JPH1160244A - Lithium-containing compound metal oxide and its production and use - Google Patents

Lithium-containing compound metal oxide and its production and use

Info

Publication number
JPH1160244A
JPH1160244A JP10042289A JP4228998A JPH1160244A JP H1160244 A JPH1160244 A JP H1160244A JP 10042289 A JP10042289 A JP 10042289A JP 4228998 A JP4228998 A JP 4228998A JP H1160244 A JPH1160244 A JP H1160244A
Authority
JP
Japan
Prior art keywords
lithium
metal oxide
composite metal
containing composite
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10042289A
Other languages
Japanese (ja)
Other versions
JP4246283B2 (en
Inventor
Yasushi Matsui
靖 松井
Masatoshi Shirao
雅年 白尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP04228998A priority Critical patent/JP4246283B2/en
Priority to US09/080,346 priority patent/US6207325B1/en
Publication of JPH1160244A publication Critical patent/JPH1160244A/en
Application granted granted Critical
Publication of JP4246283B2 publication Critical patent/JP4246283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge a discharge capacity and to improve cycle characteristics and heat stability by adding an alkali to a mixed aqueous solution of constituent metal compounds except Li to give a coprecipitate, cleaning and drying the coprecipitate and adding a lithium compound to the coprecipitate. SOLUTION: An alkali is added to a mixed aqueous solution of constituent metal compounds except Li, which is neutralized and coprecipitated to give a coprecipitate. The coprecipitate is cleaned, dried, mixed with a lithium compound selected from LiOH, LI2 O and Li2 CO3 in a dry state, baked in an oxygen- containing gas flow at 700-850 deg.C for 10-24 hours to give a lithium-containing compound metal oxide which has α-NaFeO2 type crystal structure, 0.520 to 0.700 deg. separation Δ2θ [(110)-(018)] between a peak position of (018) face and (110) face in a X-ray diffraction using CuKα line and is shown by the formula; LiNix Coy Alz O2 (0.70<=x<0.85; 0.05<=y<=0.20; 0.10<=z<=0.25; x+y+z=1.0).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
正極活物質に適したリチウム含有複合金属酸化物、その
製造方法及び用途に関し、より詳しくは金属リチウムあ
るいはリチウム−炭素(リチウム−グラファイト)イン
ターカレーション化合物などを負極活物質とするリチウ
ム二次電池において、正極活物質として使用した場合、
高容量でサイクル特性が良好で、しかも熱安定性に優れ
たリチウムニッケル酸系複合金属酸化物、その製造方法
及び用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium-containing composite metal oxide suitable for a positive electrode active material for a lithium secondary battery, a method for producing the same, and a use thereof. When used as a positive electrode active material in a lithium secondary battery using a callation compound or the like as a negative electrode active material,
The present invention relates to a lithium nickel acid-based composite metal oxide having a high capacity, good cycle characteristics, and excellent thermal stability, a method for producing the same, and uses thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。非水電解液二
次電池の正極活物質としては、コバルト酸リチウム、ニ
ッケル酸リチウム、マンガン酸リチウムなどのリチウム
と他の金属との複合酸化物、二酸化マンガン、二硫化チ
タン、二硫化モリブデン、五酸化バナジウム、五酸化ニ
オブなどの金属酸化物やカルコゲンなどが広く知られて
いる。これら酸化物や化合物は層状またはトンネル状の
結晶構造を有し、充放電によりリチウムイオンの可逆的
放出、吸蔵を繰り返すことが可能である。特に、コバル
ト酸リチウム、ニッケル酸リチウム、マンガン酸リチウ
ムは4ボルト(V)級非水電解液リチウム二次電池用正
極活物質として精力的に研究が行われている。すでに比
較的製造が容易なコバルト酸リチウムが実用に供せられ
ている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted. Examples of the positive electrode active material of the nonaqueous electrolyte secondary battery include composite oxides of lithium and other metals, such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate; manganese dioxide; titanium disulfide; molybdenum disulfide; Metal oxides such as vanadium oxide and niobium pentoxide, and chalcogens are widely known. These oxides and compounds have a layered or tunnel-like crystal structure, and can repeatedly reversibly release and occlude lithium ions by charging and discharging. In particular, lithium cobaltate, lithium nickelate, and lithium manganate have been energetically studied as a positive electrode active material for a 4 volt (V) class nonaqueous electrolyte lithium secondary battery. Lithium cobalt oxide, which is relatively easy to manufacture, has already been put to practical use.

【0003】しかしコバルトは非常に高価な金属であ
り、また戦略物質でもあり、産地が特定地域に遍在して
いるため、政治情勢の変化による供給不安や価格高騰な
どの問題がある。一方、ニッケル、マンガンは比較的安
価な金属であり、かつ安定した供給が可能である。マン
ガン酸リチウムはコバルト酸リチウムやニッケル酸リチ
ウムに比べて容量が小さく、サイクル特性にも問題があ
る。またニッケル酸リチウムもサイクル特性に多少問題
がある。LiNi02は充電でLiを放出していくと、結晶構造
が六方晶から単斜晶に変化する。それ故、サイクル特性
が悪化すると言われている。その対策としてLiNiO2のNi
の一部をCoで置換すると六方晶から単斜晶への変化がな
くなりサイクル特性が改善されることが知られている
(T. Ohzukuet al., J.Electrochem.Soc., 140, 1862(1
993); 荒井 創、岡田重人、大塚秀昭、山木準一,電
池技術,7, 98(1995) )。
[0003] However, cobalt is an extremely expensive metal and also a strategic substance, and since its production area is ubiquitous in a specific area, there are problems such as supply insecurity due to changes in the political situation and soaring prices. On the other hand, nickel and manganese are relatively inexpensive metals and can be supplied stably. Lithium manganate has a smaller capacity than lithium cobaltate or lithium nickelate, and has a problem in cycle characteristics. Lithium nickelate also has some problems in cycle characteristics. As LiNiO 2 releases Li upon charging, the crystal structure changes from hexagonal to monoclinic. Therefore, it is said that the cycle characteristics deteriorate. As a countermeasure, Ni of LiNiO 2
It has been known that the substitution of Co for a part of Co eliminates the change from hexagonal to monoclinic and improves the cycle characteristics (T. Ohzuku et al., J. Electrochem. Soc., 140, 1862 (1
S. Arai, S. Okada, H. Otsuka, J. Yamaki, Battery Technology, 7, 98 (1995)).

【0004】また、LiNiO2は充電によりLiが放出される
とNiO2が生成する。NiO2は非常に不安定な化合物で、酸
素を放出しながら発熱する。それ故、LiNiO2の熱安定性
の向上が強く望まれている。LiNiO2のNiの一部をAlで置
換すると熱安定性は大幅に向上することが知られている
(T. Ohzuku et al., J.Electrochem.Soc., 142, 4033
(1995) )。しかし、この場合は放電容量が大幅に低下
する。特開昭63-121258 号にはLiCoO2を種々の異種金属
で置換して過電圧特性を改善する方法が提案されてい
る。また特開平5-242891号にはLiNixCoyO2を更に種々の
異種金属で置換すると、放電容量が増大し,Fe,Cu
の場合には熱安定性が改善されることが提案されてい
る。
In addition, when LiNiO 2 is released by charging, NiO 2 is generated. NiO 2 is a very unstable compound, generating heat while releasing oxygen. Therefore, improvement of the thermal stability of LiNiO 2 is strongly desired. It is known that the thermal stability is greatly improved when a part of Ni of LiNiO 2 is replaced with Al (T. Ohzuku et al., J. Electrochem. Soc., 142, 4033).
(1995)). However, in this case, the discharge capacity is significantly reduced. JP-A-63-121258 proposes a method for replacing LiCoO 2 with various dissimilar metals to improve overvoltage characteristics. Japanese Patent Application Laid-Open No. 5-242891 discloses that when LiNi x Co y O 2 is further substituted with various kinds of dissimilar metals, the discharge capacity is increased and Fe, Cu
In this case, it is proposed that the thermal stability be improved.

【0005】また、O. ZhongらはLiAlyNi1-yO2の合成と
その電気化学的研究を行っている(O. Zhong and Ulchi
von Sacken, J. Power Sources, 54, 221(1995))。ま
ず、LiAlyNi1-yO2 の合成をLiOH,NiO,Al2
3 (またはAl(OH)3)の混合物で試みたが、単
相のLiAlyNi1-yO2の合成には成功せず、製品の中にAl2O
3 が不純物として混入していた。そこで彼らはAl源を
金属Al粉末(300 メッシュ)に変えて初めて単相の合
成に成功した。しかし放電容量は104 〜148mAh/gと小さ
いものであった。
Also, O. Zhong et al. Have conducted synthesis of LiAl y Ni 1-y O 2 and electrochemical studies thereof (O. Zhong and Ulchi).
von Sacken, J. Power Sources, 54, 221 (1995)). First, synthesis of LiAl y Ni 1-y O 2 was performed using LiOH, NiO, Al 2
Tried with a mixture of O 3 (or Al (OH) 3 ), but failed to synthesize single-phase LiAl y Ni 1-y O 2 , and included Al 2 O
3 was contaminated as an impurity. Therefore, they succeeded in synthesizing a single phase only after changing the Al source to metallic Al powder (300 mesh). However, the discharge capacity was as small as 104 to 148 mAh / g.

【0006】[0006]

【発明が解決しようとする課題】本発明は、放電容量が
大きく、サイクル特性が良好で、しかも熱安定性に優れ
たリチウム二次電池用正極活物質に適したリチウム含有
複合金属酸化物の提供を課題とする。さらには、リチウ
ム二次電池において1回目の充放電のクーロン効率の改
善を課題とする。
SUMMARY OF THE INVENTION The present invention provides a lithium-containing composite metal oxide having a large discharge capacity, good cycle characteristics, and excellent thermal stability, which is suitable for a positive electrode active material for a lithium secondary battery. As an issue. Another object is to improve the coulomb efficiency of the first charge / discharge in a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】上記課題解決のため鋭意
努力した結果、本発明者らは、LiNiO2 においてN
iの一部をCo及びAlで置換することにより、放電容
量が大きく、サイクル特性が良好で、熱安定性にも優れ
た正極活物質となるリチウム含有複合金属酸化物が得ら
れることを見出した。更にこのリチウム含有複合金属酸
化物の製造において、Li,Ni,Co,Alを含む原
料化合物の混合方法が製品の特性、特に熱安定性に影響
していることを見出し、本発明を完成した。
As a result of diligent efforts to solve the above problems, the present inventors have found that LiNiO 2 has N
It has been found that by replacing a part of i with Co and Al, a lithium-containing composite metal oxide which is a cathode active material having a large discharge capacity, good cycle characteristics, and excellent thermal stability can be obtained. . Further, in the production of this lithium-containing composite metal oxide, they have found that the method of mixing the raw material compounds containing Li, Ni, Co, and Al affects the properties of the product, particularly the thermal stability, and completed the present invention.

【0008】すなわち本発明は、以下のものを提供する
ことにより前記課題を達成した。 [1]α−NaFeO2 型結晶構造を有し、一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物において、銅K
α線を用いた粉末X線回折における(018 )面のピーク位
置と(110 )面のピーク位置との分離Δ2θ((110)-(01
8) )が 0.520〜0.700 °であるリチウム含有複合金属
酸化物。
That is, the present invention has achieved the above object by providing the following. [1] α-NaFeO have 2 type crystal structure represented by the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the lithium-containing composite metal oxide represented by
Separation of peak position of (018) plane and peak position of (110) plane in powder X-ray diffraction using α-ray Δ2θ ((110)-(01
8) A lithium-containing composite metal oxide in which (1) is 0.520 to 0.700 °.

【0009】[2]DTA測定による発熱ピーク曲線に
おいて、ピーク高さ率が0.30以下である前記[1]記載
のリチウム含有複合金属酸化物。 [3]一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、Li以外の構成金属化合物の混合水溶液をアルカリ
で中和共沈させることにより該構成金属化合物の混合を
行う工程、共沈物を洗浄乾燥後にLiOH、Li2 O及
びLi2 CO3 からなる群から選ばれるリチウム化合物
と乾式混合する工程、及び混合物を酸素含有気流中で焼
成する工程からなることを特徴とするリチウム含有複合
金属酸化物の製造方法。
[2] The lithium-containing composite metal oxide according to [1], wherein a peak height ratio is 0.30 or less in an exothermic peak curve measured by DTA. [3] Formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of the lithium-containing composite metal oxide represented by the formula, a step of mixing the constituent metal compounds by neutralizing and co-precipitating a mixed aqueous solution of the constituent metal compounds other than Li with an alkali; Washing and drying, and dry-mixing with a lithium compound selected from the group consisting of LiOH, Li 2 O and Li 2 CO 3 , and firing the mixture in an oxygen-containing gas stream. A method for producing an oxide.

【0010】[4] 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、Ni化合物とCo化合物を含む水溶液に、アルミン
酸アルカリ金属塩とアルカリを加えた水溶液で中和共沈
させることによりLi以外の構成金属化合物の混合を行
う工程、共沈物を洗浄乾燥後にLiOH、Li2 O及び
Li2 CO3 からなる群から選ばれるリチウム化合物と
乾式混合する工程、及び混合物を酸素含有気流中で焼成
する工程からなることを特徴とするリチウム含有複合金
属酸化物の製造方法。 [5]アルミン酸アルカリ金属が、Li塩またはNa塩
またはK塩であることを特徴とする前項[4]記載のリ
チウム含有複合金属酸化物の製造方法。 [6] 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、その構成金属の水酸化物及び/または酸化物をスラ
リー混合する工程及び濾過乾燥後に混合物を酸素含有気
流中で焼成する工程からなることを特徴とするリチウム
含有複合金属酸化物の製造方法。 [7] 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、水を溶媒としてLi以外の構成金属の水酸化物及び
/または酸化物をスラリー混合する工程、濾過乾燥後に
LiOH、Li2 O及びLi2 CO3 からなる群から選
ばれるリチウム化合物と乾式混合する工程、及び混合物
を酸素含有気流中で焼成する工程からなることを特徴と
するリチウム含有複合金属酸化物の製造方法。
[0010] [4] the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of the lithium-containing composite metal oxide represented by the following formula, an aqueous solution containing a Ni compound and a Co compound is neutralized and co-precipitated with an aqueous solution obtained by adding an alkali metal aluminate salt and an alkali, to thereby prepare a compound other than Li A step of mixing the constituent metal compounds, a step of dry-mixing the coprecipitate with a lithium compound selected from the group consisting of LiOH, Li 2 O and Li 2 CO 3 after washing and drying, and firing the mixture in an oxygen-containing gas stream A method for producing a lithium-containing composite metal oxide, comprising the steps of: [5] The method for producing a lithium-containing composite metal oxide according to the above [4], wherein the alkali metal aluminate is a Li salt, a Na salt or a K salt. [6] the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of the lithium-containing composite metal oxide represented by the following formula, from the step of slurry-mixing the hydroxide and / or oxide of the constituent metal and the step of firing the mixture in an oxygen-containing gas stream after filtration and drying. A method for producing a lithium-containing composite metal oxide, comprising: [7] General formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of a lithium-containing composite metal oxide represented by the following formula, a step of slurry-mixing a hydroxide and / or an oxide of a constituent metal other than Li using water as a solvent, and filtering and drying LiOH, Li 2 O And a step of dry-mixing with a lithium compound selected from the group consisting of Li 2 CO 3 and a step of firing the mixture in an oxygen-containing gas stream.

【0011】[8]焼成の際に混合物と気相を通じての
み接触するような状態で別途リチウム化合物を共存させ
ることを特徴とする前項[3]〜[7]のいずれか記載
のリチウム含有複合金属酸化物の製造方法。 [9]前項[1]または[2]記載のリチウム含有複合
金属酸化物からなるリチウム二次電池用正極活物質。 [10]前記[1]または[2]記載のリチウム含有複
合金属酸化物を正極活物質として含む正極を具備したリ
チウム二次電池。 以下に本発明について詳細に説明する。
[8] The lithium-containing composite metal as described in any one of [3] to [7] above, wherein a lithium compound is separately coexisted in such a state that the lithium compound comes into contact with the mixture only in the gas phase during firing. A method for producing an oxide. [9] A positive electrode active material for a lithium secondary battery, comprising the lithium-containing composite metal oxide according to [1] or [2]. [10] A lithium secondary battery including a positive electrode including the lithium-containing composite metal oxide according to [1] or [2] as a positive electrode active material. Hereinafter, the present invention will be described in detail.

【0012】本発明のリチウム含有複合金属酸化物は、
α−NaFeO2 型結晶構造を有し、一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物である。このC
o及びAl置換LiNiO2 結晶におけるCoの置換量
yは0.05より小さいとサイクル特性が悪く、0.2
0を越えると放電容量が低くなるので好ましくない。ま
た、Alの置換量zは0.10を越えると熱安定性が大
幅に向上し、好ましくは0.11以上であるが、0.2
5を越えると放電容量が低くなるので好ましくない。
The lithium-containing composite metal oxide of the present invention comprises:
has alpha-NaFeO 2 type crystal structure represented by the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0]. This C
When the substitution amount y of Co in the o- and Al-substituted LiNiO 2 crystals is smaller than 0.05, the cycle characteristics are poor,
Exceeding 0 is not preferable because the discharge capacity becomes low. Further, when the substitution amount z of Al exceeds 0.10, the thermal stability is greatly improved, and is preferably 0.11 or more.
If it exceeds 5, the discharge capacity is undesirably low.

【0013】本発明のLiNix Coy Alz2 の銅
Kα線を用いた以下の測定条件での粉末X線回折におい
ては、(018 )面のピークと(110 )面のピークが完全に分
離しており、ピーク間の2θの差Δ2θ((110)-(018)
)が0.520 〜0.700 °であり、これが熱安定性の良い
正極活物質の条件であることが判った。Δ2θが上記の
範囲に入っていることは原料の混合が完全に行われ、非
常にきれいな固溶体結晶が生成していることを表す。但
し、測定条件は、以下の通り。 X線回折測定条件:スリット(発散:1/2 °;散乱:1/
2 °;受光:0.3mm ); スキャンスピ−ド:1.5 °/min;スキャンステップ:0.
02°;出力:50KV/180mA。
[0013] In the powder X-ray diffraction at LiNi x Co y Al z O 2 copper Kα line following measurement conditions using the present invention, (018) and the peak of the plane (110) plane peak completely Are separated and the difference of 2θ between peaks Δ2θ ((110)-(018)
) Is 0.520 to 0.700 °, which proves to be a condition for a positive electrode active material having good thermal stability. The fact that Δ2θ is within the above range indicates that the mixing of the raw materials has been completed and that very clear solid solution crystals have been formed. However, the measurement conditions are as follows. X-ray diffraction measurement conditions: slit (divergence: 1/2 °; scattering: 1 /
2 °; light receiving: 0.3mm); scan speed: 1.5 ° / min; scan step: 0.
02 °; output: 50KV / 180mA.

【0014】次に、熱安定性の評価は下記のような試験
法で行った。正極活物質300mg を13mmφのペレットに成
形する(成形圧力:200kg/cm2 )。このペレットを正極
とし、リチウム箔を負極として、1M LiPF6 /E
C(エチレンカーボネート)+DMC(ジメチルカーボ
ネート)(1:2)を電解液として電池を組み立てる。
電池は金属製の分解可能なタイプでリチウム箔、セパレ
ーター、不織布、正極を重ね電解液を十分浸み込ませて
スプリングで押さえつけて電池とする。電流密度0.7mA/
cm2,電圧4.2Vで満充電を行う。満充電後、電池をグロー
ブボックス内で分解し、正極をDMCで洗浄し、電解質
を除去し、乾燥する。その後、DTA(示差熱分析)測
定用アルミニウムセルにこの正極を20±1mg入れ、
密封する。窒素気流中10℃/minの昇温速度でDTAを測
定して、発熱ピ−ク温度を求め、以下の式よりピーク高
さ率を求める。 ピーク高さ率=ピーク高さ(μV)/(( ピーク温度) −
( ピーク開始温度)) ピーク高さ率が小さい程、熱安定性は良好である。前述
のごとく、Li,Ni,Co,Alを含む原料化合物の
混合方法が製品の特性、特に熱安定性と1回目のクーロ
ン効率に影響を与えるが、上記の熱安定性の良い本発明
の正極活物質を得るために用いる混合方法としては、原
料として該金属の水酸化物あるいは酸化物のスラリーに
よる混合、原料金属塩の混合水溶液のアルカリによる共
沈が非常に有効である。
Next, the thermal stability was evaluated by the following test method. 300 mg of the positive electrode active material is formed into a 13 mmφ pellet (forming pressure: 200 kg / cm 2 ). The pellet is used as a positive electrode, and the lithium foil is used as a negative electrode. 1M LiPF 6 / E
A battery is assembled using C (ethylene carbonate) + DMC (dimethyl carbonate) (1: 2) as an electrolyte.
The battery is a metal-decomposable type with a lithium foil, a separator, a non-woven fabric, and a positive electrode. Current density 0.7mA /
Fully charged with cm 2 and voltage 4.2V. After a full charge, the battery is disassembled in a glove box, the positive electrode is washed with DMC, the electrolyte is removed, and the battery is dried. Then, 20 ± 1 mg of this positive electrode was put into an aluminum cell for DTA (differential thermal analysis) measurement,
Seal. DTA is measured in a nitrogen stream at a temperature rising rate of 10 ° C./min to determine an exothermic peak temperature, and a peak height ratio is determined by the following equation. Peak height ratio = peak height (μV) / ((peak temperature) −
(Peak start temperature)) The smaller the peak height ratio, the better the thermal stability. As described above, the method of mixing the raw material compounds containing Li, Ni, Co, and Al affects the characteristics of the product, particularly the thermal stability and the first Coulomb efficiency. As a mixing method used to obtain an active material, it is very effective to mix a metal hydroxide or oxide slurry as a raw material and to coprecipitate a mixed aqueous solution of a raw metal salt with an alkali.

【0015】本発明において有効なスラリー混合法とし
ては、前記原料金属の水酸化物あるいは酸化物を20〜
45重量%のスラリーにしてボールミル混合を行う方法
があげられる。溶媒としては水、アルコール、ケトン、
エーテル類が好適である。ただし、水を溶媒にするとき
はLi以外の金属(Ni,Co,Al)の水酸化物ある
いは酸化物をスラリーで混合し、濾過乾燥後、LiOH
と乾式混合を行う。また、本発明において有効な共沈混
合法としては、Ni,Co,Alを含む化合物の混合水
溶液をアルカリ(例えば、NaOH,KOH,LiOH
など)で中和共沈させ、洗浄乾燥後、LiOH、Li2
O及びLi2 CO3 からなる群から選ばれるリチウム化
合物と乾式混合を行う方法があげられる。この時、前記
リチウム化合物は種類として複数用いてもよい。さら
に、有用な方法として、Ni系化合物とCo系化合物の
混合水溶液にアルミン酸アルカリ金属とアルカリとの混
合水溶液を加えて中和共沈させる方法が挙げられる。前
記アルミン酸アルカリ金属塩は、例えば、塩化ニッケル
(NiCl2 )や塩化コバルト(CoCl2 )等の塩と
のみ直接反応するので、Alの混合に関しては原子レベ
ルでの混合が行われており、非常にきれいな固溶体が生
成する。乾式混合方法としては、ボールミルによる混
合、遊星ミルによる混合などが有効である。
As a slurry mixing method effective in the present invention, a hydroxide or oxide of the above-mentioned raw material metal may be used in an amount of 20 to 50%.
A method of performing ball mill mixing with a slurry of 45% by weight is exemplified. Solvents include water, alcohol, ketone,
Ethers are preferred. However, when water is used as a solvent, a hydroxide or oxide of a metal (Ni, Co, Al) other than Li is mixed with a slurry, filtered, dried, and then mixed with LiOH.
And dry mixing. Further, as a coprecipitation mixing method effective in the present invention, a mixed aqueous solution of a compound containing Ni, Co, and Al is alkali (eg, NaOH, KOH, LiOH).
Neutralization co-precipitation, washing and drying, LiOH, Li 2
A method of performing dry mixing with a lithium compound selected from the group consisting of O and Li 2 CO 3 may be mentioned. At this time, a plurality of lithium compounds may be used. Further, as a useful method, there is a method in which a mixed aqueous solution of an alkali metal aluminate and an alkali is added to a mixed aqueous solution of a Ni-based compound and a Co-based compound for coprecipitation with neutralization. Since the alkali metal aluminate directly reacts only with, for example, a salt such as nickel chloride (NiCl 2 ) or cobalt chloride (CoCl 2 ), the mixing of Al is performed at the atomic level. A clean solid solution is formed. As a dry mixing method, mixing by a ball mill, mixing by a planetary mill, and the like are effective.

【0016】混合物の焼成は、混合物を粉末のままある
いはペレットに成形して、酸素あるいは脱湿脱炭酸ガス
処理した空気気流中700〜850℃で10〜24時間
行うのが好ましい。なお、焼成の際には、例えば焼成系
内に前記混合物固体と直接接触しないように焼成系内に
おいて解放系である容器に入れたリチウム化合物を共存
させるなど、焼成系内に存在する前記混合物と気相を通
じてのみ接触するような状態で別途リチウム化合物を共
存させることにより、焼成時のリチウムの蒸発を補うこ
とができる。共存させるリチウム化合物としては、Li
OHまたはLi2 Oが好ましい。焼成後残存する共存リ
チウム化合物を取り除くことにより、目的とするリチウ
ム含有複合金属酸化物が得られる。
The firing of the mixture is preferably carried out at 700 to 850 ° C. for 10 to 24 hours in an air stream which has been subjected to oxygen or dehumidification and decarbonation, by treating the mixture as a powder or forming it into pellets. In the case of firing, for example, a lithium compound placed in a container that is an open system coexists in the firing system so as not to come into direct contact with the solid mixture in the firing system, such as the mixture present in the firing system. By separately coexisting a lithium compound in a state where the lithium compound is in contact only through the gas phase, the evaporation of lithium during firing can be compensated. As the lithium compound to be coexisted, Li
OH or Li 2 O is preferred. By removing the coexisting lithium compound remaining after the firing, the intended lithium-containing composite metal oxide can be obtained.

【0017】本発明のリチウム二次電池は、本発明のリ
チウム含有複合金属酸化物を正極活物質として正極に使
用されることを特徴とするが、その製造方法としては従
来と同様の方法が使用できる。すなわち、従来使用され
ているリチウム二次電池の製造方法において使用する正
極活物質を、本発明のリチウム含有複合金属酸化物とす
ればよい。
The lithium secondary battery of the present invention is characterized in that the lithium-containing composite metal oxide of the present invention is used for a positive electrode as a positive electrode active material. it can. That is, the positive electrode active material used in the conventionally used method for manufacturing a lithium secondary battery may be the lithium-containing composite metal oxide of the present invention.

【0018】以下、実施例によって本発明をさらに具体
的に説明するが、本発明はこれらにより何ら制限される
ものではない。尚、以下に示す実施例における電池の作
製、解体はアルゴン雰囲気下のグローブボックス中で行
った。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. The production and disassembly of the batteries in the following examples were performed in a glove box under an argon atmosphere.

【0019】[0019]

【実施例】【Example】

(実施例1)塩化ニッケル水和物(NiCl2 ・6H2
O)197.3g(0.83 モル) と塩化コバルト水和物(CoC
2 ・6H2 O)11.9g(0.05モル) を2000mlのイ
オン交換水に溶解して、NiとCoを含む水溶液を調製
した。次に、水酸化ナトリウム(NaOH)70.4g(1.76
モル) を400mlのイオン交換水に溶解した後、この
溶液にアルミニウム箔3.24g(0.12モル) を溶解してアル
ミン酸ナトリウム水溶液を調製した。前記Ni系化合物
とCo系化合物の混合水溶液をこのアルミン酸ナトリウ
ムで中和した。生成した青緑色の沈澱を濾過し、十分洗
浄、そして乾燥後、水酸化リチウム(LiOH)24g(1.
0 モル) を加えて、ボールミルで24時間撹拌混合を行
った。この混合物の一部(40g) を磁製容器に入れ、内容
積2.8 リットルの電気管状炉内にセットし、酸素気流中
(1000ml/min) 750℃で20時間加熱焼成した。その後、
室温まで冷却し、生成物(32g) を取り出し、粉末X線回
折(CuKα線)を測定した(図1)。X線回折図は典
型的なα-NaFeO2 型結晶構造を示しており、(018 )面と
(110 )面との分離もきれいに分かれており、Δ2θは0.
560 °であった。生成物のICP分析の結果、生成物は
LiNi0.83Co0. 05Al0.122 であった。
(Example 1) Nickel chloride hydrate (NiCl 2 · 6H 2
O) 197.3 g (0.83 mol) and cobalt chloride hydrate (CoC
dissolved l 2 · 6H 2 O) 11.9g (0.05 mol) of ion exchange water 2000 ml, to prepare an aqueous solution containing Ni and Co. Next, 70.4 g of sodium hydroxide (NaOH) (1.76 g)
Was dissolved in 400 ml of ion-exchanged water, and 3.24 g (0.12 mol) of aluminum foil was dissolved in this solution to prepare an aqueous sodium aluminate solution. The mixed aqueous solution of the Ni-based compound and the Co-based compound was neutralized with the sodium aluminate. The resulting blue-green precipitate was filtered, washed thoroughly, and dried, after which 24 g of lithium hydroxide (LiOH) (1.
0 mol) and stirred and mixed in a ball mill for 24 hours. A part (40 g) of this mixture was placed in a porcelain container, set in an electric tube furnace with an internal volume of 2.8 liters, and
(1000 ml / min), and calcined at 750 ° C. for 20 hours. afterwards,
After cooling to room temperature, the product (32 g) was taken out and subjected to powder X-ray diffraction (CuKα ray) measurement (FIG. 1). The X-ray diffraction diagram shows a typical α-NaFeO 2 type crystal structure, with (018) plane and
The separation from the (110) plane is also clearly separated, and Δ2θ is 0.
560 °. Results of ICP analysis of the product, the product was LiNi 0.83 Co 0. 05 Al 0.12 O 2.

【0020】これを正極活物質として正極を作製した。
すなわち、前記活物質と導電剤であるケッチェンブラッ
クおよび、結着剤としてポリフッ化エチレン樹脂を重量
比で8:1:1 となるように混合し(総重量1.25g )、トル
エン(3.00g )を加え樹脂を膨潤させながら十分混練し
た。さらにトルエンを蒸発させながら混練を続けた。混
練物をステンレス鋼製エキスパンドメシュ(厚さ100 μ
m )上に圧着成形し、シートに成形した。圧着は数回脱
気を繰り返しながら90℃,200kg/cm2で行った。このシ−
ト(厚さ310 μm )から直径16mmの円盤を打ち抜き、15
時間90℃真空脱気を行い正極とした。
Using this as a positive electrode active material, a positive electrode was produced.
That is, the active material, Ketjen black as a conductive agent, and a polyfluoroethylene resin as a binder were mixed in a weight ratio of 8: 1: 1 (total weight: 1.25 g), and toluene (3.00 g) was mixed. Was added and kneaded sufficiently while swelling the resin. Kneading was continued while evaporating toluene. Mix the kneaded material with a stainless steel expanded mesh (100 μm thick).
m) was press-molded on top and formed into a sheet. Crimping was performed at 90 ° C. and 200 kg / cm 2 while degassing was repeated several times. This sheet
From a disk (thickness: 310 μm),
Vacuum deaeration was performed at 90 ° C. for a time to obtain a positive electrode.

【0021】電池はこの正極を用い、20mmのコイン
型セルを組んだ。すなわちコインの容器に正極を置きそ
の上に16mmφのポリプロピレン製不織布(厚さ100 μm
)、19mmφの多孔質ポリプロピレン製セパレーター
(厚さ25μm )、16mmφのポリプロピレン製不織布(厚
さ100 μm )を重ね、その上に負極(厚さ500 μm;直径
19mmφのリチウム箔)を重ね、電解液(1M LiPF
6 /EC+DMC(1:2))を入れ十分浸み込ませて
から、テフロンパッキンを置き、上蓋をして、かしめて
電池とする。
A 20 mm coin type cell was assembled using this positive electrode. That is, the positive electrode is placed in a coin container, and a 16 mmφ polypropylene nonwoven fabric (100 μm thick)
), A 19 mmφ porous polypropylene separator (thickness 25 μm), a 16 mmφ polypropylene nonwoven fabric (100 μm thickness), and a negative electrode (thickness 500 μm; diameter)
19mmφ lithium foil) and electrolyte (1M LiPF)
6 / EC + DMC (1: 2)) and fully infiltrate, then place Teflon packing, cover the top, and caulk to make a battery.

【0022】この電池について、0.3mA/cm2 の充放電電
流密度で2.5 〜4.3Vの電圧規制充放電試験を20℃で行っ
た。この時、2サイクル目の放電容量を放電容量とし
た。サイクル特性の評価は、30サイクル目の放電容量
を2サイクル目の放電容量で割った値、即ち容量維持率
で行った。また、前述の方法により、ピーク高さ率を求
め、正極活物質としてのリチウム含有複合金属酸化物の
熱安定性について評価を行った。以下、電池特性、熱安
定性及び該複合金属酸化物結晶のX線回折の結果を表1
に示す。但し、放電容量は、活物質1g当たりに換算し
た放電時の電気容量である。
The battery was subjected to a voltage regulation charge / discharge test of 2.5 to 4.3 V at 20 ° C. at a charge / discharge current density of 0.3 mA / cm 2 . At this time, the discharge capacity in the second cycle was defined as the discharge capacity. The evaluation of the cycle characteristics was performed using a value obtained by dividing the discharge capacity at the 30th cycle by the discharge capacity at the second cycle, that is, the capacity retention ratio. Further, the peak height ratio was determined by the above-described method, and the thermal stability of the lithium-containing composite metal oxide as the positive electrode active material was evaluated. The battery characteristics, thermal stability, and results of X-ray diffraction of the composite metal oxide crystal are shown in Table 1 below.
Shown in Here, the discharge capacity is the electric capacity at the time of discharge converted per 1 g of the active material.

【表1】 [Table 1]

【0023】(実施例2)水酸化リチウム24g(1 モル)
、水酸化ニッケル74.2g(0.8 モル) 、水酸化コバルト
4.65g(0.05モル) 、水酸化アルミニウム11.7g(0.15モ
ル) にメチルエチルケトン390gを加えてスラリーと
し、ボールミルで24時間混合撹拌する。濾過乾燥後、
この混合物の一部(40g) を第1の磁製容器に入れ、また
第2の磁製容器に水酸化リチウム5g(0.20 モル) を入
れ、両容器を内容積2.8 リットルの電気管状炉内にセッ
トし、酸素気流(700ml/mim )中780 ℃、24時間加熱
焼成した。その後、室温まで温度を下げてから残存リチ
ウム化合物の入った第2の容器を取り除き、第1の容器
の生成物(32g) を取り出し、X線回折の測定及び、実施
例1と同様の電池評価と該材料の熱安定性評価を行っ
た。これらの結果を表2に示す。ICP分析の結果、生
成物の組成はLiNi0.8 Co0.05Al0.152 であっ
た。
Example 2 24 g (1 mol) of lithium hydroxide
, 74.2 g (0.8 mol) of nickel hydroxide, cobalt hydroxide
A slurry is prepared by adding 390 g of methyl ethyl ketone to 4.65 g (0.05 mol) and 11.7 g (0.15 mol) of aluminum hydroxide, and the mixture is stirred by a ball mill for 24 hours. After filtration and drying,
A portion (40 g) of this mixture was placed in a first porcelain vessel, and 5 g (0.20 mol) of lithium hydroxide was placed in a second porcelain vessel, and both vessels were placed in a 2.8 liter electric tube furnace. It was set and baked by heating at 780 ° C. for 24 hours in an oxygen stream (700 ml / mim). Then, after lowering the temperature to room temperature, the second container containing the remaining lithium compound was removed, the product (32 g) in the first container was taken out, X-ray diffraction measurement and the same battery evaluation as in Example 1 were performed. And the thermal stability of the material were evaluated. Table 2 shows the results. As a result of ICP analysis, the composition of the product was LiNi 0.8 Co 0.05 Al 0.15 O 2 .

【表2】 [Table 2]

【0024】(実施例3)水酸化ニッケル76g(0.82モ
ル) 、水酸化コバルト6.5g(0.07 モル) 、酸化アルミニ
ウム5.6g(0.055モル) にイオン交換水300gを加え、
ボールミルで24時間混合撹拌した。濾過乾燥後、水酸
化リチウム24g(1 モル) を加え、さらにボールミルで2
4時間混合撹拌を行った。混合物の一部(40g) を磁製容
器に入れ、内容積2.8 リットルの電気管状炉にセット
し、酸素気流中(700ml/min )750 ℃で24時間加熱焼
成した。その後、室温まで冷却し、生成物(32g) を取り
出し、実施例1と全く同様に、X線回折の測定及び電池
評価と該材料の熱安定性評価を行った。これらの結果を
表3に示す。ICP分析の結果、生成物の組成はLiN
0.82Co0.07Al0.112 であった。
(Example 3) 300 g of ion-exchanged water was added to 76 g (0.82 mol) of nickel hydroxide, 6.5 g (0.07 mol) of cobalt hydroxide, and 5.6 g (0.055 mol) of aluminum oxide.
The mixture was mixed and stirred in a ball mill for 24 hours. After filtration and drying, 24 g (1 mol) of lithium hydroxide was added, and the mixture was further dried with a ball mill.
The mixture was stirred for 4 hours. A part (40 g) of the mixture was placed in a porcelain vessel, set in an electric tube furnace having an internal volume of 2.8 liters, and calcined at 750 ° C. for 24 hours in an oxygen stream (700 ml / min). Thereafter, the mixture was cooled to room temperature, and the product (32 g) was taken out. The measurement of X-ray diffraction, the evaluation of the battery and the evaluation of the thermal stability of the material were performed in the same manner as in Example 1. Table 3 shows the results. As a result of ICP analysis, the product composition was LiN
i 0.82 Co 0.07 Al 0.11 O 2 .

【表3】 [Table 3]

【0025】(実施例4)塩化ニッケル水和物(NiC
2 ・6H2 O)173.5g(0.73モル)と塩化コバルト水
和物(CoCl2 ・6H2 O)38.1g (0.16モル)を2
000mlのイオン交換水に溶解して、NiとCo化合
物の混合水溶液を調製した。次に、水酸化ナトリウム
(NaOH) 71.2g(1.78モル)を500mlのイオン
交換水に溶解した後、この溶液にアルミニウム箔2.97g
(0.11モル)を溶解してアルミン酸ナトリウム水溶液を
調製した。上記NiとCo混合溶液をアルミン酸ナトリ
ウム水溶液で中和した。この時、NiとCo系化合物の
混合水溶液のpHは3.8 であったが、アルミン酸ナトリ
ウム水溶液を添加するとpHはすぐに6.8 まで上昇し、
その後アルミン酸ナトリウム水溶液の添加に従ってpH
は少しずつ上昇し、前記水溶液の80%添加時でpHは
7.9 となり、全量添加時にはpHは12.3になった。0.1
規定濃度のHClを加え、pHを7.5 に調整し、反応を
終了させた。生成した青緑色の沈澱を濾過し、十分洗浄
及び乾燥後、炭酸リチウム(Li2 CO3)37g (0.5
モル)を加え、ボールミルで24時間撹拌混合を行っ
た。この混合物の一部(40g) を磁製容器に入れ、内容積
2.8 リットルの電気管状炉内にセットし、酸素気流中(1
000ml/min)、750 ℃で24時間加熱焼成した。その後、
室温まで冷却し、生成物(32g) を取り出し、実施例1と
同様にX線回折の測定及び電池特性評価、正極活物質の
熱安定性評価を行った。結果を表4にまとめた。但し、
ICP分析の結果、生成物の組成はLiNi0.73Co
0.16Al0.112 であった。
Example 4 Nickel chloride hydrate (NiC
l 2 · 6H 2 O) 173.5g (0.73 mol) and cobalt chloride hydrate (CoCl 2 · 6H 2 O) 38.1g (0.16 mol) of 2
It was dissolved in 000 ml of ion-exchanged water to prepare a mixed aqueous solution of a Ni and Co compound. Next, 71.2 g (1.78 mol) of sodium hydroxide (NaOH) was dissolved in 500 ml of ion-exchanged water, and 2.97 g of aluminum foil was added to the solution.
(0.11 mol) was dissolved to prepare an aqueous solution of sodium aluminate. The above mixed solution of Ni and Co was neutralized with an aqueous solution of sodium aluminate. At this time, the pH of the mixed aqueous solution of the Ni and Co-based compounds was 3.8, but when the aqueous solution of sodium aluminate was added, the pH immediately rose to 6.8,
After that, the pH is adjusted according to the addition of the sodium aluminate aqueous solution.
Gradually increases, and when 80% of the aqueous solution is added, the pH becomes
It became 7.9, and pH became 12.3 at the time of the whole amount addition. 0.1
HCl was added at a specified concentration to adjust the pH to 7.5, and the reaction was terminated. The resulting blue-green precipitate was filtered, sufficiently washed and dried, and then 37 g of lithium carbonate (Li 2 CO 3 ) (0.5 g) was added.
Mol), and the mixture was stirred and mixed by a ball mill for 24 hours. A part (40 g) of this mixture is placed in a porcelain container,
Place in a 2.8 liter electric tube furnace and place in an oxygen stream (1
(000 ml / min) at 750 ° C. for 24 hours. afterwards,
After cooling to room temperature, the product (32 g) was taken out and subjected to measurement of X-ray diffraction, evaluation of battery characteristics, and evaluation of thermal stability of the positive electrode active material in the same manner as in Example 1. The results are summarized in Table 4. However,
As a result of ICP analysis, the composition of the product was LiNi 0.73 Co
0.16 Al 0.11 O 2 .

【表4】 [Table 4]

【0026】(比較例1)水酸化リチウム24g(1 モル)
、水酸化ニッケル77.2g(0.833 モル) 、水酸化コバル
ト5.3g(0.057モル) 、水酸化アルミニウム8.6g(0.11 モ
ル) をボールミルで24時間撹拌混合した。混合物の一
部(40g) を磁製容器にいれ、内容積2.8 リットルの電気
管状炉内にセットし、酸素気流中(700ml/min )750 ℃
で24時間加熱焼成した。室温まで冷却し、生成物(32
g) を取り出し、実施例1と同様にX線回折の測定及
び、電池評価、熱安定性の評価を行った。結果を表5中
にまとめたように、本比較例で製造されたリチウム含有
複合金属酸化物は、電池特性のうち、特に1回目のクー
ロン効率が低く、また熱安定性(ピーク高さ率で評価)
が乏しかった。但し、ICP分析の結果、生成物の組成
はLiNi0.833 Co0.057Al0.112 であった。
Comparative Example 1 24 g (1 mol) of lithium hydroxide
, 77.2 g (0.833 mol) of nickel hydroxide, 5.3 g (0.057 mol) of cobalt hydroxide, and 8.6 g (0.11 mol) of aluminum hydroxide were stirred and mixed in a ball mill for 24 hours. A part (40 g) of the mixture is placed in a porcelain container, set in an electric tube furnace having an internal volume of 2.8 liters, and placed in an oxygen stream (700 ml / min) at 750 ° C.
For 24 hours. Cool to room temperature and allow the product (32
g) was taken out and subjected to measurement of X-ray diffraction, battery evaluation, and evaluation of thermal stability in the same manner as in Example 1. As the results are summarized in Table 5, the lithium-containing composite metal oxide manufactured in this comparative example has particularly low Coulomb efficiency in the first battery among the battery characteristics, and has thermal stability (in terms of peak height ratio). Evaluation)
Was scarce. However, as a result of ICP analysis, the composition of the product was LiNi 0.833 Co 0.057 Al 0.11 O 2 .

【表5】 [Table 5]

【0027】(比較例2)水酸化ニッケル77.2g(0.833
モル) 、水酸化アルミニウム13.0g(0.167 モル)にイオ
ン交換水300gを加え、ボールミルで24時間撹拌混
合した。濾過乾燥後、水酸化リチウム24g(1モル)
を加え、さらにボールミルで24時間混合撹拌した。混
合物の一部(40g) を磁製容器にいれ、内容積2.8 リット
ルの電気管状炉にセットし、酸素気流中(700ml/min )
750 ℃で24時間加熱焼成した。その後、室温まで冷却
し、生成物(31g) を取り出し、実施例1と同様の評価を
行った。結果を表6中にまとめたように、本比較例で製
造されたリチウム含有複合金属酸化物は、放電容量およ
び1回目のクーロン効率が低かった。但し、生成物の組
成は、ICP分析の結果LiNi0.833 Al0.1672
であった。
Comparative Example 2 77.2 g of nickel hydroxide (0.833
Mol) and 13.0 g (0.167 mol) of aluminum hydroxide, 300 g of ion-exchanged water were added, and the mixture was stirred and mixed with a ball mill for 24 hours. After filtration and drying, lithium hydroxide 24 g (1 mol)
Was added, and the mixture was further mixed and stirred by a ball mill for 24 hours. A part (40 g) of the mixture is placed in a porcelain container, set in an electric tube furnace having an internal volume of 2.8 liters, and placed in an oxygen stream (700 ml / min).
The mixture was fired at 750 ° C. for 24 hours. Thereafter, the mixture was cooled to room temperature, and the product (31 g) was taken out and evaluated in the same manner as in Example 1. As the results are summarized in Table 6, the lithium-containing composite metal oxide produced in this comparative example had a low discharge capacity and low first Coulomb efficiency. However, the composition of the product was LiNi 0.833 Al 0.167 O 2 as a result of ICP analysis.
Met.

【表6】 [Table 6]

【0028】(比較例3)水酸化ニッケル77.2g(0.833
モル) 、水酸化コバルト15.5g(0.167 モル) にイオン交
換水300gを加え、ボールミルで24時間撹拌混合し
た。濾過乾燥後、水酸化リチウム24g(1モル)を加
え、さらにボールミルで24時間混合撹拌した。混合物
の一部(40g) を磁製容器にいれ、内容積2.8 リットルの
電気管状炉にセットし、酸素気流中(700ml/min )750
℃で24時間加熱焼成した。室温まで冷却し、生成物(3
2g) を取り出し、実施例1と同様の評価を行った。結果
を表7中にまとめたように、本比較例で製造されたリチ
ウム含有複合金属酸化物は、熱安定性が特に悪い。但
し、生成物の組成は、ICP分析の結果、LiNi0.83
3 Co0.1672 であった。
Comparative Example 3 77.2 g of nickel hydroxide (0.833
Mol) and 15.5 g (0.167 mol) of cobalt hydroxide, 300 g of ion-exchanged water were added, and the mixture was stirred and mixed in a ball mill for 24 hours. After filtration and drying, 24 g (1 mol) of lithium hydroxide was added, and the mixture was further mixed and stirred by a ball mill for 24 hours. A part (40 g) of the mixture is placed in a porcelain container, set in an electric tube furnace having a volume of 2.8 liters, and placed in an oxygen stream (700 ml / min) for 750 minutes.
It baked by heating at 24 degreeC for 24 hours. Cool to room temperature and allow the product (3
2g) was taken out and evaluated in the same manner as in Example 1. As the results are summarized in Table 7, the lithium-containing composite metal oxide produced in this comparative example has particularly poor thermal stability. However, the composition of the product was LiNi 0.83 as a result of ICP analysis.
3 Co 0.167 O 2 .

【表7】 [Table 7]

【0029】(比較例4)水酸化リチウムと水酸化ニッ
ケルを原料として、常法(例えば、Solid StateIonics,
69, p238(1994)誌記載の方法)に従って合成したLi
NiO2 について、実施例1と同様の評価を行った。結
果を表8中にまとめたように、本正極活物質の使用では
容量維持率が低かった。
Comparative Example 4 Lithium hydroxide and nickel hydroxide were used as raw materials in a conventional manner (for example, Solid State Ionics,
69, p238 (1994)).
The same evaluation as in Example 1 was performed for NiO 2 . As summarized in Table 8, the use of the present positive electrode active material showed a low capacity retention rate.

【表8】 [Table 8]

【0030】実施例1〜4、及び比較例1〜4に記載の
該材料の熱安定性について、表9に結果をまとめた。こ
こで、満充電容量は、電流密度0.7mA/cm2 で電圧4.2Vで
満充電を行ったときの充電容量である。また、窒素気流
中10℃/min でDTAを測定したときの発熱ピークの立
ち上がりの温度を開始温度とし、ピーク頂点における温
度をピーク温度とした。
Table 9 summarizes the results of the thermal stability of the materials described in Examples 1 to 4 and Comparative Examples 1 to 4. Here, the full charge capacity is a charge capacity when a full charge is performed at a current density of 0.7 mA / cm 2 and a voltage of 4.2 V. The temperature at the rise of the exothermic peak when DTA was measured at 10 ° C./min in a nitrogen stream was defined as the starting temperature, and the temperature at the peak apex was defined as the peak temperature.

【0031】[0031]

【表9】 [Table 9]

【0032】[0032]

【発明の効果】比較例3に記載の従来型Co置換LiN
iO2 複合材料では、熱安定性の改善はほとんど見られ
なかったのに比べて、本発明のCo,Al置換LiNi
2 複合金属酸化物はAlによる置換量を10%以上と
することにより熱安定性が大幅に向上した。これによ
り、放電容量が大きく、サイクル特性が良好で、熱安定
性にも優れたリチウム二次電池用正極活物質が得られる
こととなった。また、構成金属の混合方法を工夫し、C
o,Alの組成比を最適にすることによりNi系正極活
物質の欠点と言われている1回目のクーロン効率の改善
も可能となった。また、本発明のリチウム含有複合金属
酸化物の製造方法により、上記のリチウム二次電池用正
極活物質として使用できるリチウム含有複合金属酸化物
が効率よく製造できる。また、本発明のリチウム二次電
池は、上記のリチウム含有複合金属酸化物を正極活物質
として用いているため、サイクル特性、放電特性、熱安
定性に優れている。
The conventional Co-substituted LiN described in Comparative Example 3
In the case of the iO 2 composite material, almost no improvement in the thermal stability was observed.
The thermal stability of the O 2 composite metal oxide was greatly improved by setting the substitution amount by Al to 10% or more. As a result, a positive electrode active material for a lithium secondary battery having a large discharge capacity, good cycle characteristics, and excellent thermal stability was obtained. Also, by devising a method of mixing constituent metals, C
By optimizing the composition ratio of o and Al, it is possible to improve the first Coulomb efficiency, which is said to be a disadvantage of the Ni-based positive electrode active material. Further, according to the method for producing a lithium-containing composite metal oxide of the present invention, a lithium-containing composite metal oxide that can be used as the positive electrode active material for a lithium secondary battery can be produced efficiently. In addition, the lithium secondary battery of the present invention uses the above-mentioned lithium-containing composite metal oxide as a positive electrode active material, and thus has excellent cycle characteristics, discharge characteristics, and thermal stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウム含有複合金属酸化物(実施例
1)のX線回折の結果である。
FIG. 1 is a result of X-ray diffraction of a lithium-containing composite metal oxide of the present invention (Example 1).

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 α−NaFeO2 型結晶構造を有し、一
般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物において、銅K
α線を用いた粉末X線回折における(018 )面のピーク位
置と(110 )面のピーク位置との分離Δ2θ((110)-(01
8) )が 0.520〜0.700 °であるリチウム含有複合金属
酸化物。
1. A alpha-NaFeO have 2 type crystal structure represented by the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the lithium-containing composite metal oxide represented by
Separation of peak position of (018) plane and peak position of (110) plane in powder X-ray diffraction using α-ray Δ2θ ((110)-(01
8) A lithium-containing composite metal oxide in which (1) is 0.520 to 0.700 °.
【請求項2】 DTA測定による発熱ピーク曲線におい
て、ピーク高さ率が0.30以下である請求項1記載のリチ
ウム含有複合金属酸化物。
2. The lithium-containing composite metal oxide according to claim 1, wherein a peak height ratio is 0.30 or less in an exothermic peak curve measured by DTA.
【請求項3】 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、Li以外の構成金属化合物の混合水溶液にアルカリ
を加えて中和共沈させる工程、共沈物を洗浄乾燥後にL
iOH、Li2 O及びLi2 CO3 からなる群から選ば
れるリチウム化合物と乾式混合する工程、及び混合物を
酸素含有気流中で焼成する工程からなることを特徴とす
るリチウム含有複合金属酸化物の製造方法。
3. A general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] in the production of a lithium-containing composite metal oxide represented by the following formula: a step of adding an alkali to a mixed aqueous solution of constituent metal compounds other than Li to cause co-precipitation and neutralization;
producing a lithium-containing composite metal oxide, comprising a step of dry-mixing with a lithium compound selected from the group consisting of iOH, Li 2 O and Li 2 CO 3 , and a step of firing the mixture in an oxygen-containing gas stream. Method.
【請求項4】一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、Ni化合物とCo化合物を含む水溶液に、アルミン
酸アルカリ金属塩とアルカリを加えた水溶液で中和共沈
させる工程、共沈物を洗浄乾燥後にLiOH、Li2
及びLi2 CO3 からなる群から選ばれるリチウム化合
物と乾式混合する工程、及び混合物を酸素含有気流中で
焼成する工程からなることを特徴とするリチウム含有複
合金属酸化物の製造方法。
Wherein the general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] a step of neutralizing and coprecipitating an aqueous solution containing a Ni compound and a Co compound with an aqueous solution obtained by adding an alkali metal aluminate and an alkali to the production of a lithium-containing composite metal oxide represented by the following formula: After washing and drying, LiOH, Li 2 O
And a step of dry-mixing with a lithium compound selected from the group consisting of Li 2 CO 3 and a step of firing the mixture in an oxygen-containing gas stream.
【請求項5】 アルミン酸アルカリ金属が、Li塩また
はNa塩またはK塩であることを特徴とする請求項4記
載のリチウム含有複合金属酸化物の製造方法。
5. The method for producing a lithium-containing composite metal oxide according to claim 4, wherein the alkali metal aluminate is a Li salt, a Na salt or a K salt.
【請求項6】 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、その構成金属の水酸化物及び/または酸化物をスラ
リー混合する工程及び濾過乾燥後に混合物を酸素含有気
流中で焼成する工程からなることを特徴とするリチウム
含有複合金属酸化物の製造方法。
6. A general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of the lithium-containing composite metal oxide represented by the following formula, from the step of slurry-mixing the hydroxide and / or oxide of the constituent metal and the step of firing the mixture in an oxygen-containing gas stream after filtration and drying. A method for producing a lithium-containing composite metal oxide, comprising:
【請求項7】 一般式 LiNix Coy Alz2 [0.70≦x<0.85; 0.05≦y≦0.20; 0.10<z≦0.25;
x+y+z=1.0] で表されるリチウム含有複合金属酸化物の製造におい
て、水を溶媒としてLi以外の構成金属の水酸化物及び
/または酸化物をスラリー混合する工程、濾過乾燥後に
LiOH、Li2 O及びLi2 CO3 からなる群から選
ばれるリチウム化合物と乾式混合する工程、及び混合物
を酸素含有気流中で焼成する工程からなることを特徴と
するリチウム含有複合金属酸化物の製造方法。
7. A general formula LiNi x Co y Al z O 2 [0.70 ≦ x <0.85; 0.05 ≦ y ≦ 0.20; 0.10 <z ≦ 0.25;
x + y + z = 1.0] In the production of a lithium-containing composite metal oxide represented by the following formula, a step of slurry-mixing a hydroxide and / or an oxide of a constituent metal other than Li using water as a solvent, and filtering and drying LiOH, Li 2 O And a step of dry-mixing with a lithium compound selected from the group consisting of Li 2 CO 3 and a step of firing the mixture in an oxygen-containing gas stream.
【請求項8】 焼成の際に混合物と気相を通じてのみ接
触するような状態で別途リチウム化合物を共存させるこ
とを特徴とする請求項3〜7のいずれか記載のリチウム
含有複合金属酸化物の製造方法。
8. The production of a lithium-containing composite metal oxide according to claim 3, wherein a lithium compound is separately coexisted in such a state that the lithium compound is brought into contact with the mixture only through the gas phase during firing. Method.
【請求項9】 請求項1または2記載のリチウム含有複
合金属酸化物からなるリチウム二次電池用正極活物質。
9. A positive electrode active material for a lithium secondary battery, comprising the lithium-containing composite metal oxide according to claim 1 or 2.
【請求項10】 請求項1または2記載のリチウム含有
複合金属酸化物を正極活物質として含む正極を具備した
リチウム二次電池。
10. A lithium secondary battery provided with a positive electrode containing the lithium-containing composite metal oxide according to claim 1 as a positive electrode active material.
JP04228998A 1997-05-19 1998-02-24 Lithium-containing composite metal oxide, its production method and use Expired - Fee Related JP4246283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04228998A JP4246283B2 (en) 1997-05-19 1998-02-24 Lithium-containing composite metal oxide, its production method and use
US09/080,346 US6207325B1 (en) 1997-05-19 1998-05-18 Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP12893097 1997-05-19
JP9-151182 1997-06-09
JP15118297 1997-06-09
JP9-128930 1997-06-09
JP04228998A JP4246283B2 (en) 1997-05-19 1998-02-24 Lithium-containing composite metal oxide, its production method and use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008118025A Division JP2008195610A (en) 1997-05-19 2008-04-30 Lithium-containing compound metal oxide and its production and use

Publications (2)

Publication Number Publication Date
JPH1160244A true JPH1160244A (en) 1999-03-02
JP4246283B2 JP4246283B2 (en) 2009-04-02

Family

ID=27291149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04228998A Expired - Fee Related JP4246283B2 (en) 1997-05-19 1998-02-24 Lithium-containing composite metal oxide, its production method and use

Country Status (1)

Country Link
JP (1) JP4246283B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266876A (en) * 2000-03-15 2001-09-28 Sony Corp Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2002056398A1 (en) * 2001-01-16 2002-07-18 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and method of producing active substance used for anode thereof
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
WO2016067959A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Method for producing nickel cobalt aluminum composite hydroxide and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266876A (en) * 2000-03-15 2001-09-28 Sony Corp Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2002056398A1 (en) * 2001-01-16 2002-07-18 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and method of producing active substance used for anode thereof
JP2002289261A (en) * 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
WO2016067959A1 (en) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 Method for producing nickel cobalt aluminum composite hydroxide and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
JP2016088776A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Production method of nickel cobalt aluminum complex hydroxide and production method of positive electrode active substance for non-aqueous electrolyte secondary battery
US10297825B2 (en) 2014-10-30 2019-05-21 Sumitomo Metal Mining Co., Ltd. Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP4246283B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
EP2214234B1 (en) Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP3634694B2 (en) Lithium secondary battery
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
WO2005028371A1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
CA2680192A1 (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
KR20170036062A (en) High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JP7212289B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2019149222A (en) Cathode active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, manufacturing method of transition metal hydroxide precursor, manufacturing method of cathode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100765970B1 (en) Manganese complex oxides by co-precipitation method and preparation method of the same, and spinel type cathode active material for lithium secondary batteries using thereby and preparation method of the same
JP2006525623A (en) A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery.
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
WO2004088776A1 (en) Process for producing positive-electrode active material for lithium secondary cell
JP2003002660A (en) Method for producing lithium cobalt composite oxide
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP4166347B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4246283B2 (en) Lithium-containing composite metal oxide, its production method and use
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP3671531B2 (en) Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JP2000154022A (en) Lithium manganese double oxide, its production and its use

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees