の結晶の長さL,L1 に置き換えたもので、その他の点
については同様であるので、説明を省略する。
Next, the fluorescence X according to the second embodiment of the present invention will be described.
The line analysis method will be described. The X-ray fluorescence spectrometer used in this method is the same as the apparatus used in the method of the first embodiment except that the hardness D, D 1 among the physical quantities handled is replaced by the length L, L 1 of the cementite crystal. Is the same, and the description is omitted.

【0021】この装置を用いて、第2実施形態の方法で
は、炭素が主にセメンタイトとして含まれる場合に、以
下のように、未知試料13における炭素の含有率W1
求める。まず、組成が既知で相異なる複数の銑鉄等の標
準試料3について、X線源1から1次X線2を照射し、
標準試料3中の炭素から発生する蛍光X線6の強度I
(kcps)を測定する。また、第2実施形態の方法では、
各標準試料3を電子顕微鏡で観察し、例えば所定の視野
内のセメンタイトの結晶の長さの平均を、その標準試料
3のセメンタイトの結晶の長さL(μm)として用い
る。そして、それら標準試料3の炭素の蛍光X線強度I
およびセメンタイトの結晶の長さLと標準試料3におけ
る炭素の含有率W(wt%)との相関関係を、次式(4)
および(5)として、あらかじめ求めておく。
Using this device, in the method of the second embodiment, when carbon is mainly contained as cementite, the carbon content W 1 in the unknown sample 13 is obtained as follows. First, primary X-rays 2 are radiated from an X-ray source 1 on a plurality of standard samples 3 such as pig irons having different compositions.
Intensity I of fluorescent X-ray 6 generated from carbon in standard sample 3
(Kcps) is measured. In the method of the second embodiment,
Each standard sample 3 is observed with an electron microscope, and for example, the average length of the cementite crystals in a predetermined visual field is used as the length L (μm) of the cementite crystals of the standard sample 3. Then, the fluorescent X-ray intensity I of carbon of these standard samples 3
The correlation between the length L of the cementite crystal and the carbon content W (wt%) in the standard sample 3 is expressed by the following equation (4).
And (5) are determined in advance.

【0022】 XL =αL I+βL …(4)X L = α L I + β L (4)

【0023】 W=XL (1+aL L) …(5)W = X L (1 + a L L) (5)

【0024】すなわち、標準試料3の炭素の蛍光X線強
度I、セメンタイトの結晶の長さLおよび炭素の含有率
Wを既知数として、式(4)および(5)に適合する検
量線係数αL ,βL および補正係数aL を求める。ここ
で、基準推定値XL は、式(5)において炭素の含有率
(標準値)Wをセメンタイトの結晶の長さLを用いて補
正した値であり、式(1)は、その基準推定値XL と蛍
光X線強度Iとの相関関係を示す検量線に相当するもの
であり、いわばセメンタイトの結晶の長さLを用いて補
正した検量線である。式(4)および(5)は前記相関
記憶手段10に記憶される。
That is, assuming that the fluorescent X-ray intensity I of carbon, the length L of cementite crystal and the carbon content W of the standard sample 3 are known numbers, the calibration curve coefficient α conforming to the equations (4) and (5). L and β L and a correction coefficient a L are obtained. Here, the reference estimated value X L is a value corrected by using the length L of the formula (5) the content of carbon (standard value) W of cementite in the crystal, the formula (1), the reference estimated This corresponds to a calibration curve indicating the correlation between the value X L and the fluorescent X-ray intensity I, and is a calibration curve corrected using the length L of the cementite crystal. Equations (4) and (5) are stored in the correlation storage means 10.

【0025】そして、炭素の含有率W1 が未知の試料1
3について、1次X線2を照射したときに試料13中の
炭素から発生する蛍光X線6の強度I1 、およびセメン
タイトの結晶の長さL1 を標準試料3と同様に測定して
求める。これら蛍光X線強度I1 およびセメンタイトの
結晶の長さL1 は、前記試料データ記憶手段11に記憶
される。次に、前記算出手段12により、その試料13
の蛍光X線強度I1 およびセメンタイトの結晶の長さL
1 に前記相関関係(前式(4)および(5))を適用し
て、すなわち次式(6)から、試料13における炭素の
含有率W1 を求める。
Then, sample 1 whose carbon content W 1 is unknown
As for the reference sample 3, the intensity I 1 of the fluorescent X-ray 6 generated from the carbon in the sample 13 when the primary X-ray 2 is irradiated and the length L 1 of the cementite crystal are measured in the same manner as in the standard sample 3. . The fluorescent X-ray intensity I 1 and the length L 1 of the cementite crystal are stored in the sample data storage unit 11. Next, the sample 13
X-ray intensity I 1 and the length L of cementite crystals
The correlation (Equation (4) and (5)) is applied to 1, i.e. from the following equation (6), determine the content of W 1 of the carbons in the sample 13.

【0026】 W1 =(αL 1 +βL )(1+aL 1 ) …(6)W 1 = (α L I 1 + β L ) (1 + a L L 1 ) (6)

【0027】このように、第2実施形態の方法によれ
ば、蛍光X線強度I,I1 のみならず、特に炭素が主に
セメンタイトとして含まれる場合にその蛍光X線強度
I,I1に影響を及ぼすセメンタイトの結晶の長さL,
1 にも基づくので、より正確に試料13における炭素
の含有率W1 を求めることができる。
[0027] Thus, according to the method of the second embodiment, the fluorescent X-ray intensity I, not only I 1, in particular its fluorescent X-ray intensity I when carbon is included mainly as cementite, the I 1 The length L of the cementite crystals that affect
Since it is also based on L 1 , the carbon content W 1 in the sample 13 can be obtained more accurately.

【0028】[0028]

【発明の効果】以上に説明したように、本発明によれ
ば、試料から発生する蛍光X線の強度を測定する蛍光X
線分析において、より正確に試料における炭素の含有率
を求めることができる。
As described above, according to the present invention, the fluorescent X-ray for measuring the intensity of the fluorescent X-ray generated from the sample is used.
In the line analysis, the carbon content in the sample can be obtained more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1または第2実施形態である蛍光X
線分析方法に用いる装置を示す正面図である。
FIG. 1 shows fluorescence X according to the first or second embodiment of the present invention.
It is a front view which shows the apparatus used for a line analysis method.

【符号の説明】[Explanation of symbols]

1…X線源、2…1次X線、3…標準試料、6…蛍光X
線、8…試料台、9…検出手段、10…相関記憶手段、
11…試料データ記憶手段、12…算出手段、13…試
料。
1: X-ray source, 2: primary X-ray, 3: standard sample, 6: fluorescent X
Line, 8: sample stage, 9: detecting means, 10: correlation storage means,
11: sample data storage means, 12: calculation means, 13: sample.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成が既知で相異なる複数の標準試料に
ついて、1次X線を照射したときに標準試料中の炭素か
ら発生する蛍光X線の強度、および硬度を測定し、 それら標準試料の蛍光X線強度および硬度と標準試料に
おける炭素の含有率との相関関係をあらかじめ求めてお
き、 炭素の含有率が未知の試料について、1次X線を照射し
たときに試料中の炭素から発生する蛍光X線の強度、お
よび硬度を測定し、 その試料の蛍光X線強度および硬度に前記相関関係を適
用して、試料における炭素の含有率を求める蛍光X線分
析方法。
1. A method for measuring the intensity and hardness of fluorescent X-rays generated from carbon in a standard sample when primary X-rays are applied to a plurality of standard samples having different compositions and having different compositions. The correlation between the fluorescent X-ray intensity and hardness and the carbon content in the standard sample is determined in advance, and the sample whose carbon content is unknown is generated from the carbon in the sample when the primary X-ray is irradiated. An X-ray fluorescence analysis method in which the intensity and hardness of X-ray fluorescence are measured, and the correlation is applied to the intensity and hardness of X-ray fluorescence of the sample to determine the content of carbon in the sample.
【請求項2】 組成が既知で相異なる複数の標準試料に
ついて、1次X線を照射したときに標準試料中の炭素か
ら発生する蛍光X線の強度、およびセメンタイトの結晶
の長さを測定し、 それら標準試料の蛍光X線強度およびセメンタイトの結
晶の長さと標準試料における炭素の含有率との相関関係
をあらかじめ求めておき、 炭素の含有率が未知の試料について、1次X線を照射し
たときに試料中の炭素から発生する蛍光X線の強度、お
よびセメンタイトの結晶の長さを測定し、 その試料の蛍光X線強度およびセメンタイトの結晶の長
さに前記相関関係を適用して、試料における炭素の含有
率を求める蛍光X線分析方法。
2. A plurality of standard samples having different compositions and having different compositions are measured for the intensity of fluorescent X-rays generated from carbon in the standard sample when irradiated with primary X-rays and the length of a cementite crystal. The correlation between the fluorescent X-ray intensity of these standard samples and the length of the cementite crystal and the carbon content in the standard sample was determined in advance, and the primary X-ray was irradiated to the sample whose carbon content was unknown. Sometimes, the intensity of the fluorescent X-rays generated from carbon in the sample and the length of the cementite crystal are measured, and the correlation is applied to the fluorescent X-ray intensity of the sample and the length of the cementite crystal to obtain the sample. X-ray fluorescence analysis method for determining the content of carbon in the above.
【請求項3】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の炭素から発生する蛍光
X線の強度および硬度からあらかじめ求められた、それ
ら標準試料の蛍光X線強度および硬度と標準試料におけ
る炭素の含有率との相関関係を記憶する相関記憶手段
と、 炭素の含有率が未知の試料について、1次X線を照射し
たときに試料中の炭素から発生する蛍光X線の強度およ
び入力された硬度を記憶する試料データ記憶手段と、 その試料データ記憶手段に記憶された試料の蛍光X線強
度および硬度に、前記相関記憶手段に記憶された相関関
係を適用して、試料における炭素の含有率を求める算出
手段とを備えた蛍光X線分析装置。
A sample stage on which the sample is fixed; an X-ray source for irradiating the sample with primary X-rays; a detecting means for measuring the intensity of fluorescent X-rays generated from the sample; For multiple standard samples, primary X
The correlation between the fluorescent X-ray intensity and hardness of these standard samples and the carbon content in the standard sample, which was obtained in advance from the intensity and hardness of fluorescent X-rays generated from carbon in the standard sample when irradiated with X-rays, Correlation storage means for storing, and for a sample whose carbon content is unknown, sample data storage means for storing the intensity and input hardness of fluorescent X-rays generated from carbon in the sample when primary X-rays are irradiated And calculating means for applying the correlation stored in the correlation storage means to the fluorescent X-ray intensity and hardness of the sample stored in the sample data storage means to determine the carbon content in the sample. X-ray fluorescence analyzer.
【請求項4】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の炭素から発生する蛍光
X線の強度およびセメンタイトの結晶の長さからあらか
じめ求められた、それら標準試料の蛍光X線強度および
セメンタイトの結晶の長さと標準試料における炭素の含
有率との相関関係を記憶する相関記憶手段と、 炭素の含有率が未知の試料について、1次X線を照射し
たときに試料中の炭素から発生する蛍光X線の強度およ
び入力されたセメンタイトの結晶の長さを記憶する試料
データ記憶手段と、 その試料データ記憶手段に記憶された試料の蛍光X線強
度およびセメンタイトの結晶の長さに、前記相関記憶手
段に記憶された相関関係を適用して、試料における炭素
の含有率を求める算出手段とを備えた蛍光X線分析装
置。
4. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, a detecting means for measuring the intensity of fluorescent X-rays generated from the sample, For multiple standard samples, primary X
The X-ray fluorescence intensity of these standard samples and the length of the cementite crystals and the length of the cementite crystals were determined in advance from the intensity of the fluorescent X-rays generated from carbon in the standard sample and the length of the cementite crystals when irradiated with X-rays. A correlation storage means for storing a correlation with a carbon content, and for a sample whose carbon content is unknown, the intensity of fluorescent X-rays generated from carbon in the sample when primary X-rays are irradiated and the input Sample data storage means for storing the length of the cementite crystal, and the correlation stored in the correlation storage means with the fluorescent X-ray intensity and the cementite crystal length of the sample stored in the sample data storage means. X-ray fluorescence spectrometer comprising: a calculation unit for calculating the content of carbon in a sample by applying the method.
JP22905297A 1997-08-26 1997-08-26 X-ray fluorescence analysis method and apparatus Expired - Fee Related JP3369918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22905297A JP3369918B2 (en) 1997-08-26 1997-08-26 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22905297A JP3369918B2 (en) 1997-08-26 1997-08-26 X-ray fluorescence analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH1164254A true JPH1164254A (en) 1999-03-05
JP3369918B2 JP3369918B2 (en) 2003-01-20

Family

ID=16886000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22905297A Expired - Fee Related JP3369918B2 (en) 1997-08-26 1997-08-26 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3369918B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055886A1 (en) * 2007-10-31 2009-05-07 Petróleo Brasileuro S.A. - Petrobras Process to determine light elements content of steel an alloys
CN108152311A (en) * 2017-12-27 2018-06-12 吴俊逸 A kind of method of quick relatively fireworks and firecrackers aluminium powder quality good or not

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055886A1 (en) * 2007-10-31 2009-05-07 Petróleo Brasileuro S.A. - Petrobras Process to determine light elements content of steel an alloys
GB2468235A (en) * 2007-10-31 2010-09-01 Petroleo Brasileiro Sa Process to determine light elements content of steel an alloys
JP2011501199A (en) * 2007-10-31 2011-01-06 ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス Process for determining the light element content of steels and alloys
GB2468235B (en) * 2007-10-31 2012-04-11 Petroleo Brasileiro Sa Petrobras Process to determine light elements content of steel and alloys
RU2473074C2 (en) * 2007-10-31 2013-01-20 Петролео Бразилейро С.А.-Петробрас Method of determining content of light elements in steel and alloys
US8411817B2 (en) 2007-10-31 2013-04-02 Petroleo Brasileiro S.A. Methods to determine light elements content of steel and alloys
CN108152311A (en) * 2017-12-27 2018-06-12 吴俊逸 A kind of method of quick relatively fireworks and firecrackers aluminium powder quality good or not

Also Published As

Publication number Publication date
JP3369918B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JP2848751B2 (en) Elemental analysis method
WO1997006430A1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
US20090268877A1 (en) Method and system for calibrating an x-ray photoelectron spectroscopy measurement
JP4237891B2 (en) Background correction method for fluorescent X-ray analyzer and fluorescent X-ray analyzer using the method
JP2928688B2 (en) Pollution element analysis method and device
JPH1164254A (en) Fluorescent x-ray analysis and analyzer
JP3610256B2 (en) X-ray fluorescence analyzer
JP2000249668A (en) Quantitative analysis device of nonuniform composite tissue sample
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
Yamada et al. Sensitive detection of trace copper contamination on a silicon wafer by total reflection X-ray fluorescence using W–Lβ or Au–Lβ excitation source
JPH1082749A (en) Method and system for x-ray analysis
JP3377328B2 (en) X-ray fluorescence analysis method
RU2002127845A (en) METHOD FOR X-RAY FLUORESCENT ANALYSIS OF ELEMENT COMPOSITION OF SUBSTANCE
JP2000065764A (en) X-ray fluorescence analysis of liquid sample
JP3850309B2 (en) Beam diameter correction quantitative analyzer
JP6973361B2 (en) Oxygen concentration measurement method
JP2001281176A (en) High-accuracy analysis method for carbon in steel
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JP2002071590A (en) Fluorescent x-ray analyzer
JP2645226B2 (en) X-ray fluorescence analysis method
JP3455659B2 (en) X-ray fluorescence analysis method and apparatus
JP2002090319A (en) Fluorescent x-ray analysis device
JPS62195547A (en) Quantitative analysis of carbon
USH922H (en) Method for analyzing materials using x-ray fluorescence

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees