JPH1162954A - Dynamic pressure bering device - Google Patents

Dynamic pressure bering device

Info

Publication number
JPH1162954A
JPH1162954A JP21642197A JP21642197A JPH1162954A JP H1162954 A JPH1162954 A JP H1162954A JP 21642197 A JP21642197 A JP 21642197A JP 21642197 A JP21642197 A JP 21642197A JP H1162954 A JPH1162954 A JP H1162954A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
dynamic pressure
resin
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21642197A
Other languages
Japanese (ja)
Inventor
Hiromitsu Asai
拡光 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP21642197A priority Critical patent/JPH1162954A/en
Publication of JPH1162954A publication Critical patent/JPH1162954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high rigidity and low friction and improve durability by providing dynamic pressure generating grooves on the radial bearing face of a cylindrical hole of a bearing member made of resin, and fixing an annular member, higher in rigidity than the bearing member, to the outer peripheral surface of the bearing member through an elastic member. SOLUTION: A bearing member 4 made of resin has dynamic pressure generating grooves 5 in a cylindrical hole 2. A cylindrical radial dynamic pressure bearing face 6 and a thrust sliding bearing face 7 are integrally formed, and a lubricant is put in a lubricant sump 8 at an opening part of the hole 2. The outer peripheral surface of the bearing member 4 is adhesively fixed to a metal housing 3 of an annular member. An epoxy or UV adhesive is used as the adhesive so as to become an elastic member 15 after hardening. Bending deformation of the bearing member 4 is therefore prevented even in case a rotor 14 has large unbalance load and large centrifugal force acts in association with rotation. Even in case temperature rises, the linear expansion difference between the housing 3 and the bearing member 4 is absorbed by the elastic member 15 so as to obtain a low-cost bearing with high rigidity, low friction and excellent durability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザビームプリン
タ、磁気ディスク装置などの情報機器およびその他の精
密回転機器等に用いられる動圧軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing device used for information equipment such as a laser beam printer and a magnetic disk drive, and other precision rotating equipment.

【0002】[0002]

【従来の技術】従来、情報機器であるLBP(レーザビ
ームプリンタ)、CD−ROM駆動装置等の軸受装置に
は、滑り軸受、玉軸受、動圧軸受が用いられている。ま
た、新たな情報機器であるDVD(ディジタルビデオデ
ィスク)の軸受装置にも、同様な軸受を用いることが考
えられ、一部実用化されつつある。
2. Description of the Related Art Conventionally, sliding bearings, ball bearings, and dynamic pressure bearings have been used in bearing devices such as LBP (laser beam printer) and CD-ROM drive devices as information devices. Further, it is conceivable to use a similar bearing for a bearing device of a DVD (digital video disk), which is a new information device, and a part thereof is being put to practical use.

【0003】[0003]

【発明が解決しようとする課題】レーザビームプリン
タ、CD−ROM駆動装置等の軸受装置は高剛性、低摩
擦で耐久性に優れていることが求められている。しかし
ながら、従来の軸受装置には、以下のような問題点があ
った。
[0003] Bearing devices such as laser beam printers and CD-ROM drives are required to have high rigidity, low friction and excellent durability. However, the conventional bearing device has the following problems.

【0004】滑り軸受を用いた軸受装置では、スラスト
軸受がラジアル軸受のほかに必要であり、部品点数が多
くなっていた。また、軸振れが大きく、ラジアル軸受と
軸との隙間の量だけ軸振れが発生しやすかった。さら
に、耐摩耗性が悪く、特に回転数が速くなると摩耗が大
きくなりやすかった。
In a bearing device using a slide bearing, a thrust bearing is required in addition to the radial bearing, and the number of parts has increased. Further, the shaft runout was large, and the shaft runout was easily generated by the amount of the gap between the radial bearing and the shaft. Furthermore, the wear resistance was poor, and especially when the rotational speed was high, the wear was likely to increase.

【0005】玉軸受を用いた軸受装置では、玉軸受自体
の価格が高く、また、回転むらや振動も起こりやすかっ
た。
[0005] In a bearing device using a ball bearing, the price of the ball bearing itself is high, and rotation unevenness and vibration are likely to occur.

【0006】動圧軸受(金属製)を用いた軸受装置で
は、スラスト軸受がラジアル軸受のほかに必要であっ
て、部品点数が多くなっていた。また、起動・停止時の
接触で摩耗しやすく、耐摩耗性が低かった。さらに、動
圧発生用の溝加工や軸受面を高精度に仕上げるための製
造コストが高かった。
In a bearing device using a dynamic pressure bearing (made of metal), a thrust bearing is required in addition to a radial bearing, and the number of parts has increased. In addition, it was easily worn by contact at the time of starting and stopping, and the wear resistance was low. Furthermore, the manufacturing cost for machining grooves for generating dynamic pressure and finishing the bearing surface with high precision was high.

【0007】以上より、耐摩擦・耐摩耗性に優れ、射出
成形により一体成形でき、コストの低い樹脂製軸受部材
の動圧軸受が提案されていた。しかし、樹脂は金属に比
べ剛性が低いため、アンバランス量(ラジアル荷重)が
大きくなると樹脂製軸受部材が変位(弾性変形)すると
言う問題があった。
As described above, there has been proposed a dynamic pressure bearing of a resin bearing member which is excellent in friction and wear resistance, can be integrally formed by injection molding, and is low in cost. However, since resin has lower rigidity than metal, there is a problem that the resin bearing member is displaced (elastically deformed) when the amount of unbalance (radial load) increases.

【0008】そこで、本発明は、弾性部材を介在して前
記樹脂製軸受部材より剛性の大きい環状部材で樹脂製軸
受部材を補強することにより、大きなアンバランス量に
も軸受部材(樹脂製軸受部材)は弾性変形せず、さら
に、温度変化(温度上昇)にも樹脂製軸受部材が塑性変
形しない、高剛性で低摩擦で耐久性に優れた動圧軸受装
置を提供することを目的とする。また、環状部材を、モ
ータのロータ又はステータとすることにより部品点数が
より少ない低コストなモータ用動圧軸受装置を提供する
ことを目的とする。
Therefore, the present invention reinforces the resin bearing member with an annular member having a greater rigidity than the resin bearing member with an elastic member interposed therebetween, so that the bearing member (resin bearing member) can be used even with a large unbalanced amount. The object of the present invention is to provide a dynamic pressure bearing device which is not elastically deformed, and in which the resin bearing member does not undergo plastic deformation even when the temperature changes (temperature rise), and which has high rigidity, low friction and excellent durability. Another object of the present invention is to provide a low-cost motor hydrodynamic bearing device with a smaller number of parts by using the annular member as the rotor or the stator of the motor.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の動圧軸受装置では、樹脂製の軸受部材は円
筒状孔に円筒状のラジアル軸受面を有し、ラジアル軸受
面は動圧発生用の溝を有し、軸受部材は外周面が軸受部
材より剛性の大きい環状部材に軸受部材と環状部材との
間へ弾性部材を介在させて固定されて補強されている。
軸受部材の外周面は軸方向の両端部が環状部材に取り付
けられて補強されていてもよい。環状部材はモータの駆
動機構を構成するロータであってもよい。環状部材はモ
ータの駆動機構を構成するステータであってもよい。
In order to solve the above problems, in the hydrodynamic bearing device of the present invention, the resin bearing member has a cylindrical radial bearing surface in a cylindrical hole, and the radial bearing surface has The bearing member has a groove for generating dynamic pressure, and the outer peripheral surface of the bearing member is fixed to an annular member having greater rigidity than the bearing member, and is fixed to the annular member with an elastic member interposed between the bearing member and the annular member.
The outer peripheral surface of the bearing member may be reinforced by attaching both ends in the axial direction to the annular member. The annular member may be a rotor constituting a drive mechanism of the motor. The annular member may be a stator constituting a drive mechanism of the motor.

【0010】[0010]

【作用】本発明によると、樹脂製軸受部材を弾性部材を
介在して、前記軸受部材より剛性の大きい環状部材で補
強することにより、樹脂製軸受部材の剛性不足が補え
て、大きなアンバランス量でも樹脂製軸受部材が変位せ
ず、温度変化(温度上昇)にも樹脂製軸受部材が塑性変
形するということがない。また、環状部材を、モータの
ロータ又はステータにすることにより、構造が簡単で部
品点数が少なく低コストなモータにできる。
According to the present invention, the resin bearing member is reinforced with an annular member having a greater rigidity than the bearing member with the elastic member interposed therebetween, thereby compensating for the lack of rigidity of the resin bearing member and increasing the amount of unbalance. However, the resin bearing member is not displaced, and the resin bearing member is not plastically deformed even when the temperature changes (temperature rise). Further, by using the rotor or the stator of the motor as the annular member, a motor having a simple structure, a small number of parts and a low cost can be obtained.

【0011】[0011]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の第1の実施例の動圧軸受装置を備
えたモータ1の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a motor 1 including a hydrodynamic bearing device according to a first embodiment of the present invention.

【0012】本実施例のモータ1では、樹脂製軸受部材
4は円筒状孔2に動圧発生用の溝5を有する円筒状のラ
ジアル動圧軸受面6とラジアル軸受面6に接続するスラ
ストすべり軸受面7とを有して一体形成され、内部には
潤滑流体として潤滑剤が入れられている。円筒状孔2の
開口部に設けた潤滑剤だまり8に潤滑剤が入れられ、潤
滑剤不足が生じないようにしている。軸受部材4は外周
面が、環状部材の金属製ハウジング3に接着固定されて
いる。軸受部材4には軸16が回転自在に挿入されてい
る。そして、金属製ハウジング3の外周面にはステータ
9が固定され、また金属製ハウジング3はベース(又は
プリント基板)10にねじ11により固定されている。
接着剤は接着後に硬化するが、一般の接着剤は硬化後に
は弾性を有しない。この発明に使用する接着剤として
は、硬化後に弾性を有するエポキシ接着剤、硬化後に弾
性を有するUV接着剤等がある。この発明に使用する接
着剤は、硬化後に樹脂製の軸受部材4より弾性を有する
弾性部材15となる。軸受部材4は外周面が軸受部材よ
り剛性の大きい環状部材に、軸受部材4と環状部材との
間へ弾性部材15を介在させて固定される。ステータ9
はコイル12を有しており、ステータ9の半径方向外側
には、ステータ9に対向するようにロータ14が配置さ
れている。ロータ14はヨーク13を介在して軸16に
固定されている。ロータ14とステータ9はモータの駆
動機構を構成し、ロータ14とステータ9はいずれも鋼
製の環状部を有して、樹脂製の軸受部材4より剛性が大
きい。
In the motor 1 of the present embodiment, the resin bearing member 4 has a cylindrical radial dynamic pressure bearing surface 6 having a groove 5 for generating dynamic pressure in the cylindrical hole 2 and a thrust slide connected to the radial bearing surface 6. It is formed integrally with the bearing surface 7 and contains a lubricant as a lubricating fluid inside. Lubricant is put into the lubricant reservoir 8 provided at the opening of the cylindrical hole 2 so that shortage of lubricant does not occur. The outer peripheral surface of the bearing member 4 is bonded and fixed to the metal housing 3 as an annular member. The shaft 16 is rotatably inserted into the bearing member 4. A stator 9 is fixed to the outer peripheral surface of the metal housing 3, and the metal housing 3 is fixed to a base (or printed circuit board) 10 by screws 11.
The adhesive cures after bonding, but ordinary adhesives have no elasticity after curing. Examples of the adhesive used in the present invention include an epoxy adhesive having elasticity after curing, and a UV adhesive having elasticity after curing. The adhesive used in the present invention becomes an elastic member 15 having more elasticity than the resin bearing member 4 after curing. The bearing member 4 is fixed to an annular member whose outer peripheral surface is greater in rigidity than the bearing member with an elastic member 15 interposed between the bearing member 4 and the annular member. Stator 9
Has a coil 12, and a rotor 14 is arranged radially outside the stator 9 so as to face the stator 9. The rotor 14 is fixed to the shaft 16 via the yoke 13. The rotor 14 and the stator 9 constitute a driving mechanism of the motor. Each of the rotor 14 and the stator 9 has an annular portion made of steel and has higher rigidity than the bearing member 4 made of resin.

【0013】上記のように構成されたモータ1は、軸受
部材を接着により軸受部材4より剛性の大きい金属製ハ
ウジング3に固定し、軸受部材4の円筒部4aを補強す
ることにより、ロータ14に大きなアンバランス荷重が
ありロータ(軸)回転に伴う大きな遠心力(ラジアル荷
重)が軸受部材4に作用しても軸受部材4が曲げ変位
(曲げ弾性変形)する事はない。
In the motor 1 constructed as described above, the bearing member is fixed to the metal housing 3 having a higher rigidity than the bearing member 4 by bonding, and the cylindrical portion 4a of the bearing member 4 is reinforced, so that the rotor 14 Even if there is a large unbalance load and a large centrifugal force (radial load) due to the rotation of the rotor (shaft) acts on the bearing member 4, the bearing member 4 does not undergo bending displacement (bending elastic deformation).

【0014】さらに、温度が上がっても、金属製ハウジ
ング3と樹脂製軸受部材4との線膨張差で生じる樹脂製
軸受部材4の膨張量は、硬化後に弾性を有する弾性部材
15が吸収するため、樹脂製軸受部材4が弾性変形する
ことはない。したがって、軸受部材4は後述のヒートサ
イクルにも塑性変形するようなこともなく、弾性部材1
5と剥がれることもない。軸受部材4と金属ハウジング
3との接着は軸受部材4の軸方向中間部を含んでも、上
部のみでもよい。上部のみの接着でも、軸受部材4は下
部に設けられている小さなフランジ21の両側面が、ハ
ウジング3とベース10とのねじ止めによりはさまれて
固定されているため、軸受部材4は上下2カ所が環状部
材に固定されていることになり、軸受部材4の曲げ変位
に対する補強は十分である。さらに、上記のように硬化
後に弾性を有する接着剤による接着なので、軸受部材4
は接着部分の変形がなく、一部分の接着でも樹脂製軸受
部材4の内径面に影響を及ぼさないため問題はない。こ
のように、樹脂製軸受部材4は曲げ剛性が金属より劣る
が、低摩擦で耐摩耗性が良く、射出成形により安価に製
造できる。軸受部材2の円筒部4aの曲げ剛性不足を環
状部材で補うことにより、高剛性で低摩擦で耐久性に優
れた低コストな動圧軸受装置とすることができる。
Furthermore, even if the temperature rises, the amount of expansion of the resin bearing member 4 caused by the linear expansion difference between the metal housing 3 and the resin bearing member 4 is absorbed by the elastic member 15 having elasticity after hardening. In addition, the resin bearing member 4 is not elastically deformed. Therefore, the bearing member 4 is not plastically deformed even in a heat cycle described later, and the elastic member 1
There is no peeling with 5. The adhesion between the bearing member 4 and the metal housing 3 may include the axial middle part of the bearing member 4 or may be only the upper part. Even when only the upper portion is bonded, the bearing member 4 is fixed by sandwiching the small flange 21 provided at the lower portion on both sides by screwing the housing 3 and the base 10. The positions are fixed to the annular member, and the reinforcement against the bending displacement of the bearing member 4 is sufficient. Further, as described above, since it is bonded by an adhesive having elasticity after curing, the bearing member 4
There is no problem because there is no deformation of the bonded portion, and even partial bonding does not affect the inner diameter surface of the resin bearing member 4. Thus, the resin bearing member 4 is inferior in bending rigidity to metal, but has low friction and good wear resistance, and can be manufactured at low cost by injection molding. By supplementing the insufficient bending rigidity of the cylindrical portion 4a of the bearing member 2 with the annular member, a low-cost dynamic pressure bearing device having high rigidity, low friction, and excellent durability can be provided.

【0015】図2から図4に接着実験結果を示す。図1
に示す軸受部材と環状部材とのはめ合い面すなわち対向
面の全面を接着した。図2は動圧軸受装置の樹脂製軸受
部材4の内径の寸法変化を示す図であり、図3は接着力
(ハウジング3に対する軸受部材4の軸方向の抜き力)
を示す図である。図4はヒートサイクルを示す図であ
り、経過時間に対する温度の変化を示している。また、
図2および図3に示す値は動圧軸受装置10個の平均値
を示している。樹脂製軸受部材4は内径4mm、外径7
mm、長さ10mmであり、ハウジング3の材質は鉄で
あり、樹脂製軸受部材4の外形面とハウジング3の内径
面との間のすきまは0.05〜0.1mmである。硬化
後に弾性を有しない一般の接着剤で接着した動圧軸受装
置と硬化後に弾性を有するエポキシ接着剤で接着した動
圧軸受装置とで比較した。硬化後に弾性を有する接着剤
で接着した場合は、図2および図3に実線a、cおよび
○印で示すようにヒートサイクル後も内径の寸法変化も
接着力の低下もないことが分かる。硬化後に弾性を有し
ない一般の接着剤で接着した場合は、図2及び図3に点
線b、d及び×印で示すように、ヒートサイクル後に内
径の寸法が変化し、また接着力が低下した。なお、図4
に示すように、図2及び図3に示す60℃ヒートサイク
ルとは動圧軸受装置を60℃に60分維持した後に常温
に30分維持することを続けて3回行うことであり、8
0℃ヒートサイクルとは動圧軸受装置を80℃に60分
維持した後に常温に30分維持することを続けて3回行
うことである。
2 to 4 show the results of the bonding experiment. FIG.
The entire surface of the mating surface of the bearing member and the annular member shown in FIG. FIG. 2 is a diagram showing a dimensional change of the inner diameter of the resin bearing member 4 of the hydrodynamic bearing device, and FIG. 3 is an adhesive force (pulling force of the bearing member 4 relative to the housing 3 in the axial direction).
FIG. FIG. 4 is a diagram showing a heat cycle, showing a change in temperature with respect to an elapsed time. Also,
The values shown in FIGS. 2 and 3 indicate the average values of 10 hydrodynamic bearing devices. The resin bearing member 4 has an inner diameter of 4 mm and an outer diameter of 7
mm, the length is 10 mm, the material of the housing 3 is iron, and the clearance between the outer surface of the resin bearing member 4 and the inner surface of the housing 3 is 0.05 to 0.1 mm. A comparison was made between a hydrodynamic bearing device bonded with a general adhesive having no elasticity after curing and a hydrodynamic bearing device bonded with an epoxy adhesive having elasticity after curing. In the case of bonding with an adhesive having elasticity after curing, as shown by solid lines a, c and ○ in FIGS. 2 and 3, it can be seen that there is no dimensional change in the inner diameter and no decrease in the adhesive strength even after the heat cycle. When bonded with a general adhesive having no elasticity after curing, as shown by dotted lines b, d, and x in FIGS. 2 and 3, the dimensions of the inner diameter changed after the heat cycle, and the adhesive strength decreased. . FIG.
As shown in FIG. 2, the 60 ° C. heat cycle shown in FIG. 2 and FIG.
The 0 ° C. heat cycle means that the dynamic pressure bearing device is maintained at 80 ° C. for 60 minutes and then at room temperature for 30 minutes, three times in a row.

【0016】図5に第2の実施例を示す。第1の実施例
と異なる点は、樹脂製軸受部材4のフランジ21を第1
の実施例よりラジアル方向に大きくし、ベース10を軸
受部材4のフランジ21の上面とハウジング3のフラン
ジ20の下面で挟み込んでベース10と軸受部材4とを
ハウジング3にねじ11によってねじ止め固定した点で
ある。軸受部材4と環状部材の金属製ハウジング3との
接着は第1の実施例同様、軸受部材4の外周面全面でも
上部のみでも良い。ベース10をフランジ21とハウジ
ング3とで挟むと、ねじを軸受部材4より軸方向にはみ
出さないようにでき、軸受部材4の軸方向長さを変えず
にモータを薄く出来るという利点がある。その他の構
成、作用、効果は第1の実施例と同様である。
FIG. 5 shows a second embodiment. The difference from the first embodiment is that the flange 21 of the resin bearing member 4 is
The base 10 is sandwiched between the upper surface of the flange 21 of the bearing member 4 and the lower surface of the flange 20 of the housing 3, and the base 10 and the bearing member 4 are fixed to the housing 3 by screws 11. Is a point. As in the first embodiment, the adhesion between the bearing member 4 and the metal housing 3 of the annular member may be on the entire outer peripheral surface of the bearing member 4 or on only the upper portion. When the base 10 is sandwiched between the flange 21 and the housing 3, the screw can be prevented from protruding from the bearing member 4 in the axial direction, and there is an advantage that the motor can be thinned without changing the axial length of the bearing member 4. Other configurations, operations, and effects are the same as those of the first embodiment.

【0017】図6に第3の実施例を示す。第1の実施例
と異なる点は、ベース10とハウジング3のフランジ2
0で軸受部材4のフランジ21を挟み込んでベース10
と軸受部材4とをハウジング3にねじ11によってねじ
止めした点である。第1の実施例よりハウジング3の加
工工数が少なく、フランジ21の厚み精度が不要であ
る。軸受部材4のフランジ21をハウジング3に直接固
定するため、第2の実施例よりねじ止めによる固定の強
度が高くなる。その他の構成、作用、効果は第1の実施
例と同様である。
FIG. 6 shows a third embodiment. The difference from the first embodiment is that the base 10 and the flange 2 of the housing 3
0, the flange 21 of the bearing member 4 is sandwiched between the base 10
And the bearing member 4 is screwed to the housing 3 with the screw 11. The number of processing steps for the housing 3 is smaller than in the first embodiment, and the thickness accuracy of the flange 21 is unnecessary. Since the flange 21 of the bearing member 4 is directly fixed to the housing 3, the fixing strength by screwing is higher than in the second embodiment. Other configurations, operations, and effects are the same as those of the first embodiment.

【0018】図7に第4の実施例を示す。第3の実施例
と異なる点は、ハウジングがなく環状部材のステータ9
の内周面に樹脂製軸受部材4を弾性部材15を介在させ
て固定してある点である。軸受部材4の下部のフランジ
21をステータ9とベース10とで挟んでねじ11によ
り押圧してステータ9とベース10とに固定し、軸受部
材15の上部及び中間部の外周面をステータ9に弾性部
材15を介在させて接着固定している。部品点数が少な
く、組立も容易になるという利点がある。モータの駆動
機構を構成するステータ9は鋼製の環状部材であって樹
脂製の軸受部材4より剛性が大きく、内周部は環状部で
ある。また、弾性部材15は軸受部材4より弾性を有す
る。その他の構成、作用及び効果は第3の実施例とほぼ
同様である。
FIG. 7 shows a fourth embodiment. The difference from the third embodiment is that the stator 9 is an annular member without a housing.
Is that the resin bearing member 4 is fixed to the inner peripheral surface with an elastic member 15 interposed. The lower flange 21 of the bearing member 4 is sandwiched between the stator 9 and the base 10 and pressed by screws 11 to be fixed to the stator 9 and the base 10. It is bonded and fixed with a member 15 interposed. There are advantages in that the number of parts is small and assembly is easy. The stator 9 constituting the drive mechanism of the motor is an annular member made of steel and has higher rigidity than the bearing member 4 made of resin, and the inner peripheral portion is an annular portion. Further, the elastic member 15 has more elasticity than the bearing member 4. Other configurations, operations and effects are almost the same as those of the third embodiment.

【0019】図8に第5の実施例を示す。第4の実施例
と異なる点は、軸受部材4の外周面の上部とステータ9
との固定を弾性部材すなわち弾性を有する充填剤30で
行っている点である。軸受部材4とステータ9との間の
上部の隙間を充填剤30で埋めることにより、軸受部材
4の外周面の上部はステータ9に軸受部材4とステータ
9の間へ弾性部材を介在させて固定されている。その他
の構成、作用、効果は第4の実施例と同様である。本実
施例に限られず、樹脂製軸受部材の外周面の軸方向両端
部2カ所を弾性部材を介在して樹脂製軸受部材より剛性
の大きい環状部材に固定して補強しても良い。また、軸
受部材の外周面の軸方向1ヶ所を弾性部材を介在して環
状部材に固定しても良く、軸受部材の外周面の全面を弾
性部材を介在して環状部材に固定しても良い。また、本
発明は第1〜5の実施例を組み合わせたものであっても
良い。軸受部材の外周面は、モータの駆動機構を構成す
る鋼製の環状部材のロータに取り付けられて補強されて
も良い。この場合は、軸受部材が回転する。本実施例の
樹脂製軸受部材は、内径について高い精度を必要とする
動圧軸受を射出成形で製造する。樹脂製軸受部材を環状
部材によって補強することによって、より高い剛性を得
ることができる。
FIG. 8 shows a fifth embodiment. The difference from the fourth embodiment is that the upper part of the outer peripheral surface of the bearing member 4 and the stator 9
Is fixed by an elastic member, that is, a filler 30 having elasticity. By filling the upper gap between the bearing member 4 and the stator 9 with the filler 30, the upper part of the outer peripheral surface of the bearing member 4 is fixed to the stator 9 with an elastic member interposed between the bearing member 4 and the stator 9. Have been. Other configurations, operations, and effects are the same as those of the fourth embodiment. The present invention is not limited to this embodiment, and two axial end portions of the outer peripheral surface of the resin bearing member may be fixed to an annular member having greater rigidity than the resin bearing member via an elastic member to reinforce. Also, one axial direction of the outer peripheral surface of the bearing member may be fixed to the annular member through an elastic member, or the entire outer peripheral surface of the bearing member may be fixed to the annular member through an elastic member. . Further, the present invention may be a combination of the first to fifth embodiments. The outer peripheral surface of the bearing member may be reinforced by being attached to a steel annular member rotor constituting a drive mechanism of the motor. In this case, the bearing member rotates. In the resin bearing member of the present embodiment, a dynamic pressure bearing that requires high accuracy for the inner diameter is manufactured by injection molding. By reinforcing the resin bearing member with the annular member, higher rigidity can be obtained.

【0020】[0020]

【発明の効果】本発明によると、低摩擦で耐摩耗性が良
く、射出成形により安価に製造できる樹脂製動圧軸受の
軸受部材の曲げ剛性不足を環状部材によって簡単に補強
し、温度変化による弾性及び塑性変形も弾性部材によっ
て防ぐことができ、高剛性で低摩擦で耐久性に優れた低
コストな動圧軸受装置を得ることができる。すなわち、
樹脂製軸受部材の剛性不足が補えて、大きなアンバラン
ス量でも樹脂製軸受部材本体が変位することがない。ま
た、環状部材を、モータのロータ又はステータにするこ
とにより、構造が簡単で部品点数が少なくなり、低コス
トにすることができる。
According to the present invention, the insufficiency of the bending rigidity of the bearing member of the resin dynamic pressure bearing which can be manufactured at a low cost by injection molding can be easily reinforced by the annular member and has a low friction and good wear resistance. Elasticity and plastic deformation can also be prevented by the elastic member, and a low-cost hydrodynamic bearing device with high rigidity, low friction and excellent durability can be obtained. That is,
The lack of rigidity of the resin bearing member is compensated, and the resin bearing member main body is not displaced even with a large unbalance amount. Further, by using the annular member as the rotor or the stator of the motor, the structure is simple, the number of parts is reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の動圧軸受装置を備えた
モータの断面図である。
FIG. 1 is a cross-sectional view of a motor including a hydrodynamic bearing device according to a first embodiment of the present invention.

【図2】本発明の動圧軸受装置の軸受部材の内径の寸法
変化を示す図である。
FIG. 2 is a diagram showing a dimensional change of an inner diameter of a bearing member of the dynamic pressure bearing device of the present invention.

【図3】本発明の動圧軸受装置の接着力を示す図であ
る。
FIG. 3 is a view showing an adhesive force of the dynamic pressure bearing device of the present invention.

【図4】本発明の動圧軸受装置の実験時のヒートサイク
ルを示す図である。
FIG. 4 is a view showing a heat cycle during an experiment of the dynamic pressure bearing device of the present invention.

【図5】本発明の第2の実施例の動圧軸受装置を備えた
モータの断面図である。
FIG. 5 is a cross-sectional view of a motor including a hydrodynamic bearing device according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の動圧軸受装置を備えた
モータの断面図である。
FIG. 6 is a sectional view of a motor provided with a hydrodynamic bearing device according to a third embodiment of the present invention.

【図7】本発明の第4の実施例の動圧軸受装置を備えた
モータの断面図である。
FIG. 7 is a sectional view of a motor provided with a hydrodynamic bearing device according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施例の動圧軸受装置を備えた
モータの断面図である。
FIG. 8 is a sectional view of a motor provided with a dynamic bearing device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 モータ 2 円筒状孔 3 ハウジング 4 軸受部材 5 溝 6 ラジアル軸受面 7 スラスト軸受面 8 潤滑剤だまり 9 ステータ 10 ベース 11 ねじ 12 コイル 13 ヨーク 14 ロータ 15 弾性部材 16 軸 20 フランジ 21 フランジ 30 充填剤 4a 円筒部 DESCRIPTION OF SYMBOLS 1 Motor 2 Cylindrical hole 3 Housing 4 Bearing member 5 Groove 6 Radial bearing surface 7 Thrust bearing surface 8 Lubricant reservoir 9 Stator 10 Base 11 Screw 12 Coil 13 Yoke 14 Rotor 15 Elastic member 16 Shaft 20 Flange 21 Flange 30 Filler 4a Cylindrical part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 樹脂製の軸受部材は円筒状孔に円筒状の
ラジアル軸受面を有し、該ラジアル軸受面は動圧発生用
の溝を有し、前記軸受部材は外周面が軸受部材より剛性
の大きい環状部材に軸受部材と環状部材との間へ弾性部
材を介在させて固定されて補強されている動圧軸受装
置。
1. A resin bearing member has a cylindrical radial bearing surface in a cylindrical hole, the radial bearing surface has a groove for generating dynamic pressure, and the outer peripheral surface of the bearing member is smaller than that of the bearing member. A dynamic pressure bearing device which is fixed and reinforced by an annular member having high rigidity with an elastic member interposed between the bearing member and the annular member.
JP21642197A 1997-08-11 1997-08-11 Dynamic pressure bering device Pending JPH1162954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21642197A JPH1162954A (en) 1997-08-11 1997-08-11 Dynamic pressure bering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21642197A JPH1162954A (en) 1997-08-11 1997-08-11 Dynamic pressure bering device

Publications (1)

Publication Number Publication Date
JPH1162954A true JPH1162954A (en) 1999-03-05

Family

ID=16688309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21642197A Pending JPH1162954A (en) 1997-08-11 1997-08-11 Dynamic pressure bering device

Country Status (1)

Country Link
JP (1) JPH1162954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107569A (en) * 2005-10-11 2007-04-26 Ntn Corp Fluid bearing device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107569A (en) * 2005-10-11 2007-04-26 Ntn Corp Fluid bearing device and method for manufacturing the same
JP4559336B2 (en) * 2005-10-11 2010-10-06 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8148862B2 (en) Bearing device, spindle motor and disk drive apparatus
US6734591B2 (en) Spindle motor
US6172847B1 (en) Rotational assembly for disc drive device having small runout and reduced axial displacement
JPH05240241A (en) Spindle motor
US6705760B2 (en) Spindle motor and bearing assembly
US6445096B1 (en) Spindle motor
JP2000291648A (en) Dynamic pressure-type bearing unit
JPH07332353A (en) Dynamic pressurizing bearing
KR20050108315A (en) Bearing unit and rotation and drive device
US6599021B2 (en) Compound bearing apparatus
JPH1162954A (en) Dynamic pressure bering device
JPH10246223A (en) Dynamic pressure bearing device
US20020121824A1 (en) Motor
JP4202080B2 (en) Hydrodynamic bearing device and spindle motor using the same
JPH1127895A (en) Spindle motor
JP3578810B2 (en) Spindle motor
JP2000324754A (en) Spindle motor
JPH094641A (en) Dynamic pressure bearing
JPH11117934A (en) Bearing device with dynamic pressure groove
JPH11103554A (en) Bearing unit for spindle motor
JPH102329A (en) Bearing device
JP2004044741A (en) Bearing device and turning head device using the same
JPH03173339A (en) Outside rotor type spindle motor
JP4063600B2 (en) Hydrodynamic bearing motor
JPH11257347A (en) Bearing device