JPH1158139A - High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it - Google Patents

High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it

Info

Publication number
JPH1158139A
JPH1158139A JP21688197A JP21688197A JPH1158139A JP H1158139 A JPH1158139 A JP H1158139A JP 21688197 A JP21688197 A JP 21688197A JP 21688197 A JP21688197 A JP 21688197A JP H1158139 A JPH1158139 A JP H1158139A
Authority
JP
Japan
Prior art keywords
wire
electric discharge
discharge machining
copper alloy
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21688197A
Other languages
Japanese (ja)
Inventor
Koichi Kato
宏一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21688197A priority Critical patent/JPH1158139A/en
Publication of JPH1158139A publication Critical patent/JPH1158139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength copper alloy wire rod suitable for an electrode wire for wire electric discharge machining. SOLUTION: This wire rod is a high strength copper alloy wire rod which includes 10 wt.% or more and 35 wt.% or less of Zn, 10 wt.% or more and 30 wt.% or less or Cr and 0.5 wt.% or less in total of at least one element out of Si, P, Mg, Be, Al, Ni, Ti, Sn, Zr, Co, Ag and 0.005 wt.% or more individually, and whenever necessary, 0.5 wt.% or less in total of at least one element out of B, N, C and 0.005 wt.% ore more individually. This wire rod is a copper alloy wire rod including Zn, in which a great amount of Cr crystallized article is extended in a fiber shape in a longitudinal direction and dispersed uniformly and has the excellent characteristic of a strength and heat resistance by including Si, P, Mg or the like to this or is the wire rod improved said various characteristics much more by adding B, N, C further and is useful to the winding wire for coil. Especially, the electrode wire for electric discharge machining can bear to the high tension during the electric discharge machining, even it is an extremely fine wire, and can process with the electric discharge a precise and smooth surface with a high speed and the electrode wire such as an usual expensive W is dispensed with.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度銅合金線材
および前記線材を用いたワイヤ放電加工用電極線に関す
る。
The present invention relates to a high-strength copper alloy wire and an electrode wire for wire electric discharge machining using the wire.

【0002】[0002]

【従来の技術】高強度銅合金線材は、電子機器用配電
線、コイル用巻線、電極線などに使用されている。電極
線としては、これを走行させて被加工物との間で加工液
中で電圧をかけてパルス状の放電を繰り返し発生させ、
この放電エネルギーにより被加工物を所定形状に加工す
るワイヤ放電加工に用いられ、前記ワイヤ放電加工はプ
レス金型などの精密加工などに広く実用化されている。
前記電極線には黄銅、銅、タングステン、モリブデンな
どの直径0.01〜0.35mmの細い線材が用いられ
ており、このうち黄銅(Cu−Zn系合金)線材はZn
が強度を高めるため引張強さが純銅線材の2倍以上あ
り、また合金元素のZnが放電頻度と気化爆発力を高め
るなどの作用を果たすため高速加工が可能である。しか
も黄銅は比較的安価なため使い捨てができ生産管理が容
易である。
2. Description of the Related Art High-strength copper alloy wires are used in distribution lines for electronic equipment, coil windings, electrode wires, and the like. As an electrode wire, this is run to apply a voltage in the machining fluid between the workpiece and the workpiece to repeatedly generate pulsed discharge,
This discharge energy is used for wire electric discharge machining for processing a workpiece into a predetermined shape, and the wire electric discharge machining is widely used in precision machining such as a press die.
For the electrode wire, a thin wire having a diameter of 0.01 to 0.35 mm, such as brass, copper, tungsten, and molybdenum, is used. Of these, brass (Cu—Zn-based alloy) wire is Zn.
In order to increase the strength, the tensile strength is twice or more that of the pure copper wire, and Zn as an alloying element acts to increase the discharge frequency and the vaporization explosive force, so that high-speed machining is possible. Moreover, since brass is relatively inexpensive, it can be disposable and production control is easy.

【0003】[0003]

【発明が解決しようとする課題】近年、ワイヤ放電加工
が広く利用されだし、それに伴い加工精度の向上、加工
面平滑性の向上、加工速度の高速化などがさらに強く求
められるようになった。加工精度は電極線を細線化する
ことにより向上する。平滑性は放電加工時の電極線の振
動で悪化するもので電極線の張力を高めることにより改
善される。なお放電加工時の電極線の振動は放電加工速
度が速いほど激しくなる。このようなことから、ワイヤ
放電加工で、加工精度、平滑性、高速加工を実現するに
は、細線化しても高張力に耐える電極線の開発が不可欠
である。しかし、従来の銅や黄銅などの線材は、強度が
不十分で細線化すると放電加工時に高張力を付与でき
ず、このため加工面の平滑性が劣り、或いは高速加工が
できないという問題がある。またタングステンやモリブ
デンなどの線材は、強度的には問題ないが、伸線加工性
に劣るため加工コストが銅や黄銅の数十倍にもなり実用
性に欠けるという問題がある。本発明は、細線化しても
高張力に耐え、かつ安価な銅合金線材および前記線材を
用いた放電加工用電極線を提供することを目的とする。
In recent years, wire electric discharge machining has been widely used, and as a result, there has been a strong demand for improved machining accuracy, improved machined surface smoothness, and increased machining speed. The processing accuracy is improved by thinning the electrode wires. The smoothness is deteriorated by the vibration of the electrode wire during electric discharge machining, and is improved by increasing the tension of the electrode wire. In addition, the vibration of the electrode wire at the time of electric discharge machining increases as the electric discharge machining speed increases. For this reason, in order to realize machining accuracy, smoothness, and high-speed machining in wire electric discharge machining, it is essential to develop an electrode wire that can withstand high tension even if the wire is thinned. However, conventional wires such as copper and brass have insufficient strength and cannot be applied with high tension at the time of electric discharge machining when they are thinned, so that there is a problem that the smoothness of the machined surface is poor or high-speed machining cannot be performed. In addition, wires such as tungsten and molybdenum have no problem in strength, but have drawbacks in that they are inferior in wire drawing workability, so that the processing cost is several tens of times that of copper and brass, and lacks practicality. An object of the present invention is to provide an inexpensive copper alloy wire rod capable of withstanding high tension even when the wire is thinned and an electrode wire for electric discharge machining using the wire rod.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Znを10wt%以上35wt%以下、Crを10wt%以上
30wt%以下、Si、P、Mg、Be、Al、Ni、T
i、Sn、Zr、Co、Agのうちの少なくとも1元素
を総計で0.5wt%以下個々に0.005wt%以上含有
し、必要によりB、N、Cのうちの少なくとも1元素を
総計で0.5wt%以下個々に0.005wt%以上含有
し、残部がCuおよび不可避不純物からなることを特徴
とする高強度銅合金線材である。
According to the first aspect of the present invention,
Zn 10 wt% to 35 wt%, Cr 10 wt% to 30 wt%, Si, P, Mg, Be, Al, Ni, T
At least one element of i, Sn, Zr, Co, and Ag is contained in a total of 0.5 wt% or less individually in an amount of 0.005 wt% or more, and if necessary, at least one element of B, N and C is contained in a total of 0%. It is a high-strength copper alloy wire rod containing not more than 0.5 wt% individually and not less than 0.005 wt%, with the balance being Cu and unavoidable impurities.

【0005】請求項2記載の発明は、請求項1記載の高
強度銅合金線材を用いたことを特徴とするワイヤ放電加
工用電極線である。
According to a second aspect of the present invention, there is provided an electrode wire for wire electric discharge machining, wherein the high-strength copper alloy wire according to the first aspect is used.

【0006】[0006]

【発明の実施の形態】請求項1記載の発明の高強度銅合
金線材は、例えば、Cu−Zn−Cr系合金鋳塊に熱間
加工、溶体化処理、一次冷間加工、熱処理、二次冷間加
工の諸工程を施して製造される。二次冷間加工は省略し
ても製造できる。前記鋳塊中の晶出Crは冷間加工工程
で長手方向に繊維状に引き延ばされる。この繊維状に引
き延ばされたCr晶出物は線材の強度および耐熱性を著
しく向上させる。Crの含有量を10wt%以上30wt%
以下に規定する理由は、10wt%未満ではその効果が十
分に得られず、30wt%を超えるとその効果が飽和して
不経済な上、冷間加工性が低下するためである。Znは
強度と放電加工性を向上させる。放電加工性は、放電加
工速度に影響する放電頻度と気化爆発力、銅の付着量、
放電安定性などで評価される。Znの含有量を10〜3
5wt%に規定する理由は、10wt%未満では放電加工時
の放電頻度が十分高くならないなど、Znの放電加工性
向上効果が十分に発現されないためである。また35wt
%を超えると冷間加工性が低下して中間焼鈍の回数が増
え生産性が悪化するためである。
BEST MODE FOR CARRYING OUT THE INVENTION The high-strength copper alloy wire according to the first aspect of the present invention can be used, for example, to form a Cu-Zn-Cr alloy ingot by hot working, solution treatment, primary cold working, heat treatment, and secondary working. It is manufactured by performing various steps of cold working. It can be manufactured even if the secondary cold working is omitted. The crystallized Cr in the ingot is drawn into a fibrous shape in the longitudinal direction in the cold working step. The Cr crystallization expanded into a fibrous form significantly improves the strength and heat resistance of the wire. Cr content is 10wt% or more and 30wt%
The reason specified below is that if the content is less than 10% by weight, the effect cannot be sufficiently obtained, and if the content exceeds 30% by weight, the effect is saturated, which is uneconomical and lowers the cold workability. Zn improves the strength and the electric discharge machining property. EDM has the following characteristics: discharge frequency and vaporization explosive force,
It is evaluated in terms of discharge stability. Zn content of 10 to 3
The reason for specifying 5 wt% is that if it is less than 10 wt%, the effect of improving the discharge machinability of Zn is not sufficiently exhibited, for example, the discharge frequency during electric discharge machining is not sufficiently increased. Also 35wt
%, The cold workability decreases, the number of intermediate annealing increases, and the productivity deteriorates.

【0007】本発明では、Zn、Crに加えて、Si、
P、Mg、Be、Al、Ni、Ti、Sn、Zr、C
o、Agの11の元素のうちの少なくとも1種を含有さ
せる。このうちSiは固溶または析出して強度向上に寄
与する。その含有量が多くなると導電率および加工性が
低下する。Pは焼入れ性を高めることにより強度向上に
寄与する。その含有量が多くなるとPを含む化合物が粒
界に偏析して耐食性や導電率が低下する。Mgは不可避
的に混入するSをMgS化合物としてトラップしてマト
リックス中に析出し強度向上に寄与する。その含有量が
多くなるとMgCu2 の共晶化合物が生成して722℃
以上での熱間加工性が悪化する。Beは固溶または析出
して強度向上に寄与する。その含有量が多くなると加工
性が低下する。またBeは高価なのでコストアップを招
く。Al、Ni、Ti、Snはそれぞれ強度向上に寄与
する。その含有量が多くなると、いずれの場合も導電率
が著しく低下する。Zrはマトリックス中にCu3 Zr
化合物として微細に析出し強度および耐熱性向上に寄与
する。その含有量が多くなると導電率が低下する。Co
はCrの析出を促進して強度および導電率を向上させ、
また結晶粒の粗大化を防止して耐熱性を向上させる。そ
の含有量が多くなると加工性が低下する。Agは強度お
よび耐熱性向上に寄与する。その含有量が多くなると導
電率が低下し、また融点が低下して熱間加工性が悪化す
る。さらにAgは高価なのでコストアップを招く。な
お、前記放電加工はパルス状放電を繰り返しながら行わ
れるので、電極線の耐熱性や導電性の向上は放電加工特
性に有効に作用する。
In the present invention, in addition to Zn and Cr, Si,
P, Mg, Be, Al, Ni, Ti, Sn, Zr, C
o, at least one of the 11 elements of Ag is contained. Among them, Si contributes to solid strength or precipitation to improve strength. As the content increases, the electrical conductivity and workability decrease. P contributes to the improvement of the strength by increasing the hardenability. When the content increases, the compound containing P segregates at the grain boundaries, and the corrosion resistance and the electrical conductivity are reduced. Mg traps S inevitably mixed as an MgS compound and precipitates in the matrix, contributing to an improvement in strength. When the content increases, a eutectic compound of MgCu 2 is formed and 722 ° C.
The hot workability described above deteriorates. Be is dissolved or precipitated and contributes to strength improvement. When the content increases, the processability decreases. In addition, Be is expensive, resulting in an increase in cost. Al, Ni, Ti, and Sn each contribute to strength improvement. When the content increases, the conductivity significantly decreases in each case. Zr contains Cu 3 Zr in the matrix.
It precipitates finely as a compound and contributes to improvement in strength and heat resistance. As the content increases, the electrical conductivity decreases. Co
Promotes precipitation of Cr to improve strength and conductivity,
Further, the heat resistance is improved by preventing the crystal grains from becoming coarse. When the content increases, the processability decreases. Ag contributes to improvement in strength and heat resistance. When the content increases, the conductivity decreases, and the melting point decreases, thereby deteriorating hot workability. Further, Ag is expensive, which leads to an increase in cost. Since the electric discharge machining is performed while repeating the pulsed electric discharge, the improvement of the heat resistance and the conductivity of the electrode wire effectively affects the electric discharge machining characteristics.

【0008】前記Si、P、Mgなどの11の元素は、
いずれも含有量が0.005wt%未満では、それぞれの
効果が十分に発現されない。また前記11元素の総含有
量が0.5wt%を超えると、加工性、熱伝導性、導電
性、耐食性などが低下し、原料コスト的にも不利にな
る。従って前記11元素の含有量は、総計で0.5wt%
以下、個々には0.005wt%以上に限定する。
The eleven elements such as Si, P, Mg, etc.
In any case, if the content is less than 0.005 wt%, the respective effects are not sufficiently exhibited. On the other hand, if the total content of the 11 elements exceeds 0.5% by weight, workability, thermal conductivity, conductivity, corrosion resistance, etc. are reduced, and the raw material cost is disadvantageous. Therefore, the content of the 11 elements is 0.5 wt% in total.
Hereinafter, it is individually limited to 0.005 wt% or more.

【0009】本発明では、前記諸合金元素に加えて、必
要に応じて、B、N、Cの少なくとも1元素を含有させ
る。B、N、Cの各元素は、鋳造の際に結晶核の生成頻
度を高めて鋳塊組織を微細にし、その結果Crの晶出物
がより均一に分散し、強度、耐熱性などの特性が向上す
る。前記B、N、Cの元素はこのうちの少なくとも1元
素が含有されるが、その含有量を総計で0.5wt%以
下、個々に0.005wt%以上に規定する理由は、個々
の元素が0.005wt%未満ではその効果が十分に発現
されず、総計の含有量が0.5wt%を超えるとB、N、
CなどとCrとの間で化合物が生成して加工性が低下す
るためである。
In the present invention, at least one element of B, N and C is contained, if necessary, in addition to the above alloy elements. The elements B, N, and C increase the frequency of generation of crystal nuclei during casting to make the ingot structure finer, and as a result, crystallized substances of Cr are more uniformly dispersed, and properties such as strength and heat resistance are obtained. Is improved. The B, N, and C elements contain at least one of these elements. The reason for specifying the total content to be 0.5 wt% or less and individually 0.005 wt% or more is that each element is When the content is less than 0.005 wt%, the effect is not sufficiently exhibited, and when the total content exceeds 0.5 wt%, B, N,
This is because a compound is generated between C and Cr and the like, and the workability is reduced.

【0010】本発明の線材を前記工程で製造するときの
望ましい条件は、熱間加工は加工温度700〜900
℃、断面減少率50〜75%であり、溶体化処理は温
度850〜900℃、時間1〜2hrであり、冷間加
工は、晶出Crを繊維状に引き延ばすために、断面減少
率を一次と二次の合計で99%以上、特には99.9%
以上であり、二次冷間加工を行わない場合は、一次冷間
加工だけで前記断面減少率を付与し、また熱処理は温
度450〜550℃、時間0.5〜2.0hrである。
[0010] Desirable conditions when the wire of the present invention is manufactured in the above-described process are as follows: hot working is performed at a working temperature of 700 to 900.
° C, the cross-sectional reduction rate is 50 to 75%, the solution treatment is performed at a temperature of 850 to 900 ° C, and the time is 1 to 2 hours. The cold working is performed in order to elongate the crystallized Cr into a fibrous form. 99% or more, especially 99.9%
As described above, when the secondary cold working is not performed, the cross-sectional reduction rate is given only by the primary cold working, and the heat treatment is performed at a temperature of 450 to 550 ° C. for a time of 0.5 to 2.0 hr.

【0011】[0011]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)酸素量が比較的少ない銅地金を溶解炉にて
溶解し、得られた銅溶湯中に表1のNo.1〜3 に示す割合
でZnおよびCrを添加し、さらにSi、P、Mg、B
e、Al、Ni、Ti、Sn、Zr、Co、Agのうち
の少なくとも1元素を添加し、この合金溶湯を十分に攪
拌したのち、金型に鋳込み円柱状鋳塊を得た。次にこの
鋳塊に800℃で圧延率70%の熱間圧延を施し、次い
で850℃で1時間加熱する溶体化処理、断面減少率8
5%の引抜加工、500℃で1.5時間加熱する熱処
理、断面減少率99.3%の引抜加工を順に施して直径
0.2mmの線材に加工した。各合金元素の添加量は種
々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) A copper ingot having a relatively small amount of oxygen was melted in a melting furnace, and Zn and Cr were added to the obtained copper melt in proportions shown in Nos. , P, Mg, B
e, Al, Ni, Ti, Sn, Zr, Co, and Ag were added, and after the alloy melt was sufficiently stirred, a cylindrical ingot was cast into a mold. Next, the ingot is subjected to a hot rolling at a rolling rate of 70% at 800 ° C., and then a solution treatment in which the ingot is heated at 850 ° C. for 1 hour.
A 5% drawing process, a heat treatment of heating at 500 ° C. for 1.5 hours, and a drawing process with a cross-section reduction rate of 99.3% were sequentially performed to process a wire having a diameter of 0.2 mm. The addition amount of each alloy element was changed variously.

【0012】(実施例2)酸素量が比較的少ない銅地金
を溶解炉にて溶解し、得られた銅溶湯中に表1のNo.4〜
6 に示す割合でZnおよびCrを添加し、次いでSi、
P、Mg、Be、Al、Ni、Ti、Sn、Zr、C
o、Agのうちの少なくとも1元素を添加し、さらに
B、N、Cのうちの少なくとも1元素を添加し、この合
金溶湯を十分に攪拌したのち、金型に鋳込み円柱状鋳塊
を得た。以下実施例1と同じ工程を経て直径0.2mm
の線材に加工した。各合金元素の添加量は種々に変化さ
せた。なお、B、N、CはそれぞれCrの硼化物、窒化
物、炭化物として添加した。
(Example 2) A copper ingot having a relatively small amount of oxygen was melted in a melting furnace, and No. 4 to No. 4 in Table 1 were added to the obtained molten copper.
6, Zn and Cr were added at the ratios shown in FIG.
P, Mg, Be, Al, Ni, Ti, Sn, Zr, C
After adding at least one element of o and Ag, and further adding at least one element of B, N and C and sufficiently stirring the molten alloy, a cylindrical ingot was cast into a mold. . Hereinafter, through the same process as in Example 1, 0.2 mm in diameter
Was processed into a wire rod. The addition amount of each alloy element was changed variously. Note that B, N, and C were added as borides, nitrides, and carbides of Cr, respectively.

【0013】得られた直径0.2mmの各々の線材を電
極線に用いて鋼製ブロックを放電加工した。所定の表面
平滑性が得られる最大加工速度、および鋼製ブロックへ
の銅の付着量を調べた。比較のためCu−35wt%Zn
合金線についても同様の調査を行った。結果を表1に示
す。表1には引張強さを併記した。
Using each of the obtained wires having a diameter of 0.2 mm as an electrode wire, a steel block was subjected to electric discharge machining. The maximum processing speed for obtaining a predetermined surface smoothness and the amount of copper adhering to the steel block were examined. Cu-35wt% Zn for comparison
Similar investigations were made for alloy wires. Table 1 shows the results. Table 1 also shows the tensile strength.

【0014】[0014]

【表1】 (注)の数値は 65/35黄銅を100としたときの比較値。 No.1〜3 は実施例1、No.4〜6 は実施例2。[Table 1] (Note) The figures are comparison values when 65/35 brass is taken as 100. Nos. 1-3 are Example 1 and Nos. 4-6 are Example 2.

【0015】表1より明らかなように、本発明例のNo.1
〜6 はいずれも強度が高く、高張力を掛けて高速度で放
電加工を行うことができた。被加工体(鋼製ブロック)
への銅の付着量も従来の 65/35黄銅線より少なく、また
加工面の平滑性も極めて良好であった。
As is clear from Table 1, No. 1 of the present invention example
Nos. 6 to 6 were all high in strength and could be subjected to electrical discharge machining at high speed by applying high tension. Workpiece (steel block)
The amount of copper adhered to the wire was smaller than that of the conventional 65/35 brass wire, and the smoothness of the processed surface was extremely good.

【0016】本発明例のNo.1〜6 について耐熱性と屈曲
性を調べたが、いずれも優れた特性を示した。これは大
量のCr晶出物が長手方向に繊維状に引き延ばされて均
一に分散したためである。特にC、B、Nをそれぞれ微
量含有させたNo.4〜6 は前記Cr晶出物がより微細に分
散したため加工速度がさらに向上した。本発明例のNo.1
〜6 を極細線(0.01〜0.07mm)に伸線加工し、電極線と
して用いたが、放電加工中の高張力に耐え、高精度で平
滑性に優れる加工面が高速度で得られた。以上、放電加
工用電極線について説明したが、本発明の線材は、電子
機器用配電線やコイル用巻線などに使用しても同様の効
果が得られる。
The heat resistance and the flexibility of Nos. 1 to 6 of the present invention were examined, and all showed excellent characteristics. This is because a large amount of the crystallized Cr was stretched into a fiber in the longitudinal direction and was uniformly dispersed. In particular, in Nos. 4 to 6 each containing a small amount of C, B, and N, the processing speed was further improved because the Cr crystallized substance was more finely dispersed. No. 1 of the present invention example
66 was drawn into an ultra-fine wire (0.01 to 0.07 mm) and used as an electrode wire. A machined surface that withstands high tension during electric discharge machining and has high precision and excellent smoothness was obtained at high speed. The electrode wire for electric discharge machining has been described above, but the same effect can be obtained even when the wire of the present invention is used for a distribution line for electronic equipment, a coil winding, or the like.

【0017】[0017]

【発明の効果】以上に述べたように、本発明の銅合金線
材は、Znを含み、また大量のCr晶出物が長手方向に
繊維状に引き延ばされて均一に分散した銅合金線材で、
これにSi、P、Mg、Be、Al、Ni、Ti、S
n、Zr、Co、Agなどが含まれて、強度、耐熱性、
屈曲性、加工性などの諸特性に優れるものであり、また
はB、N、Cなどをさらに添加して前記諸特性を一層向
上させたものであり、従って電子電気機器用配電線、コ
イル用巻線などに適用して極めて有用である。特に放電
加工用の電極線として用いる場合は、極細線(0.01〜0.
07mm)にしても放電加工中の高張力に耐え、Znの放電
加工性の向上効果と相まって高精度で平滑な面が得られ
る放電加工を高速度で行うことができ、従来の高価なタ
ングステンやモリブデンなどの電極線を無用とするもの
である。依って工業上顕著な効果を奏する。
As described above, the copper alloy wire of the present invention contains Zn, and a large amount of Cr crystallized material is elongated in a fiber form in the longitudinal direction and is uniformly dispersed. so,
In addition, Si, P, Mg, Be, Al, Ni, Ti, S
n, Zr, Co, Ag, etc., strength, heat resistance,
It is excellent in various properties such as flexibility and workability, or further improved in the above properties by further adding B, N, C and the like. It is very useful when applied to lines and the like. In particular, when used as an electrode wire for electric discharge machining, a very fine wire (0.01 to 0.
07mm), it can withstand high tension during electric discharge machining, and, together with the effect of improving the electric discharge machinability of Zn, can perform electric discharge machining at high speed with a high precision and smooth surface. The use of an electrode wire such as molybdenum is unnecessary. Therefore, there is an industrially significant effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Znを10wt%以上35wt%以下、Cr
を10wt%以上30wt%以下、Si、P、Mg、Be、
Al、Ni、Ti、Sn、Zr、Co、Agのうちの少
なくとも1元素を総計で0.5wt%以下個々に0.00
5wt%以上含有し、必要によりB、N、Cのうちの少な
くとも1元素を総計で0.5wt%以下個々に0.005
wt%以上含有し、残部がCuおよび不可避不純物からな
ることを特徴とする高強度銅合金線材。
1. The method according to claim 1, wherein Zn is from 10 wt% to 35 wt%,
From 10 wt% to 30 wt%, Si, P, Mg, Be,
At least one element of Al, Ni, Ti, Sn, Zr, Co, and Ag is individually not more than 0.5 wt% in total and 0.00
5 wt% or more, and if necessary, at least one element of B, N, and C in a total of 0.55 wt% or less individually.
A high-strength copper alloy wire containing at least wt%, with the balance being Cu and unavoidable impurities.
【請求項2】 請求項1記載の高強度銅合金線材を用い
たことを特徴とするワイヤ放電加工用電極線。
2. An electrode wire for wire electric discharge machining, wherein the high-strength copper alloy wire according to claim 1 is used.
JP21688197A 1997-08-12 1997-08-12 High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it Pending JPH1158139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21688197A JPH1158139A (en) 1997-08-12 1997-08-12 High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21688197A JPH1158139A (en) 1997-08-12 1997-08-12 High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it

Publications (1)

Publication Number Publication Date
JPH1158139A true JPH1158139A (en) 1999-03-02

Family

ID=16695382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21688197A Pending JPH1158139A (en) 1997-08-12 1997-08-12 High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it

Country Status (1)

Country Link
JP (1) JPH1158139A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028839A (en) * 2011-07-28 2013-02-07 Yazaki Corp Conductor for electric wire
EP3006152A4 (en) * 2014-08-13 2017-02-22 Ningbo Powerway Materialise Co., Ltd. High-precision zinc-based alloy electrode wire and preparation method therefor
CN111733345A (en) * 2020-06-05 2020-10-02 宁波金田铜业(集团)股份有限公司 Copper-zinc-nickel alloy electrode bus and preparation method thereof
US20230055850A1 (en) * 2018-02-22 2023-02-23 E. Holdings, Inc. Continuously Cast Mg Brass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028839A (en) * 2011-07-28 2013-02-07 Yazaki Corp Conductor for electric wire
WO2013014904A3 (en) * 2011-07-28 2013-04-04 Yazaki Corporation Conductor for electric wire
US20140138120A1 (en) * 2011-07-28 2014-05-22 Yazaki Corporation Conductor for electric wire
CN103827329A (en) * 2011-07-28 2014-05-28 矢崎总业株式会社 Conductor for electric wire
EP3006152A4 (en) * 2014-08-13 2017-02-22 Ningbo Powerway Materialise Co., Ltd. High-precision zinc-based alloy electrode wire and preparation method therefor
US20230055850A1 (en) * 2018-02-22 2023-02-23 E. Holdings, Inc. Continuously Cast Mg Brass
CN111733345A (en) * 2020-06-05 2020-10-02 宁波金田铜业(集团)股份有限公司 Copper-zinc-nickel alloy electrode bus and preparation method thereof
CN111733345B (en) * 2020-06-05 2021-09-28 宁波金田铜业(集团)股份有限公司 Copper-zinc-nickel alloy electrode bus and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JPH0347941A (en) High strength magnesium base alloy
JPH0118979B2 (en)
JP2004353011A (en) Electrode material and manufacturing method therefor
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPH1158139A (en) High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it
KR20020008710A (en) Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method
JP3447830B2 (en) Invar alloy wire and method of manufacturing the same
JPH09324230A (en) High conductivity wire
US20230243018A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JPH10140267A (en) Copper alloy material with high cr content, having high strength and high electric conductivity, and its production
JPH1158140A (en) High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it
JP3485961B2 (en) High strength aluminum base alloy
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JPH0586427A (en) Conductive extra fine copper wire
JPWO2018235458A1 (en) Copper alloy ultrafine wire for spring and method for producing the same
JPS60149751A (en) Metal composition
JP2005081371A (en) Electrode material and its production method
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
JPH08333644A (en) Aluminum alloy foil and its production
JP3763651B2 (en) Aluminum material excellent in high temperature strength and processing method thereof