JPH1157521A - Production of aqueous dispersion of inorganic particles - Google Patents

Production of aqueous dispersion of inorganic particles

Info

Publication number
JPH1157521A
JPH1157521A JP9238969A JP23896997A JPH1157521A JP H1157521 A JPH1157521 A JP H1157521A JP 9238969 A JP9238969 A JP 9238969A JP 23896997 A JP23896997 A JP 23896997A JP H1157521 A JPH1157521 A JP H1157521A
Authority
JP
Japan
Prior art keywords
matter
dispersion
inorganic particles
particles
collide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9238969A
Other languages
Japanese (ja)
Inventor
Masayuki Hattori
雅幸 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP9238969A priority Critical patent/JPH1157521A/en
Priority to KR10-1998-0014940A priority patent/KR100510815B1/en
Priority to DE69832124T priority patent/DE69832124T2/en
Priority to EP98108093A priority patent/EP0876841B1/en
Priority to TW087106900A priority patent/TW480188B/en
Priority to US09/072,666 priority patent/US5967964A/en
Publication of JPH1157521A publication Critical patent/JPH1157521A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To convert dispersed inorg. particles in a specified average grain size to improve a dispersion stability by adding the inorg. particles synthesized by a vapor phase method in an aqueous medium to disperse preliminarily and to allow to collide in a specified pressure. SOLUTION: The average grain size of the dispersed inorg. particles are converted in 0.01-2 μm by dispersing the inorg. particles synthesized by the vapor phase method in the aqueous medium to disperse previously and allowing the particles to collide with a pressure of 100-3000 kg/cm<2> . The previously dispersed matter is introduced by two pipelines 11 and 12, and after allowing the matter to collide, the matter is transported in a discharge pipe 30 in high speed, then the matter is branched to the two branched pipelines 21 and 22. In the case when the matter is introduced by the branched pipelines 11a and 11b branched from a main pipe 10a, and after allowing the matter to collide by passing the matter through an orifice part, the matter is discharged upward, the previously dispersed matter is allow to collide each other. The matter is used for a cosmetics, a coating material, a slurry for grinding a semiconductor wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化粧品、塗料、半
導体ウェハの研磨用スラリー等に用いることができ、保
管中の増粘やゲル化、沈降分離などの問題が無く、安定
性が高い、無機粒子の水性分散体の製造方法に関する。
The present invention can be used for cosmetics, paints, slurries for polishing semiconductor wafers, etc., and has no problems such as thickening, gelling and sedimentation during storage, and has high stability. The present invention relates to a method for producing an aqueous dispersion of inorganic particles.

【0002】[0002]

【従来の技術】従来、化粧品、塗料、半導体ウェハの研
磨用スラリーには、不純物が極めて少ない高純度な原料
として、気相法で合成した無機粒子(以下「気相法無機
粒子」という)が用いられている。しかし、気相法無機
粒子は2次凝集が激しいため、気相法無機粒子の水性分
散体を製造する場合は、水中で、凝集体を破壊・解砕す
る必要がある。もし、凝集体の破壊が不十分であると、
保管中に水性分散体が経時的に増粘したり、ゲル化によ
り全く流動性を失って使用できなくなるという問題や、
保管中に凝集体が沈殿して分離するという問題が起こ
る。従来、気相法無機粒子の凝集体を分散する方法とし
ては、ワーリングブレンダーやハイシェアミキサーのよ
うな高速撹拌型の分散装置を用いる方法(特開平3−5
0112)や、ジェットストリームミキサーのような粉
体導入混合分散機、歯付きコロイドミル/ディゾルバー
/スキム攪拌機を組合わせた装置(日本アエロジル
(株)カタログNo.19「アエロジルの取り扱い方
法」P.38)を用いる方法が知られている。しかし、
何れの方法も長時間の処理が必要であったり、凝集体を
十分に破壊・解砕することができないという問題があっ
た。
2. Description of the Related Art Conventionally, slurry for polishing cosmetics, paints and semiconductor wafers contains, as a high-purity raw material having very few impurities, inorganic particles synthesized by a gas phase method (hereinafter referred to as "gas phase method inorganic particles"). Used. However, since secondary aggregation of the vapor phase inorganic particles is severe, when producing an aqueous dispersion of the vapor phase inorganic particles, it is necessary to break and crush the aggregate in water. If the destruction of the aggregates is insufficient,
The problem that the aqueous dispersion thickens over time during storage or that it loses its fluidity due to gelation and cannot be used,
The problem occurs that the aggregates precipitate and separate during storage. Conventionally, as a method for dispersing aggregates of the inorganic particles by the gas phase method, a method using a high-speed stirring type dispersing apparatus such as a Waring blender or a high shear mixer (Japanese Patent Laid-Open No. 3-5 / 1990).
0112) and a device combining a powder introduction mixing and dispersing machine such as a jet stream mixer and a toothed colloid mill / dissolver / skim stirrer (Nippon Aerosil Co., Ltd., Catalog No. 19, “Handling method of Aerosil”, page 38). ) Is known. But,
Each of these methods has a problem that a long-time treatment is required and that aggregates cannot be sufficiently broken or broken.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記の従来
の方法の問題点を背景になされたもので、長時間保管し
ておいても増粘してゲル化したり、沈降物が発生したり
することのない分散安定性の良好な無機粒子の水性分散
体の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional method. It is an object of the present invention to provide a method for producing an aqueous dispersion of inorganic particles having good dispersion stability without causing fogging.

【0004】[0004]

【課題を解決するための手段】本発明は、気相法により
合成した無機粒子を水系媒体中に添加して予備分散し、
100〜3000Kg/cm2 の圧力で衝突させること
により、分散している無機粒子の平均粒子径を0.01
〜2μmにすることを特徴とする無機粒子の水性分散体
の製造方法である。望ましくは、上記の衝突後の流体を
速やかに常圧に戻すことにより、分散している無機粒子
の平均粒子径を0.01〜2μmにすることを特徴とす
る無機粒子の水性分散体の製造方法である。更に望まし
くは、上記の衝突後の流体を高速で流動させて速やかに
常圧に戻すことにより、分散している無機粒子の平均粒
子径を0.01〜2μmにすることを特徴とする無機粒
子の水性分散体の製造方法である。衝突は、例えば、予
備分散体を複数の管路により導いて合流させる高圧ホモ
ジナイザーを用いることにより実現される。図1(a)
に、2本の管路11,12 によって予備分散体を導き、上記
の圧力で衝突させた後、排出管30内を高速で移送した
後、2本の分岐管路21,22 に分岐させて、不図示の回収
槽に回収する高圧ホモジナイザーの概念を示す。同図
(b)は、本管10a から分岐させた2本の分岐管11a,11
b により導い、オリフィス部を通過させて衝突させた
後、上方へ排出する場合の例である。これらの場合は、
予備分散体どうしの衝突となる。なお、予備分散体を壁
面に衝突させる装置を使用してもよい。衝突後の流体を
速やかに常圧に戻すためには、例えば、衝突位置から高
速で流動させて十分に大きな容器内に回収すればよい。
According to the present invention, inorganic particles synthesized by a gas phase method are added to an aqueous medium and predispersed,
By colliding at a pressure of 100 to 3000 kg / cm 2 , the average particle size of the dispersed inorganic particles is reduced to 0.01.
A method for producing an aqueous dispersion of inorganic particles, characterized in that the thickness of the aqueous dispersion is set to 2 μm. Desirably, an aqueous dispersion of inorganic particles, wherein the average particle diameter of the dispersed inorganic particles is adjusted to 0.01 to 2 μm by quickly returning the fluid after the collision to normal pressure. Is the way. More preferably, the average particle diameter of the dispersed inorganic particles is adjusted to 0.01 to 2 μm by causing the fluid after the collision to flow at high speed and quickly return to normal pressure. Is a method for producing an aqueous dispersion. The collision is realized by using, for example, a high-pressure homogenizer that guides the predispersion through a plurality of conduits and joins them. FIG. 1 (a)
Then, the predispersion is guided by the two pipes 11 and 12 and collides with the above-mentioned pressure. After being transferred at a high speed in the discharge pipe 30, the predispersion is branched into the two branch pipes 21 and 22. The concept of a high-pressure homogenizer to be recovered in a recovery tank (not shown) is shown. FIG. 3B shows two branch pipes 11a and 11b branched from the main pipe 10a.
This is an example of a case where the liquid is guided upward by b, passes through the orifice portion, collide, and then is discharged upward. In these cases,
Preliminary dispersions collide with each other. In addition, you may use the apparatus which makes a preliminary | backup dispersion object collide with a wall surface. In order to quickly return the fluid after collision to normal pressure, for example, the fluid may be flowed at a high speed from the collision position and collected in a sufficiently large container.

【0005】以下、本発明を詳細に説明する。 1.気相法無機粒子.本発明で用いることのできる気相
法無機粒子としては、ヒュームド法(高温火炎加水分解
法)や、ナノフェーズテクノロジー社法(金属蒸発酸化
法)等で合成した気相法無機粒子が、高純度であるため
好ましい。気相法無機粒子としては、酸化ケイ素、酸化
アルミニウム、酸化チタン、酸化ジルコニウム、酸化ア
ンチモン、酸化クロム、酸化ゲルマニウム、酸化バナジ
ウム、酸化タングステン、酸化鉄、酸化セリウムなど金
属酸化物が例示できる。これらの中で、特に好ましいも
のは、酸化ケイ素、酸化アルミニウム、酸化チタン、酸
化セリウムである。分散に供する気相法無機粒子は、一
般には粉体であり、小さな粒子(1次粒子という)の凝
集体(2次粒子という)として存在している。この1次
粒子の平均粒子径は、通常、0.005〜1μmであ
る。
Hereinafter, the present invention will be described in detail. 1. Vapor phase inorganic particles. Vapor-phase inorganic particles that can be used in the present invention include high-purity inorganic particles synthesized by a fumed method (high-temperature flame hydrolysis method) or a nanophase technology company method (metal evaporative oxidation method). Is preferred. Examples of vapor phase inorganic particles include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, antimony oxide, chromium oxide, germanium oxide, vanadium oxide, tungsten oxide, iron oxide, and cerium oxide. Among them, particularly preferred are silicon oxide, aluminum oxide, titanium oxide and cerium oxide. The vapor-phase inorganic particles to be dispersed are generally powders and exist as aggregates (secondary particles) of small particles (primary particles). The average particle diameter of the primary particles is usually 0.005 to 1 μm.

【0006】2.予備分散工程.本発明では、先ず第一
に気相法無機粉体を水系媒体中に予備分散する工程が必
要である。濃度としては、好ましくは3〜70重量%で
あり、この範囲にあると分散体の製造に適し、さらに好
ましくは4〜60重量%である。濃度が低すぎると、分
散効率が悪いため、得られた無機粒子の水性分散体が不
安定になり易い。一方、濃度が高すぎると、予備分散工
程での水が少なすぎるため、無機粒子を十分に湿潤化で
きない場合があり、また分散液が極端に増粘したりゲル
化して流動化しなくなる場合がある。本発明の予備分散
工程で用いることのできる装置は特に限定されないが、
大量に気相法無機粒子を予備分散する場合は、粉体を吸
引しながら水系媒体中に直接分散できる装置として、粉
体導入混合分散機(たとえば商品名ジェットストリーム
ミキサー(三田村理研工業(株))が好ましく用いられ
る。また固形分濃度を高く予備分散する目的の場合は、
混練機やディスパーを用いることが好ましい。特に、遊
星式歯車運動を行うブレードの混練機と高速回転翼のデ
ィスパーを組み合わせた装置(たとえば商品名プラネタ
リーディスパ(浅田鉄工(株);複数の攪拌ブレードが
各々の軸(副軸)の回りを自転しつつ共通の主軸の回り
を公転する遊星方式の混練機を有する装置)、T.K.
ハイビスディスパーミックス(特殊機化工業(株))が
好ましく用いることができる。上記予備分散工程で用い
る装置は、気相法無機粒子の水性分散体中への金属汚染
をできるだけ防ぐため、ポリウレタンやテフロンやエポ
キシ樹脂等のライニングや、ジルコニア等のセラミック
スライニングを、内壁や撹拌羽根等の接液部に施して耐
磨耗性を高めたものが好ましい。また、予備分散工程
に、直径0.1〜10mmのビーズを使用するビーズミ
ルを用いてもよい。ビーズミルに於いて使用されるビー
ズは、直径が通常0.1〜10mmのものであり、好ま
しくは0.2〜5mmのものである。直径が0.1mm
より小さいと、得られる無機粒子の水性分散体とビーズ
の分離が困難となる。10mmより大きいと、衝突回数
が少なすぎるため分散効率が低くなるばかりでなく、ビ
ーズが割れて破片が製品である無機粒子の水性分散体中
に混入することがある。ビーズの材料としては、例え
ば、無アルカリガラス、アルミナ、ジルコン、ジルコニ
ア、チタニア、チッ化ケイ素が好ましい。ビーズミルの
ローターやベッセル(内筒)は、ポリウレタン等の樹脂
ライニングや、ジルコニア等のセラミックスライニング
を施して、耐磨耗性を高めたものが好ましい。これら予
備分散工程は1種類のものを多数回実施しても、また、
複数の異なる装置を組合せ、1回又は複数回処理しても
よい。
[0006] 2. Preliminary dispersion step. In the present invention, first, a step of pre-dispersing the vapor-phase inorganic powder in an aqueous medium is required. The concentration is preferably from 3 to 70% by weight, and within this range, it is suitable for producing a dispersion, and more preferably from 4 to 60% by weight. If the concentration is too low, the dispersion efficiency is poor, and the aqueous dispersion of the obtained inorganic particles tends to be unstable. On the other hand, if the concentration is too high, the amount of water in the pre-dispersion step is too small, so that the inorganic particles may not be sufficiently wetted, or the dispersion may become extremely thick or gel and may not be fluidized. . The apparatus that can be used in the preliminary dispersion step of the present invention is not particularly limited,
When preliminarily dispersing a large amount of the inorganic particles in the gas phase method, a powder introduction mixing / dispersing machine (for example, a jet stream mixer (trade name: Mitamura Riken Kogyo Co., Ltd.) ) Are preferably used, and for the purpose of pre-dispersing a high solid content,
It is preferable to use a kneader or a disper. In particular, a device that combines a blade kneader that performs a planetary gear motion and a high-speed rotating blade disperser (for example, a planetary disperser (trade name: Asada Tekko Co., Ltd .; a plurality of stirring blades around each axis (sub-axis)) Having a planetary-type kneader that revolves around a common main shaft while rotating.), TK.
Hibis Dispermix (Special Kika Kogyo Co., Ltd.) can be preferably used. The apparatus used in the pre-dispersion step includes a lining made of polyurethane, Teflon, epoxy resin or the like, or a ceramic lining made of zirconia or the like, in order to prevent metal contamination in the aqueous dispersion of the vapor-phase inorganic particles as much as possible. It is preferable to use a material which is applied to a liquid contact part such as the above so as to enhance abrasion resistance. In the preliminary dispersion step, a bead mill using beads having a diameter of 0.1 to 10 mm may be used. The beads used in the bead mill have a diameter of usually 0.1 to 10 mm, preferably 0.2 to 5 mm. 0.1mm diameter
If it is smaller, separation of the resulting aqueous dispersion of inorganic particles and beads becomes difficult. If it is larger than 10 mm, the number of collisions is too small, so that not only the dispersion efficiency is lowered, but also the beads are cracked and fragments may be mixed into the aqueous dispersion of inorganic particles as a product. As the material of the beads, for example, alkali-free glass, alumina, zircon, zirconia, titania, and silicon nitride are preferable. The rotor or vessel (inner cylinder) of the bead mill is preferably provided with a resin lining such as polyurethane or a ceramic lining such as zirconia to improve abrasion resistance. These pre-dispersion steps can be performed one type many times,
A plurality of different devices may be combined and processed once or multiple times.

【0007】3.高圧衝突による分散(本分散)工程.
前記の予備分散で得られた分散体は、次に、この本分散
に供される。即ち、100〜3000Kg/cm2 の圧
力で衝突させることにより、分散している無機粒子の平
均粒子径を0.01〜2μmにする処理に供される。望
ましくは、衝突後の流体を衝突位置から高速で取り除い
て速やかに常圧に戻すことにより、分散している無機粒
子の平均粒子径を0.01〜2μmにする処理に供され
る。例えば、予備分散体は、100〜3000kg/c
2 に加圧する高圧ホモジナイザーによって処理され
る。なお、高圧ホモジナイザーの原理は、図1(a)
(b)に即して先述した通りである。本発明に於いて使
用できる高圧ホモジナイザーの例としては、マントンガ
ウリンホモジナイザー(同栄商事(株))、ベルトリホ
モジナイザー(日本精機製作所(株))、マイクロフル
イダイザー(みづほ工業(株))、ナノマイザー(月島
機械(株))、ジーナスPY(白水化学工業(株))、
システムオーガナイザー(日本ビーイーイー(株))、
アルティマイザー(伊藤忠産機(株))などの商品名で
市販のものが例示できる。これらの中で、分散処理する
ユニットの接液部が焼結ダイヤモンドまたは単結晶ダイ
ヤモンドであることが好ましい。分散処理する部分の接
液部分がセラミックスや金属の場合、磨耗のために液の
オリフィス(図1(b)参照)が広がり、その結果、圧
力が低くなって分散が不十分となり易い。また磨耗した
異物が分散体に混入するため、分散体の純度が低下して
実用上問題となる。高圧ホミジナイザー等を用いて印加
される圧力は、100〜3000kg/cm2 であり、
好ましくは200〜2000kg/cm2 である。圧力
が100kg/cm2 未満では分散が不十分であり、3
000kg/cm2 を超えると設備が大型化して処理コ
ストが高くなるため不利である。本分散では、高圧ホモ
ジナイザーによる処理を複数回施してもよい。
[0007] 3. Dispersion (main dispersion) process by high-pressure collision.
The dispersion obtained in the preliminary dispersion is then subjected to the main dispersion. That is, the particles are subjected to a collision at a pressure of 100 to 3000 Kg / cm 2 to be subjected to a treatment for reducing the average particle diameter of the dispersed inorganic particles to 0.01 to 2 μm. Desirably, the fluid after collision is removed from the collision position at a high speed and quickly returned to normal pressure, so that the dispersed inorganic particles are subjected to a process of reducing the average particle diameter to 0.01 to 2 μm. For example, the pre-dispersion is 100-3000 kg / c.
Treated by a high pressure homogenizer pressurizing to m 2 . The principle of the high-pressure homogenizer is shown in FIG.
As described above with reference to (b). Examples of the high-pressure homogenizer that can be used in the present invention include a mantongaurin homogenizer (Doei Shoji Co., Ltd.), a belt re-homogenizer (Nippon Seiki Seisakusho Co., Ltd.), a microfluidizer (Mizuho Industry Co., Ltd.), and a nanomizer. (Tsukishima Kikai Co., Ltd.), Genus PY (Hakusui Chemical Industry Co., Ltd.),
System organizer (Japan BEE Co., Ltd.),
Commercially available products can be exemplified by trade names such as Ultimateizer (Itochu Sanki Co., Ltd.). Among these, it is preferable that the liquid contact part of the unit to be subjected to the dispersion treatment is sintered diamond or single crystal diamond. When the liquid-contacting portion of the portion to be dispersed is made of ceramics or metal, the orifice (see FIG. 1B) of the liquid expands due to abrasion, and as a result, the pressure is reduced and the dispersion is likely to be insufficient. Further, since the worn foreign matter is mixed into the dispersion, the purity of the dispersion is reduced, which is a practical problem. The pressure applied using a high-pressure homogenizer or the like is 100 to 3000 kg / cm 2 ,
Preferably it is 200 to 2000 kg / cm 2 . If the pressure is less than 100 kg / cm 2 , the dispersion is insufficient, and 3
If it exceeds 000 kg / cm 2 , the equipment becomes large and the processing cost becomes high, which is disadvantageous. In this dispersion, the treatment with a high-pressure homogenizer may be performed plural times.

【0008】4.酸又はアルカリの添加(好ましい付
加).本発明では、本発明の水性分散体の製造工程での
酸又はアルカリの添加時期は特に限定されるものではな
いが、例えば、予備分散前の水系媒体、予備分散中、予
備分散後で本分散前の予備分散体、本分散中、又は本分
散後の分散体の少なくともいずれか1つに酸又はアルカ
リを添加して、得られる水性分散体のpHが最終的に2
〜12の範囲になるようにすることが好ましい。その結
果、得られる水性分散体の分散安定性が一段と向上す
る。目的とする用途により好ましいpHが異なるが、好
ましくはpH3〜11の範囲である。pH2より低くし
たり、pH12より高くすると無機粒子が溶解したり、
コロイド安定性が不十分で凝集する傾向がある。添加の
時期は、上記のいずれか1つの段階でもよいし2または
3の段階でもよい。いずれの場合も、酸又はアルカリが
添加される水系媒体、予備分散体、又は分散体を攪拌し
ながら、酸又はアルカリを添加することが好ましい。ま
た、酸又はアルカリの添加を本分散の後に行う場合は、
局所的に濃度が高くなったショックで分散体中の一部の
無機粒子が凝集を起こすことがある。そのため、酸又は
アルカリ添加後に、再度、本分散と同様の分散処理を施
すか、ホモミキサーやディスパー等の高速攪拌処理を施
すことが好ましい。酸としては塩酸、硝酸、硫酸、リン
酸等の無機酸、酢酸、フタル酸、アクリル酸、メタクリ
ル酸、クロトン酸、ポリアクリル酸、マレイン酸、ソル
ビン酸等の有機酸等を用いることができる。この中でも
特に好ましいものは1価の酸である塩酸、硝酸、酢酸で
ある。アルカリとしては、例えば、水酸化カリウム、水
酸化ナトリウム、水酸化リチウム、アンモニアなど無機
塩基およびエチレンジアン、トリエチルアミン、ピペラ
ジンなどのアミン類が使用できる。
[0008] 4. Addition of acid or alkali (preferred addition). In the present invention, the timing of adding the acid or alkali in the production process of the aqueous dispersion of the present invention is not particularly limited, for example, the aqueous medium before the preliminary dispersion, during the preliminary dispersion, after the preliminary dispersion, the main dispersion An acid or alkali is added to at least one of the pre-dispersion before, during the main dispersion, or after the main dispersion, and the pH of the resulting aqueous dispersion finally becomes 2
It is preferable to set the range to の 12. As a result, the dispersion stability of the obtained aqueous dispersion is further improved. The preferred pH varies depending on the intended use, but is preferably in the range of pH 3 to 11. If it is lower than pH 2 or higher than pH 12, the inorganic particles will be dissolved,
Colloidal stability is poor and tends to aggregate. The timing of the addition may be any one of the above stages, or may be the second or third stage. In any case, it is preferable to add the acid or alkali while stirring the aqueous medium, predispersion, or dispersion to which the acid or alkali is added. When the addition of acid or alkali is performed after the main dispersion,
Some inorganic particles in the dispersion may agglomerate due to a locally increased shock. For this reason, it is preferable that after the addition of the acid or the alkali, the same dispersion treatment as in the main dispersion or high-speed stirring treatment such as a homomixer or a disper is performed. As the acid, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid, phthalic acid, acrylic acid, methacrylic acid, crotonic acid, polyacrylic acid, maleic acid, and sorbic acid can be used. Among them, particularly preferred are monovalent acids such as hydrochloric acid, nitric acid and acetic acid. As the alkali, for example, inorganic bases such as potassium hydroxide, sodium hydroxide, lithium hydroxide, and ammonia, and amines such as ethylenediane, triethylamine, and piperazine can be used.

【0009】5.製品の好ましい範囲.本発明の方法に
よって得られる無機粒子の水性分散体の2次粒子の平均
粒子径は、0.01〜2μm、好ましくは0.02〜1
μm、更に好ましくは、0.03〜0.8μmである。
0.01μm未満であると無機粒子の水性分散体の有す
る粘度が非常に高くなり良好な分散安定性が得られな
い。一方、2μmを超えると、安定性が悪く沈降が生じ
る。この粒子径は、無機粒子原料の種類の選択、本分散
及び/又は予備分散の工程での条件、高圧ホモジナイザ
ーを用いる場合には該高圧ホモジナイザーの圧力および
処理回数等によりコントロールできる。 6.有用性 本発明により得られた気相法無機粒子の水性分散体は、
たとえば、化粧品、塗料、コーティング剤、半導体ウェ
ーハの研磨用スラリー等に用いることができる。
[0009] 5. Preferred range of products. The average particle diameter of the secondary particles of the aqueous dispersion of inorganic particles obtained by the method of the present invention is 0.01 to 2 μm, preferably 0.02 to 1 μm.
μm, and more preferably 0.03 to 0.8 μm.
If it is less than 0.01 μm, the viscosity of the aqueous dispersion of inorganic particles becomes extremely high, and good dispersion stability cannot be obtained. On the other hand, if it exceeds 2 μm, stability is poor and sedimentation occurs. The particle size can be controlled by selecting the type of the inorganic particle raw material, the conditions in the main dispersion and / or preliminary dispersion steps, and when using a high-pressure homogenizer, the pressure of the high-pressure homogenizer, the number of treatments, and the like. 6. The aqueous dispersion of the vapor phase inorganic particles obtained according to the present invention,
For example, it can be used for cosmetics, paints, coating agents, slurries for polishing semiconductor wafers, and the like.

【0010】[0010]

【発明の実施の形態】以下、本発明を、実施例と比較例
に即して具体的に説明するが、本発明はこれらに限定さ
れるものではない。なお、以下の記載において「部」は
重量部、「%」は「重量%」を表わす。また、無機粒子
の水性分散体中の無機粒子の2次粒子の平均粒子径は、
大塚電子(株)製レーザー粒径解析システムLPA−3
000S/3100を用いて測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these. In the following description, “parts” represents parts by weight, and “%” represents “% by weight”. Further, the average particle diameter of the secondary particles of the inorganic particles in the aqueous dispersion of the inorganic particles,
Otsuka Electronics Co., Ltd. Laser Particle Size Analysis System LPA-3
000S / 3100.

【0011】1.実施例1.ヒュームド法シリカ(アエ
ロジル#50:日本アエロジル(株)製)15kgを、
粉末導入混合分散機(商品名:ジェットストリームミキ
サーTDS,三田村理研工業(株)製)を用いて、吸引
しながらイオン交換水60kg中に予備分散させた。次
に、得られた予備分散体を、焼結ダイヤモンド製分散ユ
ニットを備えた高圧ホモジナイザー(商品名:マイクロ
フルイダイザーM210B,みづほ工業(株)製)を用
いて、圧力800kg/cm2 で本分散処理した。次
に、得られた本分散処理後の分散体を攪拌しながら、濃
度20%の水酸化カリウム水溶液を添加してpH10に
調整した。その後、本分散処理と同じ条件で、再度、高
圧ホモジナイザーを用いる処理を実施した。こうして、
ヒュームド法シリカの水性分散体を得た。得られたヒュ
ームド法シリカの水性分散体の2次粒子の平均粒子径は
0.25μmであった。この水性分散体を25℃で30
日間放置したが、増粘、ゲル化および沈殿物生成のいず
れもまったく認められなかった。 2.実施例2.ヒュームド法アルミナ(Al2 3
C:日本アエロジル(株)製)15kgを、前述のジェ
ットストリームミキサーTDSで吸引しながら、1N硝
酸1.8kgとイオン交換水48.2kg中に予備分散
させた。次に、得られた予備分散体を、単結晶ダイヤモ
ンド製分散ユニットを備えた高圧ホモジナイザー(商品
名:アルティマイザー・HJP−30030、(株)ス
ギノマシン製)を用いて、圧力1500kg/cm2
本分散処理した。得られたアルミナの水性分散体のpH
は4.1で、2次粒子の平均粒子径は0.16μmであ
った。この水性分散体を25℃で30日間放置したとこ
ろ、増粘、ゲル化および沈殿物生成のいずれも認められ
なかった。 3.実施例3.水酸化カリウム粒子60gをイオン交換
水9kgに溶解した水酸化カリウム水溶液を、混練機
(商品名:TKハイビスディスパーミックス,HDM−
3D−20型,特殊機化工業(株)製)で撹拌しなが
ら、ヒュームド法シリカ(アエロジル#90:日本アエ
ロジル(株)製)5kgを、3時間かけて連続的に添加
して予備分散させた。さらに、2時間混練した後、イオ
ン交換水を添加して固形分濃度を30%に希釈した。こ
れを、単結晶ダイヤモンド製分散ユニットを備えた高圧
ホモジナイザー(商品名:ジーナスPYモデルPRO2
−15(白水化学工業(株))を用いて、500kg/
cm2 で、本分散処理した。得られたヒュームド法シリ
カの水性コロイドの平均粒子径は0.19μmであり、
pHは10であった。25℃で30日間の保存テストを
行った結果、増粘やゲル化、沈殿物の問題は全くなかっ
た。 4.実施例4.ヒュームド法アルミナを使用する代わり
に、金属蒸発酸化法アルミナ(商品名・NanoTe
k:ナノフェーズテクノロジー社製,シーアイ化成
(株)扱い)を用いる他は実施例2と全く同じ方法でア
ルミナの水性分散体を得た。このpHは4.2で、2次
粒子の平均粒子径は0.13μmであった。この水性分
散体を25℃で30日間放置したところ、ゲル化及び沈
澱物生成のいずれも認められなかった。
1. Embodiment 1 FIG. 15 kg of fumed silica (Aerosil # 50: manufactured by Nippon Aerosil Co., Ltd.)
Using a powder introduction mixing / dispersing machine (trade name: Jet Stream Mixer TDS, manufactured by Mitamura Riken Industry Co., Ltd.), the mixture was preliminarily dispersed in 60 kg of ion-exchanged water while suctioning. Next, the obtained preliminary dispersion was fully dispersed at a pressure of 800 kg / cm 2 using a high-pressure homogenizer (trade name: Microfluidizer M210B, manufactured by Mizuho Industry Co., Ltd.) equipped with a dispersion unit made of sintered diamond. Processed. Next, an aqueous solution of potassium hydroxide having a concentration of 20% was added to adjust the pH to 10 while stirring the obtained dispersion after the dispersion treatment. Thereafter, a treatment using a high-pressure homogenizer was performed again under the same conditions as the main dispersion treatment. Thus,
An aqueous dispersion of fumed silica was obtained. The average particle size of the secondary particles of the obtained aqueous dispersion of fumed silica was 0.25 μm. The aqueous dispersion is treated at 25 ° C. for 30
After standing for days, none of the thickening, gelling and precipitation was observed. 2. Embodiment 2. FIG. Fumed method alumina (Al 2 O 3.
C: 15 kg of Nippon Aerosil Co., Ltd.) was preliminarily dispersed in 1.8 kg of 1N nitric acid and 48.2 kg of ion-exchanged water while sucking with the above-mentioned jet stream mixer TDS. Next, the obtained preliminary dispersion was subjected to a pressure of 1500 kg / cm 2 using a high-pressure homogenizer (trade name: Ultimizer HJP-30030, manufactured by Sugino Machine Co., Ltd.) equipped with a single crystal diamond dispersion unit. This dispersion processing was performed. PH of the obtained aqueous dispersion of alumina
Was 4.1, and the average particle size of the secondary particles was 0.16 μm. When this aqueous dispersion was allowed to stand at 25 ° C. for 30 days, none of thickening, gelling, and formation of a precipitate was observed. 3. Embodiment 3 FIG. An aqueous potassium hydroxide solution in which 60 g of potassium hydroxide particles were dissolved in 9 kg of ion-exchanged water was mixed with a kneader (trade name: TK Hibis Dispermix, HDM-
While stirring with 3D-20 type, manufactured by Tokushu Kika Kogyo Co., Ltd., 5 kg of fumed silica (Aerosil # 90: manufactured by Nippon Aerosil Co., Ltd.) is added continuously over 3 hours and predispersed. Was. Further, after kneading for 2 hours, ion-exchanged water was added to dilute the solid content to 30%. A high-pressure homogenizer equipped with a dispersing unit made of single crystal diamond (trade name: Genus PY Model PRO2)
-15 (Hakusui Chemical Industry Co., Ltd.)
This dispersion treatment was performed in cm 2 . The average particle size of the obtained aqueous colloid of fumed silica is 0.19 μm,
pH was 10. As a result of conducting a storage test at 25 ° C. for 30 days, there was no problem of thickening, gelling, and precipitation. 4. Embodiment 4. FIG. Instead of using fumed alumina, metal evaporative oxidation alumina (NanoTe
k: An aqueous dispersion of alumina was obtained in exactly the same manner as in Example 2 except that Nanophase Technology Co., Ltd., treated by C-I Kasei Co., Ltd.) was used. This pH was 4.2 and the average particle size of the secondary particles was 0.13 μm. When this aqueous dispersion was allowed to stand at 25 ° C. for 30 days, neither gelling nor formation of a precipitate was observed.

【0012】5.比較例1.実施例1に於いて本分散処
理を実施しないこと以外は、実施例1と同様に処理する
ことで、ヒュームド法シリカの水性分散体の調整を試み
た。得られた水性分散体を放置したところ、30分後
に、全量がゲル化によりまったく流動化しなくなった。
5. Comparative Example 1 An aqueous dispersion of fumed silica was prepared in the same manner as in Example 1 except that this dispersion treatment was not performed in Example 1. When the obtained aqueous dispersion was allowed to stand, after 30 minutes, the whole amount was not fluidized at all due to gelation.

【0013】[0013]

【発明の効果】以上の通り、本発明の製造方法によれ
ば、長期にわたり安定で、保存中に増粘、ゲル化、粒子
の沈降分離などの問題が起こらない無機粒子の水性分散
体が得られる。
As described above, according to the production method of the present invention, an aqueous dispersion of inorganic particles which is stable for a long period of time and does not cause problems such as thickening, gelling, sedimentation and separation of particles during storage can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は高圧ホモジナイザーの原理を示す説明
図、(b)は(a)と異なる高圧ホモジナイザーの原理
を示す説明図。
1A is an explanatory diagram illustrating the principle of a high-pressure homogenizer, and FIG. 1B is an explanatory diagram illustrating the principle of a high-pressure homogenizer different from FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気相法により合成した無機粒子を水系媒
体中に添加して予備分散し、100〜3000Kg/c
2 の圧力で衝突させることにより、分散している無機
粒子の平均粒子径を0.01〜2μmにすることを特徴
とする無機粒子の水性分散体の製造方法。
1. An inorganic particle synthesized by a gas phase method is added to an aqueous medium and preliminarily dispersed, and 100 to 3000 kg / c.
A method for producing an aqueous dispersion of inorganic particles, wherein the average particle diameter of dispersed inorganic particles is adjusted to 0.01 to 2 μm by colliding at a pressure of m 2 .
JP9238969A 1997-05-07 1997-08-19 Production of aqueous dispersion of inorganic particles Pending JPH1157521A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9238969A JPH1157521A (en) 1997-08-19 1997-08-19 Production of aqueous dispersion of inorganic particles
KR10-1998-0014940A KR100510815B1 (en) 1997-05-07 1998-04-27 Aqueous Dispersions of Inorganic Particles and Process for Producing the Same
DE69832124T DE69832124T2 (en) 1997-05-07 1998-05-04 Production process for aqueous dispersion sludge with inorganic particles
EP98108093A EP0876841B1 (en) 1997-05-07 1998-05-04 Production method for aqueous dispersion slurry of inorganic particles
TW087106900A TW480188B (en) 1997-05-07 1998-05-05 Method for producing aqueous dispersion slurry of inorganic particles
US09/072,666 US5967964A (en) 1997-05-07 1998-05-05 Aqueous dispersion slurry of inorganic particles and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9238969A JPH1157521A (en) 1997-08-19 1997-08-19 Production of aqueous dispersion of inorganic particles

Publications (1)

Publication Number Publication Date
JPH1157521A true JPH1157521A (en) 1999-03-02

Family

ID=17037993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9238969A Pending JPH1157521A (en) 1997-05-07 1997-08-19 Production of aqueous dispersion of inorganic particles

Country Status (1)

Country Link
JP (1) JPH1157521A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055131A (en) * 1999-02-03 2000-09-05 유현식 Method for preparing metaloxide slurry for semiconductor element cmp
JP2003054935A (en) * 2001-08-09 2003-02-26 Denki Kagaku Kogyo Kk High concentration silica slurry and method for producing silica slurry
KR100572138B1 (en) * 2002-02-07 2006-04-19 데구사 아게 Aqueous dispersion for chemical mechanical planarization, preparation method thereof and chemical mechanical planarization method using the dispersion
JP2006225584A (en) * 2005-02-21 2006-08-31 Teijin Ltd Process for production glycol slurry for polyester, polyester resin composition and polyester film
WO2008020507A1 (en) * 2006-08-16 2008-02-21 Asahi Glass Company, Limited Method of recovering abrasive from abrasive slurry waste liquid and apparatus therefor
US7378349B2 (en) 2004-04-12 2008-05-27 Jsr Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2011506245A (en) * 2007-12-12 2011-03-03 エボニック デグサ ゲーエムベーハー Method for producing silicon dioxide dispersion
JP2012148973A (en) * 2004-05-04 2012-08-09 Cabot Corp Method of preparing aggregate metal oxide particle dispersion having desired aggregate particle diameter
JP2015188853A (en) * 2014-03-28 2015-11-02 株式会社スギノマシン Wet micronization method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055131A (en) * 1999-02-03 2000-09-05 유현식 Method for preparing metaloxide slurry for semiconductor element cmp
JP2003054935A (en) * 2001-08-09 2003-02-26 Denki Kagaku Kogyo Kk High concentration silica slurry and method for producing silica slurry
KR100572138B1 (en) * 2002-02-07 2006-04-19 데구사 아게 Aqueous dispersion for chemical mechanical planarization, preparation method thereof and chemical mechanical planarization method using the dispersion
US7378349B2 (en) 2004-04-12 2008-05-27 Jsr Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2012148973A (en) * 2004-05-04 2012-08-09 Cabot Corp Method of preparing aggregate metal oxide particle dispersion having desired aggregate particle diameter
JP2006225584A (en) * 2005-02-21 2006-08-31 Teijin Ltd Process for production glycol slurry for polyester, polyester resin composition and polyester film
WO2008020507A1 (en) * 2006-08-16 2008-02-21 Asahi Glass Company, Limited Method of recovering abrasive from abrasive slurry waste liquid and apparatus therefor
JPWO2008020507A1 (en) * 2006-08-16 2010-01-07 旭硝子株式会社 Abrasive recovery method and apparatus from abrasive slurry waste liquid
JP2011506245A (en) * 2007-12-12 2011-03-03 エボニック デグサ ゲーエムベーハー Method for producing silicon dioxide dispersion
JP2015188853A (en) * 2014-03-28 2015-11-02 株式会社スギノマシン Wet micronization method

Similar Documents

Publication Publication Date Title
KR100510815B1 (en) Aqueous Dispersions of Inorganic Particles and Process for Producing the Same
US7169322B2 (en) Aqueous dispersion, process for its production and use
RU2386587C2 (en) Aluminium oxide dispersion
KR100526916B1 (en) An aqueous dispersion, and processes for preparing and using the same
TWI242589B (en) Dispersion for chemical mechanical polishing
JPH1157521A (en) Production of aqueous dispersion of inorganic particles
JP5453300B2 (en) Method for producing silicon dioxide dispersion
TW486379B (en) Aqueous dispersion slurry of inorganic particles and production methods thereof
US6398404B1 (en) Method of producing fine particle dispersions
JP2000501120A (en) TiO 2 Lower Shearing of slurry
TW466128B (en) Method and system of manufacturing slurry for polishing, and method and system of manufacturing semiconductor devices
US7892510B2 (en) Silicon dioxide dispersion
JP2000345144A (en) Abrasive and polishing
JP3603553B2 (en) Method for producing aqueous dispersion
JPH10310415A (en) Production of aqueous dispersion of silica
JPH1157454A (en) Preparation of aqueous dispersion of inorganic particle
JP3849261B2 (en) Method for producing aqueous dispersion
JPH09286974A (en) Production of abrasive
JP4428473B2 (en) Method for producing water-containing solid substance of vapor-phase inorganic oxide particles and polishing slurry
JP2000000458A (en) Water based dispersion and measuring method of coarse particle in water based dispersion
JP2003210970A (en) Method for manufacturing colloidal fine particle slurry
JPH03215312A (en) Production of high purity silica sol