JPH1160355A - Silicon nitride composite material having multilayer structure and its production - Google Patents

Silicon nitride composite material having multilayer structure and its production

Info

Publication number
JPH1160355A
JPH1160355A JP21088297A JP21088297A JPH1160355A JP H1160355 A JPH1160355 A JP H1160355A JP 21088297 A JP21088297 A JP 21088297A JP 21088297 A JP21088297 A JP 21088297A JP H1160355 A JPH1160355 A JP H1160355A
Authority
JP
Japan
Prior art keywords
silicon nitride
layer
composite material
powder
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21088297A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21088297A priority Critical patent/JPH1160355A/en
Publication of JPH1160355A publication Critical patent/JPH1160355A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon nitride composite material lighter in weight and having a low coefft. of friction. SOLUTION: The silicon nitride composite material consists of a silicon nitride porous body (support layer) consisting of columnar silicon nitride particles having an average aspect ratio of >=3 and an oxide bonding phase and having 30-70% porosity, <=12 μm average pore diameter and >=100 MPa three-point bending strength and a ceramic, glass or metallic layer (surface layer) having $20% porosity and >=1 μm thickness formed on at least one surface part of the porous body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽量、高強度、低
摩擦特性、高気密性を持つ窒化ケイ素複合材料とその製
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride composite material having light weight, high strength, low friction characteristics and high airtightness, and a method for producing the same.

【0002】[0002]

【従来の技術】近年の環境問題への対応から、自動車関
連分野では燃費の向上を図るため、エンジンの軽量化や
高効率化のために動弁系等のエンジン材料としてセラミ
ックスを使用する試みがおこなわれている。特に窒化ケ
イ素系セラミックスは高強度、低比重、低摩擦材料のた
め最も有望視されている。セラミックス化が有望なエン
ジン部品の例としては、排気バルブ、タペットシム等が
ある。これらの材料は、実用時の強度的負荷に耐えるこ
とができれば、軽量であればあるほど燃費向上に対する
効果は高い。
2. Description of the Related Art In response to recent environmental problems, attempts have been made to use ceramics as an engine material for a valve train or the like in order to improve fuel efficiency in the automobile-related field, and to reduce the weight and increase the efficiency of the engine. It is being done. In particular, silicon nitride ceramics are regarded as the most promising because of their high strength, low specific gravity, and low friction material. Examples of promising engine parts include exhaust valves, tappet shims, and the like. As long as these materials can withstand the strength load at the time of practical use, the lighter the weight, the higher the effect on fuel efficiency improvement.

【0003】しかし、緻密な窒化ケイ素系焼結体を用い
る限りこれ以上の軽量化はできない。比重を低下させる
方法として窒化ケイ素材料を多孔質化することが考えら
れるが、気孔率の増加に伴い強度が大きく低下すること
に加え、多孔体であるために上記のような動弁系の摺動
部材として使用した場合に摩擦係数が高くなり磨耗や焼
き付きを発生させる。
However, a further reduction in weight cannot be achieved as long as a dense silicon nitride-based sintered body is used. As a method of reducing the specific gravity, it is conceivable to make the silicon nitride material porous. However, in addition to the significant decrease in strength with an increase in porosity, the sliding of the valve train described above due to the porous body is considered. When used as a moving member, the coefficient of friction increases, causing wear and seizure.

【0004】セラミックス多孔体の表面部に気孔率の低
い層を形成して高強度化する方法も考えられている。例
えば、粉体および粉末冶金第41巻第3号のP313〜
P316にはAl23多孔体ではAl23スラリーを鋳
込み法等で表面に堆積後焼成して両面に緻密層を設けて
サンドイッチ構造のセラミックスを創製することによ
り、高強度化に成功した研究もある。
A method of forming a layer having a low porosity on the surface of a porous ceramic body to increase the strength has been considered. For example, Powder and Powder Metallurgy Vol. 41, No. 3, P313-
In P316, for Al 2 O 3 porous material, Al 2 O 3 slurry was deposited on the surface by a casting method or the like and fired, and dense layers were provided on both surfaces to create a sandwich-structured ceramic, thereby achieving high strength. There is also research.

【0005】しかし、このような従来のセラミックス多
孔体を用いた場合、大きな強度向上は達成できない。そ
の理由は以下に説明される。
However, when such a conventional porous ceramic body is used, a great improvement in strength cannot be achieved. The reason is explained below.

【0006】Al23多孔体に代表される従来のセラ
ミックス多孔体の粒子は球状に近い形状をしている。そ
のため、表面に気孔率の低い層を形成しても、表面層と
支持層の密着強度が充分でないために応力が負荷された
時に両層間で剥離が起きやすく結果として充分な強化効
果が発揮できない。
[0006] Particles of a conventional ceramic porous body represented by a porous body of Al 2 O 3 have a shape close to a sphere. Therefore, even if a layer having a low porosity is formed on the surface, the adhesion between the surface layer and the support layer is not sufficient, so that separation is likely to occur between the two layers when stress is applied, and as a result, a sufficient reinforcing effect cannot be exhibited. .

【0007】球状粒子からなる多孔体の細孔形状は同
様に球状に近い形状となるため、表面に堆積層を形成す
る際、支持層の細孔径とほぼ同じ粒径以上の粒子しか堆
積させることができない。なぜなら、細孔径以下の粒子
は支持層を透過してしまうからである。粒径の大きな粒
子は焼結しにくいために緻密化させにくく、結果として
表面層の気孔率を充分に低下させることができず充分な
高強度化ができない。
Since the pore shape of the porous body composed of spherical particles is also similar to a spherical shape, when forming a deposition layer on the surface, it is necessary to deposit only particles having a diameter substantially equal to or larger than the pore diameter of the support layer. Can not. This is because particles having a diameter equal to or smaller than the pore diameter pass through the support layer. Particles having a large particle diameter are difficult to be sintered and thus are difficult to be densified. As a result, the porosity of the surface layer cannot be sufficiently reduced and sufficient strength cannot be obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明は、軽量で強度
が大きく、かつ、表面層が平滑で剥離し難い窒化ケイ素
複合材料とその製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a silicon nitride composite material which is lightweight, has high strength, has a smooth surface layer and is difficult to peel off, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、発明者らは鋭意探求の結果特開平7−500470
号に記載のように支持層として三次元絡み合い構造を持
つ柱状窒化ケイ素粒子と酸化物系結合相からなる多孔体
を用いることにより、軽量で極めて強度が高く、低摩擦
特性を持つ窒化ケイ素系複合材料が得られることを見い
だした。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive searches and have found a result of Japanese Patent Laid-Open No. 7-500470.
By using a porous body composed of columnar silicon nitride particles having a three-dimensional entangled structure and an oxide-based binder phase as a support layer as described in the above item, a silicon nitride composite with light weight, extremely high strength, and low friction characteristics We found that the material was obtained.

【0010】すなわち、本発明の構成は特許請求の範囲
に記載のとおりの窒化ケイ素系複合材料とその製法であ
る。窒化ケイ素系複合材料の基本的な構成は、平均アス
ペクト比が3以上の柱状窒化ケイ素粒子と酸化物系結合
相からなる、気孔率30%以上70%以下、平均細孔径
が12μm以下、3点曲げ強度が100MPa以上の窒
化ケイ素多孔体(支持層)と、少なくともその一方の表
面部に形成された気孔率が20%以下、厚さが1μm以
上のセラミックス、カラスまたは金属層(表面層)から
なる、多層構造を持つ窒化ケイ素系複合材料である。
That is, the constitution of the present invention is a silicon nitride-based composite material and a method for producing the same as described in the claims. The basic structure of the silicon nitride-based composite material is composed of columnar silicon nitride particles having an average aspect ratio of 3 or more and an oxide-based binder phase, a porosity of 30% or more and 70% or less, and an average pore diameter of 12 μm or less. A silicon nitride porous body (support layer) having a bending strength of 100 MPa or more and a ceramic, crow or metal layer (surface layer) having a porosity formed on at least one surface of which is 20% or less and a thickness of 1 μm or more. Is a silicon nitride-based composite material having a multilayer structure.

【0011】このような材料は、セラミックスまたは金
属の粉末を溶媒に分散させた懸濁液を、該三次元絡み合
い構造を持つ柱状窒化ケイ素粒子と酸化物系結合相から
なる窒化ケイ素多孔体で濾過して、該多孔体の少なくと
も一方の表面にセラミックスまたは金属の粉末のケーキ
層を形成し、これを高温で焼結させて該多孔体の一方の
表面あるいは両表面に気孔率の低いセラミックスまたは
金属の表面層を形成させて得られる。
Such a material is obtained by filtering a suspension of a ceramic or metal powder dispersed in a solvent through a porous silicon nitride body comprising columnar silicon nitride particles having a three-dimensional entangled structure and an oxide-based binder phase. Forming a cake layer of ceramic or metal powder on at least one surface of the porous body, sintering the cake layer at a high temperature, and forming a ceramic or metal having low porosity on one or both surfaces of the porous body. Is obtained by forming a surface layer.

【0012】すなわち、この窒化ケイ素系複合材料の基
本的な製造方法はセラミックス、ガラスまたは金属粉末
を溶媒に分散させた懸濁液を調整する工程と、平均アス
ペクト比が3以上の柱状窒化ケイ素粒子と酸化物系結合
相からなる気孔率30%以上70%以下の窒化ケイ素多
孔体で上記懸濁液を濾過して、該多孔体の少なくとも一
方の表面に該粉末のケーキ層を形成する工程と、該ケー
キ層を高温で溶融または焼結させて該多孔体の少なくと
も一方の表面に気孔率の低いセラミックス、ガラスまた
は金属の層を形成する工程を含む多層構造を持つ窒化ケ
イ素系複合材料の製造法である。
That is, a basic method for producing the silicon nitride-based composite material includes a step of preparing a suspension in which ceramics, glass or metal powder is dispersed in a solvent, and a method of preparing columnar silicon nitride particles having an average aspect ratio of 3 or more. Forming a cake layer of the powder on at least one surface of the porous body by filtering the suspension with a silicon nitride porous body having a porosity of 30% or more and 70% or less comprising an oxide-based binder phase. Producing a silicon nitride-based composite material having a multilayer structure including a step of melting or sintering the cake layer at a high temperature to form a low-porosity ceramic, glass or metal layer on at least one surface of the porous body. Is the law.

【0013】形成する表面の層の厚さは1μm以上必要
である。なぜなら支持層であるSi34多孔体の表面粗
度がRaで約1μmであるため、それ未満ではケーキ層
が完全に多孔体を覆わず、表面層の気孔率を20%以下
にできない。最大厚さは特に制限がないが、厚すぎると
多孔体の軽量性を生かせないため1mm以下が好まし
い。
The thickness of the surface layer to be formed must be 1 μm or more. Because the surface roughness of the porous Si 3 N 4 material as the support layer is about 1 μm in Ra, if it is less than this, the cake layer does not completely cover the porous material and the porosity of the surface layer cannot be reduced to 20% or less. The maximum thickness is not particularly limited, but if it is too thick, the lightness of the porous body cannot be utilized, so that the thickness is preferably 1 mm or less.

【0014】支持層の平均細孔径は12μm以下とす
る。これを越えるとケーキ層を形成するために使用する
粉末の粒径が3μmを越えてしまい、緻密化が起こりに
くく、表面層の気孔率を20%以下にできない。
The average pore size of the support layer is 12 μm or less. If it exceeds this, the particle size of the powder used for forming the cake layer exceeds 3 μm, so that it is difficult for the powder to be densified, and the porosity of the surface layer cannot be reduced to 20% or less.

【0015】表面層の材質としては、金属、ガラス、セ
ラミックスが考えられる。窒化ケイ素系以外の表面層を
形成する場合には、その材質が緻密化しやすい条件を選
べばよい。例えば、金属Alの場合、非酸化性雰囲気で
480〜550℃程度で焼成すればよい。例えば通常の
ホウケイ酸ガラスの場合、600〜1400℃程度であ
る。
As the material of the surface layer, metal, glass and ceramics can be considered. In the case of forming a surface layer other than silicon nitride, conditions may be selected under which the material is easily densified. For example, in the case of metal Al, firing may be performed at about 480 to 550 ° C. in a non-oxidizing atmosphere. For example, in the case of ordinary borosilicate glass, the temperature is about 600 to 1400 ° C.

【0016】表面層に高い機械的強度を付与して材料全
体を高強度化するためには窒化ケイ素が好ましい。窒化
ケイ素表面層を形成するには、窒化ケイ素粉末と適量の
焼結助剤の混合粉末をケーキ層にすればよい。焼結温度
は焼結助剤種によっても若干異なるが、通常は1500
〜1800℃程度でよい。このようにして表面層を形成
した多孔体の曲げ強度は、形成前の多孔体と比べて格段
に高くなる。表面層が窒化ケイ素の場合、JIS160
1に規定された3点曲げ強度で100MPa以上100
MPa以下の範囲程度の値が得られる。
Silicon nitride is preferred for imparting high mechanical strength to the surface layer to increase the strength of the entire material. In order to form a silicon nitride surface layer, a mixed powder of silicon nitride powder and an appropriate amount of a sintering aid may be used as a cake layer. The sintering temperature varies slightly depending on the type of sintering aid, but is usually 1500
About 1800 ° C. The bending strength of the porous body having the surface layer formed in this way is significantly higher than that of the porous body before the formation. When the surface layer is made of silicon nitride, JIS160
100 MPa or more and 100 at three-point bending strength specified in 1.
A value in the range of about MPa or less can be obtained.

【0017】表面層に気密性を持たせることを目的とす
る場合、ガラス粉末のケーキ層を形成後、溶融させれば
完全に緻密なガラス層が得られる。この応用として高速
の流体と接触する航空機部品の表面処理がある。これを
以下に説明する。例えばこのような部品にはレドームと
呼ばれるドーム形状に加工したレーダー透過材料が用い
られる。レドーム材料として必要な特性は誘電率と誘電
損失が小さいことであり、その点でSi34多孔体は有
望であるが、雨中で高速巡航する場合、水滴が多孔体に
侵入してレーダー透過特性を劣化させる場合がある。こ
の対策として例えば特開平8−164689号に記載の
ように多孔体表面にガラスを被覆する方法が取られる。
ガラス被覆法としては、ガラス粉末の分散液を塗布、焼
成したり、エチルシリケートのような金属アルコキシド
を塗布、焼成してガラス層を形成するなどがある。しか
し、これらの方法では多孔体表面に完全に緻密なガラス
層を形成することは困難である。
When the surface layer is intended to be airtight, a completely dense glass layer can be obtained by forming a cake layer of glass powder and then fusing it. One application is surface treatment of aircraft parts that come into contact with high speed fluids. This will be described below. For example, a radar permeable material processed into a dome shape called a radome is used for such a component. The properties required as a radome material are low dielectric constant and dielectric loss. In that respect, porous Si 3 N 4 material is promising, but when cruising at high speed in rain, water droplets enter the porous material and pass through the radar. The characteristics may be degraded. As a countermeasure, for example, a method of coating the surface of a porous body with glass as described in JP-A-8-164689 is adopted.
Examples of the glass coating method include a method of applying and firing a dispersion liquid of glass powder, and an example of applying and firing a metal alkoxide such as ethyl silicate to form a glass layer. However, it is difficult to form a completely dense glass layer on the surface of the porous body by these methods.

【0018】なぜなら、上記の方法では、ガラス粉末の
分散液や金属アルコキシドを塗布後、焼成する際、溶媒
の急激な乾燥によってガラス成分が急激に収縮し、それ
によってガラス膜にクラックやピンホールが入るためで
ある。基材が多孔体の場合、この現象は著しく、形成し
たガラス膜の気密性は低い。また、これらの方法では、
原料液中のガラス成分が少なく厚いガラス膜を形成でき
ないことも大きな要因である。原料液中のガラス成分を
多くすると、塗布時にムラができ表面に均一なガラス膜
を形成できない。 これに対し、本発明の方法を用いる
と、完全に緻密なガラス膜を均一な厚さで被覆できる。
例えば、ホウケイ酸ガラス粉末の懸濁液を調整し、これ
をドーム形状の多孔体の凸面から凹面に濾過させて、凸
面にケーキ層を形成後、これを溶融温度で加熱して溶融
させればよい。
In the above method, when a glass powder dispersion or a metal alkoxide is applied and then fired, the glass component shrinks sharply due to rapid drying of the solvent, thereby causing cracks and pinholes in the glass film. To enter. This phenomenon is remarkable when the substrate is a porous body, and the formed glass film has low airtightness. Also, with these methods,
Another major factor is that a thick glass film cannot be formed due to a small amount of glass components in the raw material liquid. When the glass component in the raw material liquid is increased, unevenness is caused at the time of coating, and a uniform glass film cannot be formed on the surface. On the other hand, when the method of the present invention is used, a completely dense glass film can be coated with a uniform thickness.
For example, by preparing a suspension of borosilicate glass powder, filtering this from the convex surface of the dome-shaped porous body to the concave surface, forming a cake layer on the convex surface, and then heating and melting it at the melting temperature, Good.

【0019】また、このようにして表面層を形成後、試
料表面を機械的に研磨することにより、その表面粗度R
aを0.30μm以下に小さくすることができる。気孔
率が20%を越えると気孔による凹凸が大きくなるため
にRa値は0.30μmを越えてしまい、摩擦係数を低
下させる効果が小さくなる。
After the surface layer is formed in this manner, the surface of the sample is mechanically polished to obtain a surface roughness R.
a can be reduced to 0.30 μm or less. If the porosity exceeds 20%, the Ra value exceeds 0.30 μm because the irregularities due to the pores increase, and the effect of lowering the friction coefficient decreases.

【0020】表面層を金属にすると、強度が上る、摩擦
係数が低下する以外に、金属部材との接合性が向上する
という利点もある。セラミックスと金属をろうづけ接合
する場合、通常はセラミックス表面にメタライズ層を形
成して表面を金属化してなじみをよくした後、ろうづけ
するが、多孔体の場合はメタライズしても表面が金属化
しないのでろうづけしても接合強度が弱かった。本発明
を用いると、表面をメタライズしなくても直接ろうづけ
接合でき、高い接合強度が得られる。
When the surface layer is made of metal, there is an advantage that, in addition to an increase in strength and a decrease in friction coefficient, the joining property with a metal member is improved. When brazing ceramic and metal, it is common to form a metallized layer on the ceramic surface and metallize the surface to improve familiarity, and then braze it. The bonding strength was low even when brazing was not performed. According to the present invention, brazing can be directly performed without metallizing the surface, and high bonding strength can be obtained.

【0021】このようにして作製した多孔体が高強度特
性を持つ理由は以下のとおりである。
The reason why the porous body thus produced has high strength characteristics is as follows.

【0022】すなわち、該支持層は三次元的にお互いに
絡み合った柱状結晶からなる構造のため、表面層を形成
した場合、表面層との結合が極めて強く、支持層と表面
層の界面はいわゆる繊維強化複合材料のような構造にな
る。応力負荷時のエネルギーは柱状結晶を引き抜くため
に費される。この結合力のために表面層が剥離しにく
い。そのため、従来にはない高強度特性を発揮する。
That is, since the support layer has a structure composed of columnar crystals intertwined with each other three-dimensionally, when the surface layer is formed, the bond with the surface layer is extremely strong, and the interface between the support layer and the surface layer is so-called. The structure becomes like a fiber reinforced composite material. The energy at the time of stress loading is used to pull out the columnar crystal. Due to this bonding force, the surface layer does not easily peel off. Therefore, it exhibits a high strength characteristic that has not been achieved in the past.

【0023】これに対して従来のセラミックス多孔体の
細孔は球状に近い形状をしている。そのため、表面に気
孔率の低い層を形成しても、表面層と支持層の密着強度
が充分でないために応力が負荷された時に両層間で剥離
が起きやすく結果として充分な強度効果が発揮できな
い。
On the other hand, the pores of the conventional ceramic porous body have a nearly spherical shape. Therefore, even if a layer having a low porosity is formed on the surface, the adhesion between the surface layer and the support layer is not sufficient, so that when a stress is applied, peeling easily occurs between the two layers, and as a result, a sufficient strength effect cannot be exhibited. .

【0024】従って、支持層を構成する粒子の平均アス
ペクト比は3以上必要である。それ未満だと表面層との
密着強度が低く、表面層を形成しても強度向上効果が小
さい。また、摺動時に表面層が剥離して摩擦係数が大き
くなってしまう。
Therefore, the particles constituting the support layer must have an average aspect ratio of 3 or more. If it is less than this, the adhesion strength to the surface layer is low, and even if the surface layer is formed, the strength improvement effect is small. In addition, the surface layer peels off during sliding and the friction coefficient increases.

【0025】支持層の気孔率は30%以上とする。それ
未満だと気孔率が低下しても支持層の強度がほとんど上
がらない。さらに柱状結晶の引き抜き効果が小さく表面
層を形成しても強度向上の効果があまりない。上限は7
0%である。それを越えると単位体積当たりの柱状結晶
の数が少なくなり表面層との結合力が低く表面層を形成
しても強度向上効果が小さい。
The porosity of the support layer is 30% or more. If it is less than this, the strength of the support layer hardly increases even if the porosity decreases. Further, the effect of pulling out columnar crystals is small, and even if a surface layer is formed, there is not much effect of improving strength. Upper limit is 7
0%. If it exceeds this, the number of columnar crystals per unit volume is reduced, and the bonding strength with the surface layer is low, so that the strength improvement effect is small even if the surface layer is formed.

【0026】[0026]

【作用】本発明の窒化ケイ素系複合材料の作用を要約す
ると支持層がランダムに配列した柱状粒子から構成され
るため、形成した表面層との密着強度が大きく、応力負
荷時に表面層が剥離することがない。したがって、多孔
体であるにも関わらず、極めて強度が大きい。更に、表
面層は気孔率が小さい構造であるので面粗度を小さくす
ることができる。
The function of the silicon nitride composite material of the present invention can be summarized as follows. Since the support layer is composed of randomly arranged columnar particles, the adhesion strength to the formed surface layer is large, and the surface layer peels off when stress is applied. Nothing. Therefore, the strength is extremely high despite being a porous body. Furthermore, since the surface layer has a structure with a small porosity, the surface roughness can be reduced.

【0027】[0027]

【実施例】以下、実施例および比較例によって本発明を
具体的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0028】(1)平均粒径0.4μmのα型窒化珪素
粉末に平均粒径0.015μmのY233粉末を添加し
た混合粉末を形成密度1.2〜1.8g/cm3で成形
し、5気圧の窒素中、温度1800℃で2hr焼成して
気孔率25〜72%、平均細孔径0.07〜0.84μ
mのSi34多孔体を得た。
(1) A mixed powder obtained by adding Y 2 O 3 3 powder having an average particle size of 0.015 μm to α-type silicon nitride powder having an average particle size of 0.4 μm was formed at a density of 1.2 to 1.8 g / cm 3. And baked in nitrogen at 5 atm at a temperature of 1800 ° C. for 2 hours, with a porosity of 25 to 72% and an average pore size of 0.07 to 0.84 μm.
m of porous Si 3 N 4 was obtained.

【0029】比較例として同じα型窒化珪素粉末に平均
粒径0.015μmのY23粉末を5wt%、平均粒系
0.05μmのAl23粉末を3wt%添加した混合、
粉末を成形密度1.3/cm3で成形し、圧力5気圧の
窒素中、温度1700℃で2hr焼成して気孔率50
%、平均細孔径0.5μmのSi34多孔体を得た。
As a comparative example, 5 wt% of Y 2 O 3 powder having an average particle size of 0.015 μm and 3 wt% of Al 2 O 3 powder having an average grain size of 0.05 μm were added to the same α-type silicon nitride powder.
The powder was molded at a molding density of 1.3 / cm 3 , and calcined in nitrogen at a pressure of 5 atm at a temperature of 1700 ° C. for 2 hours to give a porosity of 50/50.
%, And an Si 3 N 4 porous body having an average pore diameter of 0.5 μm was obtained.

【0030】これらの多孔体(支持層)を90℃の10
%HF液に6hr浸漬して粒界相を溶出させて、結晶粒
子が分散する状態にした後、500個の粒子について電
子顕微鏡により各粒子のアスペクト比(長さ/直径)を
測定し、平均アスペクト比を算出した。
The porous body (support layer) was heated at 90 ° C. for 10 hours.
% HF solution for 6 hours to elute the grain boundary phase to make the crystal particles dispersed, measure the aspect ratio (length / diameter) of each of the 500 particles by an electron microscope, and average The aspect ratio was calculated.

【0031】別途、平均粒径0.3μmのα型窒化珪素
粉末に平均径0.5μmのAl23、Y23、MgO粉
末をそれぞれSiNに対し2,5,1wt%添加した混
合粉末をエタノールに分散させた懸濁液(濃度は15v
ol%)を作製し、Si34多孔体で濾過して、表面に
ケーキ層を厚さ4μm〜2mm形成した。これを窒素
中、温度1500℃、圧力1気圧で2hr焼成して表面
層を形成したSi34多孔体を作製した。
Separately, 2,5,1 wt% of Al 2 O 3 , Y 2 O 3 , MgO powder having an average diameter of 0.5 μm is added to α-type silicon nitride powder having an average particle diameter of 0.3 μm to SiN, respectively. A suspension in which the powder is dispersed in ethanol (concentration is 15 v
ol%), and filtered through a porous Si 3 N 4 material to form a cake layer on the surface with a thickness of 4 μm to 2 mm. This was fired in nitrogen at a temperature of 1500 ° C. and a pressure of 1 atm for 2 hours to produce a Si 3 N 4 porous body having a surface layer formed thereon.

【0032】これらの試料の表面層形成前後の3点曲げ
強度Raを表面粗さ計により測定した。その後、Bal
l on Disk方式により以下の条件で摩擦試験を
行い、摩擦係数を測定するとともに焼き付き状態を調べ
た。
The three-point bending strengths Ra of these samples before and after the formation of the surface layer were measured by a surface roughness meter. Then Bal
A friction test was performed by the lon Disk method under the following conditions to measure the friction coefficient and to examine the seizure state.

【0033】 潤 滑 油 :エンジンオイル(SH10W30) 相手材(Ball):SCM415(浸炭処理材) 速 度 :3.2m/s 荷 重 :19.6N 摺動距離 :1600000m 摩擦係数測定とは別に、試料をタペットシムとして鋼製
カムシャフトと組み合わせて1500cc排気量のガソ
リンエンジン車に搭載して10モード燃費を測定した。
比較試料として、鏡面研磨した相対密度100%の緻密
質Si34タペットシム(強度1500MPa、比重
3.24)を用いた。
Lubricating oil: engine oil (SH10W30) Counterpart material (Ball): SCM415 (carburized material) Speed: 3.2 m / s Load: 19.6 N Sliding distance: 1600000 m Apart from friction coefficient measurement, The sample was mounted on a gasoline engine vehicle with a displacement of 1500 cc in combination with a steel camshaft as a tappet shim, and 10-mode fuel consumption was measured.
As a comparative sample, a mirror-polished dense Si 3 N 4 tappet shim (strength 1500 MPa, specific gravity 3.24) having a relative density of 100% was used.

【0034】結果を表1に示す。Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】同表の結果より、アスペクト比が3以上の
Si34多孔体を支持層とし、表面層を形成することに
より摩擦係数が低下して焼き付きが起こらず、またタペ
ットシムとして用いると燃費は大きく向上することが分
かった。
From the results in the table, it can be seen that by forming a surface layer of a Si 3 N 4 porous material having an aspect ratio of 3 or more as a support layer, the friction coefficient is reduced and seizure does not occur. Was found to be greatly improved.

【0038】(2)平均粒径2.0μmのα型窒化珪素
粉末に平均粒径0.25μmのY23粉末を添加した混
合粉末を成形密度1.4〜1.6g/cm3で成形し、
圧力5気圧の窒素中、温度1850℃で2〜12hr焼
成して気孔率40〜50%、平均細孔径3.0〜14μ
mのSi34多孔体を得た。
(2) A mixed powder obtained by adding Y 2 O 3 powder having an average particle diameter of 0.25 μm to α-type silicon nitride powder having an average particle diameter of 2.0 μm at a molding density of 1.4 to 1.6 g / cm 3 . Molded,
Baking in nitrogen at a pressure of 5 atm at a temperature of 1850 ° C. for 2 to 12 hours, a porosity of 40 to 50%, and an average pore diameter of 3.0 to 14 μm
m of porous Si 3 N 4 was obtained.

【0039】比較として、平均粒径2.0μmのSiC
粉末に平均粒径0.5μmのB4C粉末を5wt%添加
した混合粉末を成形密度1.3g/cm3で成形し、圧
力1気圧の窒素中、温度2100℃で2hr焼成して気
孔率50%、平均細孔径0.5μmのSi34多孔体を
得た。
For comparison, SiC having an average particle size of 2.0 μm was used.
A mixed powder obtained by adding 5 wt% of B 4 C powder having an average particle size of 0.5 μm to the powder is molded at a molding density of 1.3 g / cm 3 , and is calcined in nitrogen at a pressure of 1 atm at a temperature of 2100 ° C. for 2 hours and a porosity. A 50% Si 3 N 4 porous body having an average pore diameter of 0.5 μm was obtained.

【0040】これらの多孔体(支持層)を90℃の10
%HF液に6hr浸漬して粒界相を溶出させて、結晶粒
子が分散する状態にした後、500個の粒子について電
子顕微鏡により各粒子のアスペクト比(長さ/直径)を
測定し、平均アスペクト比を算出した。
These porous bodies (support layers) were heated at 90 ° C. for 10 hours.
% HF solution for 6 hours to elute the grain boundary phase to make the crystal particles dispersed, measure the aspect ratio (length / diameter) of each of the 500 particles by an electron microscope, and average The aspect ratio was calculated.

【0041】別途、平均粒径3.0〜5.0μmのα型
珪素粉末に平均粒径0.5μmのAl23粉末をSi3
4に対し0.2〜2.0wt%、Y23粉末をSi3
4に対し5wt%添加した混合粉末をエタノールに分散
させた懸濁液(濃度は15vol%)を作製し、Si3
4多孔体で濾過して、表面にケーキ層を厚さ400μ
m形成した。これを圧力4気圧の窒素中、温度1700
℃で2hr焼成して厚さ200〜300μmの表面層を
形成したSi34多孔体を作製した。
[0041] Separately, the α-type silicon powder having an average particle diameter of 3.0~5.0μm average particle diameter 0.5 [mu] m Al 2 O 3 powder Si 3
0.2~2.0Wt% to N 4, Y 2 O 3 powder Si 3 N
A suspension (concentration: 15 vol%) was prepared by dispersing a mixed powder in which 5 wt% was added to 4 in ethanol, and Si 3
Filter through a N 4 porous material to form a cake layer on the surface with a thickness of 400μ.
m was formed. This is placed in a nitrogen atmosphere at a pressure of 4 atm.
To prepare a Si 3 N 4 porous body to form a surface layer of 2hr calcined to thickness 200~300μm at ° C..

【0042】これらの試料について、表面層形成前後の
3点曲げ強度(JIS1601)測定、およびSi34
多孔体(形状は直径30mm、厚さ3mm)の表面を研
磨し、表面粗さ計により測定した。その後、Ball
on Disk方式により以下の条件で摩擦試験を行
い、摩擦係数を測定するとともに焼き付き状態を調べ
た。
For these samples, three-point bending strength (JIS 1601) measurement before and after formation of the surface layer, and Si 3 N 4
The surface of the porous body (having a diameter of 30 mm and a thickness of 3 mm) was polished and measured with a surface roughness meter. Then, Ball
A friction test was performed by the on-disk method under the following conditions to measure the friction coefficient and to examine the seizure state.

【0043】 潤 滑 油 :エンジンオイル(SH10W30) 相手材(Ball):SCM415(浸炭処理材) 速 度 :3.2m/s 荷 重 :19.6N 摺動距離 :1600000m 摩擦係数測定とは別に、試料をタペットシムとして鋼製
カムシャフトと組み合わせて1500cc排気量のガソ
リンエンジン車に搭載して10モード燃費を測定した。
比較として、鏡面研磨した相対密度100%の緻密質S
34タペットシム(強度1500MPa、比重3.2
4)を用いた。
Lubricating oil: engine oil (SH10W30) Counterpart material (Ball): SCM415 (carburized material) Speed: 3.2 m / s Load: 19.6 N Sliding distance: 1600000 m Apart from friction coefficient measurement, The sample was mounted on a gasoline engine vehicle with a displacement of 1500 cc in combination with a steel camshaft as a tappet shim, and 10-mode fuel consumption was measured.
As a comparison, a mirror-polished dense S with a relative density of 100%
i 3 N 4 tappet shim (strength 1500 MPa, specific gravity 3.2
4) was used.

【0044】結果を表2に示す。Table 2 shows the results.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】同表の結果より、アスペクト比が3以上の
Si34多孔体を支持層とし、表面層を形成することに
より摩擦係数が低下して焼き付きが起こらず、またタペ
ットシムとして用いると燃費は大きく向上することが分
かった。
From the results shown in the table, it was found that the porous layer of Si 3 N 4 having an aspect ratio of 3 or more was used as a support layer and the surface layer was formed to reduce the coefficient of friction to prevent seizure. Was found to be greatly improved.

【0048】(3)平均粒径0.4μmのα型窒化珪素
粉末に平均粒径0.015μmのY23粉末を8wt%
添加した混合粉末を形成密度1.6g/cm3で成形
し、5気圧の窒素中、温度1800℃で2hr焼成して
気孔率50%、平均細孔径0.54μmのSi34多孔
体を得た。これを図1のドーム形状に機械加工した。
(3) 8 wt% of Y 2 O 3 powder having an average particle size of 0.015 μm is added to α-type silicon nitride powder having an average particle size of 0.4 μm.
The added mixed powder was molded at a formation density of 1.6 g / cm 3 , and calcined in nitrogen at 5 atm at a temperature of 1800 ° C. for 2 hours to produce a porous Si 3 N 4 having a porosity of 50% and an average pore diameter of 0.54 μm. Obtained. This was machined into the dome shape of FIG.

【0049】別途、70wt%SiO2−22wt%−
8wt%Na2O系ガラスを作製、ボールミルにより粉
砕し、平均粒径0.9μmの粉末を作製した。これらを
エチルアルコールに分散させて、濃度10g/lの懸濁
液を調整した。これを上記ドーム状Si34多孔体外周
側の凸面から内周側凹面に濾過させて凸面にガラス粉末
のケーキ層を10μm形成した。これらを温度1200
℃、0.001気圧の真空下で0.5hr加熱し、室温
まで急冷した。急冷後のガラス膜表面をSEM観察し
た。
Separately, 70 wt% SiO 2 -22 wt%
An 8 wt% Na 2 O-based glass was prepared and pulverized by a ball mill to prepare a powder having an average particle size of 0.9 μm. These were dispersed in ethyl alcohol to prepare a suspension having a concentration of 10 g / l. This was filtered from the convex surface on the outer peripheral side of the dome-shaped porous Si 3 N 4 body to the concave surface on the inner peripheral side to form a 10 μm glass cake layer on the convex surface. These are heated to 1200
The mixture was heated at a temperature of 0.001 atm and under a vacuum of 0.001 atm for 0.5 hr and rapidly cooled to room temperature. The surface of the glass film after quenching was observed by SEM.

【0050】比較例として、同じガラス粉末の懸濁液を
濃度10g/l、1g/l、0.1g/lの懸濁液を調
整した。これらの懸濁液にドーム状Si34多孔体を1
0分浸漬して、引き上げ、温度1200℃、1気圧の大
気中で0.5hr加熱し、室温まで急冷した。この工程
を複数回繰り返し行った後のガラス膜表面をSEM観察
した。
As a comparative example, suspensions of the same glass powder having a concentration of 10 g / l, 1 g / l and 0.1 g / l were prepared. A dome-shaped porous Si 3 N 4 is added to these suspensions in one.
It was immersed for 0 minutes, pulled up, heated in an atmosphere of 1200 ° C. and 1 atm for 0.5 hr, and rapidly cooled to room temperature. After repeating this step a plurality of times, the surface of the glass film was observed by SEM.

【0051】これらの試料を恒温槽に入れ、ガラス膜を
形成した面のみを500℃、湿度85%の条件で1hr
暴露した後、25GHzの周波数で電波透過率を測定し
た。
These samples were placed in a thermostat, and only the surface on which the glass film was formed was kept at 500 ° C. and 85% humidity for 1 hour.
After the exposure, the radio wave transmittance was measured at a frequency of 25 GHz.

【0052】結果を表3に示す。Table 3 shows the results.

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【表6】 [Table 6]

【0055】同表の結果より、本法により表面ガラス層
を形成することにより、気密性が高くなり、電波透過率
は大きく向上することが分かった。また、浸析するのみ
で濾過していない引き上げ法のものは表面が緻密になら
ないため、耐湿試験により、試料内部に水分が浸透し、
このため電波透過率が本法に比べ顕著に低いことが分か
った。
From the results shown in the table, it was found that by forming the surface glass layer by this method, the airtightness was improved and the radio wave transmittance was greatly improved. In addition, since the surface of the lifting method that is only immersed but not filtered does not become dense, moisture permeates into the sample by a moisture resistance test,
Therefore, it was found that the radio wave transmittance was significantly lower than that of the present method.

【0056】(4)平均粒径0.4μmのα型窒化珪素
粉末に平均粒径0.015μmのY23粉末を8wt%
添加した混合粉末を形成密度1.6g/cm3で成形
し、5気圧の窒素中、温度1800℃で2hr焼成して
気孔率50%、平均細孔径0.54μmのSi34多孔
体を得た。
(4) 8 wt% of Y 2 O 3 powder having an average particle size of 0.015 μm is added to α-type silicon nitride powder having an average particle size of 0.4 μm.
The added mixed powder was molded at a formation density of 1.6 g / cm 3 , and calcined in nitrogen at 5 atm at a temperature of 1800 ° C. for 2 hours to produce a porous Si 3 N 4 having a porosity of 50% and an average pore diameter of 0.54 μm. Obtained.

【0057】比較例して、平均粒径2.0μmのSiC
粉末に平均粒径0.5μmのB4C粉末を5wt%添加
した混合粉末を成形密度1.3g/cm3で成形し、圧
力1気圧の窒素中、温度2100℃で2hr焼成して気
孔率50%、平均細孔径0.5μmのSi34多孔体を
得た。
As a comparative example, SiC having an average particle size of 2.0 μm
A mixed powder obtained by adding 5 wt% of B 4 C powder having an average particle size of 0.5 μm to the powder is molded at a molding density of 1.3 g / cm 3 , and is calcined in nitrogen at a pressure of 1 atm at a temperature of 2100 ° C. for 2 hours and a porosity. A 50% Si 3 N 4 porous body having an average pore diameter of 0.5 μm was obtained.

【0058】これらの多孔体(支持層)を90℃の10
%HF液に6hr浸漬して粒界相を溶出させて、結晶粒
子が分散する状態にした後、500個の粒子について電
子顕微鏡により各粒子のアスペクト比(長さ/直径)を
測定し、平均アスペクト比を算出した。
These porous bodies (supporting layers) were heated at 90 ° C. for 10 hours.
% HF solution for 6 hours to elute the grain boundary phase to make the crystal particles dispersed, measure the aspect ratio (length / diameter) of each of the 500 particles by an electron microscope, and average The aspect ratio was calculated.

【0059】別途、平均粒径3.0μmのAl粉をエタ
ノールに分散させた懸濁液(濃度は15vol%)を作
製し、上記多孔体で濾過して、表面にケーキ層を厚さ4
00μm形成した。これを圧力4気圧の窒素中、温度1
700℃で2hr焼成して厚さ200μmの表面層を形
成したSi34多孔体を作製した。
Separately, a suspension (concentration: 15 vol%) in which Al powder having an average particle diameter of 3.0 μm was dispersed in ethanol was prepared, and the suspension was filtered through the porous material to form a cake layer having a thickness of 4 μm on the surface.
A thickness of 00 μm was formed. This is placed in a nitrogen atmosphere at a pressure of 4 atm.
Firing at 700 ° C. for 2 hours produced a Si 3 N 4 porous body having a surface layer having a thickness of 200 μm.

【0060】これらの試料について、表面層形成前後の
3点曲げ強度(JIS1601)測定、およびSi34
多孔体(形状は直径30mm、厚さ3mm)の表面を研
磨し、表面粗度Raを表面粗さ計により測定した。その
後、Ball on Disk方式により以下の条件で
摩擦試験を行い、摩擦係数を測定するとともに焼き付き
状態を調べた。
For these samples, three-point bending strength (JIS 1601) measurement before and after formation of the surface layer, and Si 3 N 4
The surface of the porous body (shape was 30 mm in diameter and 3 mm in thickness) was polished, and the surface roughness Ra was measured by a surface roughness meter. Thereafter, a friction test was performed by the ball-on-disk method under the following conditions to measure the friction coefficient and to examine the seizure state.

【0061】 潤 滑 油 :エンジンオイル(SH10W30) 相手材(Ball):SCM415(浸炭処理材) 速 度 :3.2m/s 荷 重 :19.6N 摺動距離 :1600000m 摩擦係数測定とは別に、試料をタペットシムとして鋼製
カムシャフトと組み合わせて1500cc排気量のガソ
リンエンジン車に搭載して10モード燃費を測定した。
比較として、鏡面研磨した相対密度100%の緻密質S
34タペットシム(強度1500MPa、比重3.2
4)を用いた。
Lubricating oil: Engine oil (SH10W30) Counterpart material (Ball): SCM415 (carburized material) Speed: 3.2 m / s Load: 19.6 N Sliding distance: 1600000 m Apart from friction coefficient measurement, The sample was mounted on a gasoline engine vehicle with a displacement of 1500 cc in combination with a steel camshaft as a tappet shim, and 10-mode fuel consumption was measured.
As a comparison, a mirror-polished dense S with a relative density of 100%
i 3 N 4 tappet shim (strength 1500 MPa, specific gravity 3.2
4) was used.

【0062】結果を表4に示す。Table 4 shows the results.

【0063】[0063]

【表7】 [Table 7]

【0064】[0064]

【表8】 [Table 8]

【0065】同表の結果より、アスペクト比が3以上の
Si34多孔体を支持層とし、表面層を形成することに
より摩擦係数が低下して焼き付きが起こらず、またタペ
ットシムとして用いると燃費は大きく向上することが分
かった。
From the results in the table, it can be seen that by forming a porous layer of Si 3 N 4 having an aspect ratio of 3 or more as a support layer and forming a surface layer, the friction coefficient is reduced so that seizure does not occur. Was found to be greatly improved.

【0066】[0066]

【発明の効果】以上説明したように、本発明の窒化ケイ
素材料は、軽量で強度が高い材料であるため、例えば低
摩擦が要求される摺動部材例えば内燃機関の部材である
タペットシムとして用いると燃費向上の効果が高い。
As described above, the silicon nitride material of the present invention is a lightweight and high-strength material, and is used, for example, as a sliding member requiring low friction, for example, a tappet shim as a member of an internal combustion engine. High fuel efficiency.

【0067】一方、支持層表面にガラス層を形成するこ
とによって気密性が高くなり、電波透過率も優れている
ので例えばレドーム材料として効果が著しい。
On the other hand, by forming a glass layer on the surface of the support layer, the airtightness is improved and the radio wave transmittance is excellent, so that the effect is remarkable, for example, as a radome material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一例である実施例12〜17で形成
したドームの斜視図である。
FIG. 1 is a perspective view of a dome formed in Examples 12 to 17, which are an example of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均アスペクト比が3以上の柱状窒化ケ
イ素粒子と酸化物系結合相からなる、気孔率30%以上
70%以下、平均細孔径が12μm以下、3点曲げ強度
が100MPa以上の窒化ケイ素多孔体(支持層)と、
少なくともその一方の表面部に形成された気孔率が20
%以下、厚さが1μm以上のセラミックス、ガラスまた
は金属層(表面層)からなることを特徴とする、多層構
造を持つ窒化ケイ素系複合材料。
1. A nitride comprising columnar silicon nitride particles having an average aspect ratio of 3 or more and an oxide-based binder phase and having a porosity of 30% or more and 70% or less, an average pore diameter of 12 μm or less, and a three-point bending strength of 100 MPa or more. A silicon porous body (support layer);
The porosity formed on at least one of the surface portions is 20
% Or less, comprising a ceramic, glass or metal layer (surface layer) having a thickness of 1 μm or more, a silicon nitride-based composite material having a multilayer structure.
【請求項2】 3点曲げ強度が、100MPa以上10
00MPa以下であることを特徴とする請求項1の多層
構造を持つ窒化ケイ素系複合材料。
2. A three-point bending strength of 100 MPa or more and 10
The silicon nitride-based composite material having a multilayer structure according to claim 1, wherein the pressure is not more than 00 MPa.
【請求項3】 表面部の面粗度(Ra)が0.3μm以
下であることを特徴とする請求項1または2記載の多層
構造を持つ窒化ケイ素系複合材料。
3. The silicon nitride-based composite material having a multilayer structure according to claim 1, wherein the surface has a surface roughness (Ra) of 0.3 μm or less.
【請求項4】 請求項1記載の自動車動弁系に用いるタ
ペットシム。
4. A tappet shim for use in an automobile valve train according to claim 1.
【請求項5】 請求項1記載のドーム。5. The dome according to claim 1, wherein: 【請求項6】 請求項1記載の窒化ケイ素系複合材料の
製法であって、セラミックス、ガラスまたは金属の粉末
を溶媒に分散させた懸濁液を調整する工程と、平均アス
ペクト比が3以上の柱状窒化ケイ素粒子と酸化物系結合
相からなる気孔率30%以上70%以下の窒化ケイ素多
孔体で上記懸濁液を濾過して、該多孔体の少なくとも一
方の表面に該粉末のケーキ層を形成する工程と、該ケー
キ層を高温で溶融または焼結させて該多孔体の少なくと
も一方の表面に気孔率の低いセラミックス、ガラスまた
は金属の層を形成する工程を含むことを特徴とする多層
構造を持つ窒化ケイ素系複合材料の製造法。
6. The method for producing a silicon nitride-based composite material according to claim 1, wherein a step of preparing a suspension in which ceramic, glass, or metal powder is dispersed in a solvent, and wherein the average aspect ratio is 3 or more. The suspension is filtered through a porous silicon nitride having a porosity of 30% or more and 70% or less composed of columnar silicon nitride particles and an oxide-based binder phase, and a powder cake layer is formed on at least one surface of the porous body. A multi-layer structure comprising a step of forming and a step of melting or sintering the cake layer at a high temperature to form a ceramic, glass or metal layer having a low porosity on at least one surface of the porous body. Of producing a silicon nitride-based composite material having
【請求項7】 ケーキ層を形成する粉末が平均粒径3.
0μm以下の窒化ケイ素と酸化物系焼結助剤からなるこ
とを特徴とする請求項6記載の多層構造を持つ窒化ケイ
素系複合材料の製造法。
7. The powder forming the cake layer has an average particle size of 3.
7. The method for producing a silicon nitride-based composite material having a multilayer structure according to claim 6, comprising a silicon nitride having a thickness of 0 μm or less and an oxide-based sintering aid.
【請求項8】 ケーキ層を形成する粉末がSiO2系ガ
ラスからなることを特徴とする請求項6記載の多層構造
を持つ窒化ケイ素系複合材料の製造法。
8. The method for producing a silicon nitride-based composite material having a multilayer structure according to claim 6, wherein the powder forming the cake layer is made of SiO 2 -based glass.
JP21088297A 1997-08-05 1997-08-05 Silicon nitride composite material having multilayer structure and its production Pending JPH1160355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21088297A JPH1160355A (en) 1997-08-05 1997-08-05 Silicon nitride composite material having multilayer structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21088297A JPH1160355A (en) 1997-08-05 1997-08-05 Silicon nitride composite material having multilayer structure and its production

Publications (1)

Publication Number Publication Date
JPH1160355A true JPH1160355A (en) 1999-03-02

Family

ID=16596663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21088297A Pending JPH1160355A (en) 1997-08-05 1997-08-05 Silicon nitride composite material having multilayer structure and its production

Country Status (1)

Country Link
JP (1) JPH1160355A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226285A (en) * 2000-11-29 2002-08-14 Kyocera Corp Lightweight ceramic member and method for manufacturing the same
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
EP1443030A3 (en) * 2003-01-21 2006-06-21 Sumitomo Electric Industries, Ltd. Porous Si3N4 and producing method thereof
CN109560381A (en) * 2018-11-28 2019-04-02 北京遥感设备研究所 A kind of ceramic radome improves the pre- Enhancement Method of intensity
CN114292130A (en) * 2021-12-21 2022-04-08 山东工业陶瓷研究设计院有限公司 Ceramic part and processing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226285A (en) * 2000-11-29 2002-08-14 Kyocera Corp Lightweight ceramic member and method for manufacturing the same
JP4671501B2 (en) * 2000-11-29 2011-04-20 京セラ株式会社 Lightweight ceramic member and manufacturing method thereof
EP1443030A3 (en) * 2003-01-21 2006-06-21 Sumitomo Electric Industries, Ltd. Porous Si3N4 and producing method thereof
US7153484B2 (en) 2003-01-21 2006-12-26 Sumitomo Electric Industries, Ltd. Porous Si3N4 producing method
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
US7824782B2 (en) 2003-08-06 2010-11-02 Toyota Jidosha Kabushiki Kaisha Molded article located in the beam path of radar device, and method of manufacturing the same
CN109560381A (en) * 2018-11-28 2019-04-02 北京遥感设备研究所 A kind of ceramic radome improves the pre- Enhancement Method of intensity
CN114292130A (en) * 2021-12-21 2022-04-08 山东工业陶瓷研究设计院有限公司 Ceramic part and processing method thereof
CN114292130B (en) * 2021-12-21 2022-11-15 山东工业陶瓷研究设计院有限公司 Ceramic part and processing method thereof

Similar Documents

Publication Publication Date Title
EP0833698B1 (en) Method of coating, method for making ceramic-metal structures, method for bonding, and structures formed thereby
US20060029733A1 (en) Non-line-of-sight process for coating complexed shaped structures
US20100119807A1 (en) Cmc with multiple matrix phases separated by diffusion barrier
EP2069261A2 (en) Glass bonded ceramic structures
JPH07247188A (en) Production of article made of functional gradient material
EP0672631A1 (en) Two-layer high-temperature coating on ceramic substrate and its production
JPH1160355A (en) Silicon nitride composite material having multilayer structure and its production
EP0675091B1 (en) Composite material for sliding purposes, process for its preparation and use thereof
WO1993020024A1 (en) A method of manufacturing fibre composites
JP4443783B2 (en) Electronic component firing setter
JP3739913B2 (en) Aluminum nitride-aluminum based composite material and method for producing the same
EP0672632B1 (en) High temperature monolayer coating on ceramic substrate and its production
US6978901B1 (en) Ceramic multilayer filters and method for producing the same
US6251317B1 (en) Method for manufacturing a ceramic composite material
JP4122431B2 (en) Aluminum oxide wear-resistant member having a layered structure and method for producing the same
JPH06239648A (en) Tempered glass and ceramic substrate for semiconductor
CN1744941A (en) Multilayer ceramic composite
JPH08971A (en) Method for forming ceramic membrane
JPH0250994B2 (en)
JPS61159566A (en) Coating method of metallic or ceramic base material
JPH07309664A (en) Silicon nitride sintered compact and its production
US7105224B2 (en) Oxide ceramic fiber composite materials and use thereof
JP3394844B2 (en) Heat resistant material
CN114988907B (en) High-specific-component gradient aluminum-based silicon carbide composite material reflector and preparation method thereof
JP2630184B2 (en) Manufacturing method of ceramic multilayer body