JPH1157489A - Reinforcing method of exhaust gas denitrification catalyst - Google Patents

Reinforcing method of exhaust gas denitrification catalyst

Info

Publication number
JPH1157489A
JPH1157489A JP9222663A JP22266397A JPH1157489A JP H1157489 A JPH1157489 A JP H1157489A JP 9222663 A JP9222663 A JP 9222663A JP 22266397 A JP22266397 A JP 22266397A JP H1157489 A JPH1157489 A JP H1157489A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
sodium silicate
gas inlet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9222663A
Other languages
Japanese (ja)
Inventor
Meiji Ito
明治 伊東
Katsuhiro Yashiro
克洋 矢代
Shigeru Tominaga
成 冨永
Tadaaki Mizoguchi
忠昭 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9222663A priority Critical patent/JPH1157489A/en
Publication of JPH1157489A publication Critical patent/JPH1157489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcing method of an exhaust gas denitrification catalyst which can easily protect and reinforce an inner surface of an exhaust gas inlet in a catalyst with sodium silicate and uniformly coat a surface of the catalyst with a protective coating layer including the sodium silicate and a particulate matter without regard to kinds and property of the particulate matter. SOLUTION: In a method of reinforcing with sodium silicate an exhaust gas inlet in an exhaust gas denitrification catalyst having a honeycomb shape or a plate shape and containing titanium oxide as a primary constituent, (1) the exhaust gas inlet in the catalyst is impregnated with an aqueous solution of at least one of sulfate, nitrate and acetate of a metal or metal oxide and subjected to heating decomposition before being impregnated with sodium silicate. (2) Or, protective layers containing the sodium silicate and a particulate matter is formed on the surface of the exhaust gas inlet in the catalyst as a lamination of layers of a low density and a high density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガス脱硝触媒の強
化方法に係り、特に触媒の排ガス入口部を強化して排ガ
スの煤塵による触媒の磨耗を低減することができる排ガ
ス脱硝触媒の強化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for strengthening an exhaust gas denitration catalyst, and more particularly to a method for strengthening an exhaust gas denitration catalyst capable of strengthening an exhaust gas inlet portion of the catalyst and reducing catalyst abrasion due to exhaust gas dust.

【0002】[0002]

【従来の技術】石炭、石油、廃棄物等を燃焼して生成す
る排ガス中には有害な窒素酸化物が含まれているため、
多量の排ガスを大気に放出する際には、あらかじめ、排
ガス脱硝処理装置で処理し、窒素酸化物を除去して無害
化する必要がある。排ガス脱硝処理装置としては、板状
またはハニカム形状を有する酸化チタンを主成分とする
排ガス脱硝触媒を排ガス煙道に設け、アンモニアガスを
添加した排ガスを通じて窒素酸化物を無害な窒素に転じ
る脱硝装置が普及している。
2. Description of the Related Art Exhaust gas generated by burning coal, petroleum, waste, etc. contains harmful nitrogen oxides.
When releasing a large amount of exhaust gas to the atmosphere, it is necessary to treat the waste gas with an exhaust gas denitration apparatus in advance to remove nitrogen oxides and render the exhaust gas harmless. As the exhaust gas denitration treatment device, there is a denitration device that installs an exhaust gas denitration catalyst containing titanium oxide having a plate shape or a honeycomb shape as a main component in an exhaust gas flue and converts nitrogen oxides into harmless nitrogen through exhaust gas to which ammonia gas is added. Widespread.

【0003】排ガス脱硝触媒は、排ガスと接触すると排
ガス中の煤塵で磨耗して損傷し、特に煤塵が衝突する排
ガス入口部分の触媒の損傷が大きくなる。煤塵による損
傷は石炭焚ボイラの排ガスのように煤塵濃度が高く、し
かも硅砂のように堅い物質を含む排ガスにおいて顕著で
ある。このような問題は、触媒の耐久性が向上し、触媒
を長期間使用できるようになったため、近年、特に顕在
化している。触媒の排ガス入口における損傷を低減する
一つの方法として、触媒の端部に、強固な金属またはセ
ラミック製で触媒と同じ形状の保護構造物を設置し、触
媒を煤塵から保護する方法が普及している。しかし、こ
のような方法では保護構造物と触媒との位置を完全に一
致させる必要があり、一致していない部分があるとその
部分は保護できないという欠点があった。
When the exhaust gas denitration catalyst comes in contact with the exhaust gas, it is worn and damaged by the dust in the exhaust gas, and particularly, the catalyst at the exhaust gas inlet portion where the dust collides is greatly damaged. Damage due to dust is remarkable in exhaust gas having a high dust concentration such as exhaust gas from a coal-fired boiler and containing a hard substance such as silica sand. Such a problem has been particularly noticeable in recent years because the durability of the catalyst has been improved and the catalyst can be used for a long period of time. As one method of reducing damage at the exhaust gas inlet of the catalyst, a method of protecting the catalyst from dust by installing a protective structure made of strong metal or ceramic and having the same shape as the catalyst at the end of the catalyst has become popular. I have. However, in such a method, it is necessary to completely match the positions of the protective structure and the catalyst, and if there is a mismatch, the portion cannot be protected.

【0004】また触媒の排ガス入口部をリン酸アルミニ
ウム、硫酸アルミニウム、珪酸ナトリウム等の強化剤を
用いて強化処理し、触媒本体を保護する方法が提案され
ている。このような方法では保護構造物と触媒との位置
がずれて触媒を保護できなくなるということはなく、特
に、珪酸ナトリウムを用いる場合には、強固な保護膜を
形成できるという長所がある。しかし、アルカリ性の珪
酸ナトリウムと酸性の脱硝触媒が接触すると、これらが
触媒外部表面で反応して脆い酸化珪素と水溶性のナトリ
ウム塩(例えば硫酸ナトリウム)に転じるため、珪酸ナ
トリウムのままで触媒内部に浸透させて触媒内部表面を
強化することができないという問題があった。なお、本
発明では、目視で確認できる触媒の表面を触媒外部表面
といい、触媒内の細孔の表面を触媒内部表面という。
Further, a method has been proposed in which the exhaust gas inlet of the catalyst is strengthened by using a reinforcing agent such as aluminum phosphate, aluminum sulfate, sodium silicate or the like to protect the catalyst body. In such a method, the position of the protective structure and the catalyst are not shifted so that the catalyst cannot be protected. In particular, when sodium silicate is used, there is an advantage that a strong protective film can be formed. However, when alkaline sodium silicate and acidic denitration catalyst come into contact, they react on the outer surface of the catalyst and turn into brittle silicon oxide and water-soluble sodium salt (for example, sodium sulfate). There is a problem that the catalyst cannot be penetrated to strengthen the inner surface of the catalyst. In the present invention, the surface of the catalyst that can be visually confirmed is referred to as a catalyst outer surface, and the surface of pores in the catalyst is referred to as a catalyst inner surface.

【0005】また珪酸ナトリウムによる保護層を触媒表
面に被覆する場合に、その施工が容易ではないという問
題があった。一般に市販されている珪酸ナトリウムは、
水分を含み、施工時には水溶液で取扱われるが、施工
後、これらの水分を完全に乾燥させることが困難であ
り、加熱時に珪酸ナトリウム中の残存水分が気化し、発
泡して被覆層を破壊することがあった。一方、珪酸ナト
リウムを粒状物に混在させて用いることにより、保護強
度が向上し、かつ発泡を防止できることが知られている
(特願昭1−264612号公報)。しかし、珪酸ナト
リウムと混在させる粒状物の種類や粒径の選定を誤ると
施工した被覆層内で乾燥前に重力によって珪酸ナトリウ
ムと粒状物が分離して発泡する傾向にあり、施工可能な
珪酸ナトリウムと粒状物の選択肢に大きな制約があると
いう欠点がある。
[0005] Further, when a protective layer of sodium silicate is coated on the catalyst surface, there is a problem that the construction is not easy. Generally commercially available sodium silicate
It contains water and is treated with an aqueous solution at the time of construction.However, after construction, it is difficult to completely dry the moisture, and the residual moisture in the sodium silicate evaporates during heating, causing foaming and destroying the coating layer. was there. On the other hand, it is known that the use of sodium silicate mixed with granular materials improves the protection strength and prevents foaming (Japanese Patent Application No. 1-264612). However, if the type and particle size of the particulate matter mixed with sodium silicate are incorrectly selected, the sodium silicate and the particulate matter tend to separate and foam due to gravity before drying in the applied coating layer. However, there is a drawback that the choice of the granular material is greatly restricted.

【0006】また市販されている珪酸ナトリウムは水分
量や温度による粘度の変化が大きいため、触媒表面を安
定して均一に被覆するのが容易ではないという問題があ
った。上記のように粒状物と珪酸ナトリウムの組合わせ
の最適化により安定した被覆は可能であるが、厳密な強
化液の調整と管理が必要である。例えば施工方法とし
て、一般には触媒の排ガス入口部分を粒状物と珪酸ナト
リウムの混合液に浸漬して付着させた後、引き上げて乾
燥させる方法が用いられているが、触媒の排ガス入口部
への付着量は混合液の粘度に依存するため、粘度の変化
の大きい混合液では触媒表面を安定して均一に被覆する
のが困難であった。
In addition, commercially available sodium silicate has a problem that it is not easy to coat the catalyst surface stably and uniformly because the viscosity changes greatly depending on the amount of water and the temperature. As described above, stable coating is possible by optimizing the combination of the granular material and sodium silicate, but strict adjustment and control of the strengthening solution are required. For example, as a construction method, generally, a method is used in which the exhaust gas inlet portion of the catalyst is immersed in a mixed solution of the particulate matter and sodium silicate to be attached, and then pulled up and dried, but the catalyst is attached to the exhaust gas inlet portion. Since the amount depends on the viscosity of the mixed solution, it has been difficult to stably and uniformly coat the catalyst surface with a mixed solution having a large change in viscosity.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の問題を解決し、触媒の排ガス入口部の内部表
面を珪酸ナトリウムにより容易に保護強化することがで
きる排ガス脱硝触媒の強化方法および触媒表面に珪酸ナ
トリウムと粒状物を含む保護被覆層を粒状物の種類や性
状等に影響されずに均一に被覆することができる排ガス
脱硝触媒の強化方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for strengthening an exhaust gas denitration catalyst which can easily protect and strengthen the internal surface of an exhaust gas inlet portion of the catalyst with sodium silicate. Another object of the present invention is to provide a method for strengthening an exhaust gas denitration catalyst capable of uniformly coating a protective coating layer containing sodium silicate and particulate matter on a catalyst surface without being affected by the type and properties of the particulate matter.

【0008】[0008]

【課題を解決するための手段】本発明で特許請求される
発明は以下のとおりである。 (1)板状またはハニカム形状を有し、酸化チタンを主
成分とする排ガス脱硝触媒の排ガス入口部を珪酸ナトリ
ウムで強化する方法において、該触媒の排ガス入口部
に、金属または金属酸化物の硫酸塩、硝酸塩および酢酸
塩の少なくとも一つの水溶液を添着させて加熱分解した
後、珪酸ナトリウムを添着させることを特徴とする排ガ
ス脱硝触媒の強化方法。 (2)板状またはハニカム形状を有し、酸化チタンを主
成分とする排ガス脱硝触媒の排ガス入口部を珪酸ナトリ
ウムで強化する方法において、該触媒の排ガス入口表面
に、珪酸ナトリウムと粒状物を含む保護被覆層を、密度
の濃い層と密度の薄い層の重なりで形成することを特徴
とする排ガス脱硝触媒の強化方法。 (3)板状またはハニカム形状を有し、酸化チタンを主
成分とする排ガス脱硝触媒の排ガス入口部を珪酸ナトリ
ウムで強化する方法において、該触媒の排ガス入口部
に、金属または金属酸化物の硫酸塩、硝酸塩および酢酸
塩の少なくとも一つの水溶液を添着させて加熱分解した
後、珪酸ナトリウムと粒状物とからなる保護被覆層を、
密度の濃い層と密度の薄い層の複数の重なりで形成する
ことを特徴とする排ガス脱硝触媒の強化方法。
The invention claimed in the present invention is as follows. (1) In a method for reinforcing an exhaust gas inlet of an exhaust gas denitration catalyst having a plate shape or a honeycomb shape and containing titanium oxide as a main component with sodium silicate, a metal or metal oxide sulfuric acid is added to the exhaust gas inlet of the catalyst. A method for strengthening an exhaust gas denitration catalyst, comprising impregnating at least one aqueous solution of a salt, a nitrate and an acetate, thermally decomposing, and then adhering sodium silicate. (2) A method for reinforcing an exhaust gas inlet portion of an exhaust gas denitration catalyst having a plate shape or a honeycomb shape and containing titanium oxide as a main component with sodium silicate, wherein the exhaust gas inlet surface of the catalyst contains sodium silicate and particulate matter. A method for strengthening an exhaust gas denitration catalyst, wherein a protective coating layer is formed by overlapping a layer having a high density and a layer having a low density. (3) A method of reinforcing a flue gas denitration catalyst having a plate shape or a honeycomb shape and comprising titanium oxide as a main component with sodium silicate, wherein a metal or a metal oxide sulfuric acid is added to the flue gas inlet portion of the catalyst. After impregnating at least one aqueous solution of salt, nitrate and acetate and thermally decomposing, a protective coating layer composed of sodium silicate and particulate matter,
A method for strengthening an exhaust gas denitration catalyst, comprising forming a plurality of layers of a dense layer and a thin layer.

【0009】[0009]

【作用】金属または金属酸化物の硫酸塩、硝酸塩または
酢酸塩の水溶液は、毛管凝縮力によって触媒の細孔内に
斑なく浸透され、触媒内の細孔表面は上記金属化合物で
被覆される。このような金属化合物で被覆された触媒を
加熱分解することにより、触媒内部表面に強固な金属酸
化物層を形成することができる。該金属化合物として
は、アルミニウム、マグネシウム等の金属またはバナジ
ル等の金属酸化物の硫酸塩、硝酸塩または酢酸塩が用い
られる。本発明において、金属または金属酸化物と酸と
の塩を加熱分解することが強固な金属酸化物層を形成す
る上で重要であり、例えば金属の水酸化物を加熱分解し
ても多孔質の層しか形成されず、珪酸ナトリウムと触媒
とを隔てるのに必要な密な層を形成することはできな
い。本発明において、触媒内部表面を金属酸化物層で被
覆した後、珪酸ナトリウム液と接触させることにより、
アルカリ性の珪酸ナトリウムと酸性の触媒とが金属酸化
物層で隔てられ、珪酸ナトリウムと触媒との反応が抑制
されるため、珪酸ナトリウムが珪酸ナトリウムのままで
触媒内に浸透し、触媒内部表面を強化することができ
る。
The aqueous solution of a sulfate, nitrate or acetate of a metal or metal oxide penetrates uniformly into the pores of the catalyst by capillary condensation, and the surface of the pores in the catalyst is coated with the metal compound. By thermally decomposing the catalyst coated with such a metal compound, a strong metal oxide layer can be formed on the inner surface of the catalyst. As the metal compound, a sulfate, nitrate or acetate of a metal such as aluminum or magnesium or a metal oxide such as vanadyl is used. In the present invention, it is important to thermally decompose a salt of a metal or a metal oxide and an acid in order to form a strong metal oxide layer. Only a layer is formed and the dense layer required to separate the sodium silicate from the catalyst cannot be formed. In the present invention, after coating the inner surface of the catalyst with a metal oxide layer, by contacting with a sodium silicate solution,
Since the alkaline sodium silicate and the acidic catalyst are separated by the metal oxide layer and the reaction between the sodium silicate and the catalyst is suppressed, the sodium silicate permeates the catalyst as it is and strengthens the inner surface of the catalyst can do.

【0010】また、本発明では、触媒表面に形成する珪
酸ナトリウムと粒状物とからなる保護被覆層を、密度の
濃い層と薄い層の重なりで形成するため、触媒乾燥途中
における粒状物と珪酸ナトリウムとの分離や加熱時の発
泡が抑制され、均一な被覆層の形成が容易になり、強固
な被覆層を形成することができる。粒状物としては、特
に制約はなく、従来公知のアルミナ粒子、シリカ、マグ
ネシウム、ジルコニア、ムライト等の無機粒子が用いら
れる。触媒表面の被覆層を密度の濃い層と薄い層の重な
りで形成することにより、乾燥前の液状態であっても、
密度が高く粘度の高い層により、密度が薄く粘度の低い
層内の粒状物の動きが制限されるため、粒状物と珪酸ナ
トリウムの分離が抑制されることになる。粒状物と珪酸
ナトリウムが分離しなければ珪酸ナトリウムが単独では
存在しないので加熱時の珪酸ナトリウムが発泡すること
もない。加熱乾燥後は密度の濃い層の重なりで触媒が保
護されるため強固なものとなる。
Further, in the present invention, the protective coating layer composed of sodium silicate and particulate matter formed on the surface of the catalyst is formed by overlapping a dense layer and a thin layer. Separation and foaming during heating are suppressed, a uniform coating layer can be easily formed, and a strong coating layer can be formed. There is no particular limitation on the granular material, and conventionally known inorganic particles such as alumina particles, silica, magnesium, zirconia, and mullite are used. By forming the coating layer on the catalyst surface by overlapping the dense and thin layers, even in the liquid state before drying,
The high-density and high-viscosity layer restricts the movement of the granular material in the low-density and low-viscosity layer, so that separation of the granular material and sodium silicate is suppressed. Unless the particulate matter and sodium silicate are separated, sodium silicate does not exist alone, so that sodium silicate does not foam during heating. After the heating and drying, the catalyst is protected by the overlap of the dense layers, so that the layer becomes strong.

【0011】密度の濃い層と薄い層の重なりからなる被
覆層は、三層以上の重なりからなっていてもよく、触媒
表面に珪酸ナトリウムと粒状物の混合液を繰り返して付
着させることにより形成することができる。例えば、混
合液に触媒を一定間隔で複数回浸漬すれば、触媒表面に
密度の濃い層と薄い層の二層の重なりからなる被覆層を
形成することができる。珪酸ナトリウムと粒状物の混合
液に触媒を浸漬した後に引上げ、数分経過すれば触媒に
付着した被覆層の表層の水分が気化して収縮し、触媒表
層に密度の濃い層が形成される。内層は水分が気化しな
いので密度の薄い層のままである。次に、この触媒を再
度、混合液に浸漬して引上げれば、触媒表面の最初の被
覆層の上に密度の低い層と密度の濃い被覆層がさらに形
成される。結果として、密度の薄い層、濃い層、薄い層
および濃い層の四層の重なりからなる被覆層が形成され
る。珪酸ナトリウムと粒状物の混合液の乾燥では、液内
部の水分の移動が粒状物で遮蔽されるので、液内部の乾
燥が遅くなる代わりに液表層の乾燥が珪酸ナトリウム単
独の場合よりも速まるという特性がある。液表層の乾燥
が速いので触媒浸漬の間隔が短い場合でも、密度の濃い
層と薄い層の重なりからなる被覆層を形成することがで
きる。
[0011] The coating layer consisting of a dense layer and a thin layer may be composed of three or more layers, and is formed by repeatedly applying a mixed solution of sodium silicate and particulate matter to the surface of the catalyst. be able to. For example, if the catalyst is immersed in the mixed solution a plurality of times at regular intervals, it is possible to form a coating layer composed of two layers of a dense layer and a thin layer on the surface of the catalyst. After the catalyst is immersed in a mixed solution of sodium silicate and particulate matter, it is pulled up. After a few minutes, the surface water of the coating layer adhering to the catalyst evaporates and shrinks, forming a dense layer on the catalyst surface layer. The inner layer remains a thin layer because moisture does not evaporate. Next, if the catalyst is immersed again in the mixed solution and pulled up, a low-density layer and a high-density coating layer are further formed on the first coating layer on the catalyst surface. As a result, a coating layer consisting of a four-layer stack of a thin layer, a dark layer, a thin layer and a dark layer is formed. In the drying of a liquid mixture of sodium silicate and particulate matter, the movement of moisture inside the liquid is blocked by the particulate matter, so the drying inside the liquid is slowed down, but the drying of the liquid surface layer is faster than that of sodium silicate alone Has characteristics. Since the drying of the liquid surface layer is fast, even when the interval of catalyst immersion is short, it is possible to form a coating layer composed of an overlap of a dense layer and a thin layer.

【0012】本発明において、被覆層を珪酸ナトリウム
の水溶液の粘度の影響を受けずに安定して均一に被覆す
るためには、珪酸ナトリウムと粒状物の混合液を付着さ
せた物質を、触媒のガス入口部分に接触させる方法で混
合液を触媒に移す方法が好適である。触媒表面への付着
量は、触媒に接触させる物質に付着している液量で調節
され、表面における付着量の分布は、接触させる位置と
面積により調節することができる。このような方法によ
れば、従来のような混合液に浸漬する方法に比べ、混合
液の粘度に影響されないので安定して均一に被覆層を形
成することができる。また触媒の強化が必要な触媒の部
分にだけ接触させることができるので、触媒表面を必要
以上に被覆するのを防止することができる。
In the present invention, in order to coat the coating layer stably and uniformly without being affected by the viscosity of the aqueous solution of sodium silicate, the substance to which the mixed solution of sodium silicate and the particulate matter is adhered is treated with a catalyst. A method in which the mixed solution is transferred to the catalyst by a method of contacting the gas inlet portion is preferable. The amount of adhesion to the catalyst surface is adjusted by the amount of liquid adhering to the substance to be brought into contact with the catalyst, and the distribution of the amount of adhesion on the surface can be adjusted by the position and area of the contact. According to such a method, the coating layer can be formed stably and uniformly since it is not affected by the viscosity of the mixed solution as compared with the conventional method of dipping in the mixed solution. In addition, since the catalyst can be brought into contact only with the portion of the catalyst that needs to be strengthened, it is possible to prevent the catalyst surface from being coated more than necessary.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施例により具体
的に説明するが、本発明はこれらに限定されるものでは
ない。なお、例中の%は特に限定しない限り、重量%を
意味する。また触媒成形体としては、無機繊維を芯材と
して酸化チタンとモリブデンのアンモニウム塩およびバ
ナジウムの硫酸塩を主成分とする未完成の板状触媒を用
いた。該未完成の触媒成形体を温度500℃で焼成する
と厚さ1mmの板状触媒となる。また板状触媒の強度評価
は、風洞内に触媒をガス流れと平行に固定し、石炭燃焼
灰を混合したガスを流速30 m/sec で板状触媒に衝突
させた後、板状触媒の端の磨耗深さ(mm)を測定して評
価した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. Incidentally,% in the examples means% by weight unless otherwise specified. An unfinished plate-shaped catalyst containing inorganic fibers as a core material and ammonium salt of titanium oxide and molybdenum and sulfate of vanadium as main components was used as the catalyst molded body. When the unfinished molded catalyst is fired at a temperature of 500 ° C., a plate-like catalyst having a thickness of 1 mm is obtained. The strength of the plate catalyst was evaluated by fixing the catalyst in the wind tunnel in parallel with the gas flow, impinging a gas mixed with coal combustion ash on the plate catalyst at a flow rate of 30 m / sec, and then measuring the end of the plate catalyst. The abrasion depth (mm) was measured and evaluated.

【0014】[0014]

【実施例】【Example】

実施例1 触媒成形体に硝酸アルミニウム水溶液を含浸させ、温度
500℃で焼成した後にさらに濃度30%の珪酸ナトリ
ウム水溶液を含浸させ、温度350℃で加熱処理して板
状触媒を強化した。 実施例2 触媒成形体に酢酸マグネシウム水溶液を含浸させ、温度
500℃で焼成した後にさらに濃度30%の珪酸ナトリ
ウム水溶液を含浸させ、温度350℃で加熱処理して板
状触媒を強化した。 実施例3 触媒成形体に硫酸バナジルの水溶液を含浸させ、温度5
00℃で焼成した後にさらに濃度30%の珪酸ナトリウ
ム水溶液を含浸させ、温度350℃で加熱処理して板状
触媒を強化した。
Example 1 A molded catalyst was impregnated with an aqueous solution of aluminum nitrate, calcined at a temperature of 500 ° C, further impregnated with an aqueous solution of sodium silicate having a concentration of 30%, and heat-treated at a temperature of 350 ° C to strengthen the plate-like catalyst. Example 2 A shaped catalyst was impregnated with an aqueous solution of magnesium acetate, calcined at a temperature of 500 ° C., further impregnated with an aqueous solution of sodium silicate having a concentration of 30%, and heat-treated at a temperature of 350 ° C. to strengthen the plate-like catalyst. Example 3 A catalyst compact was impregnated with an aqueous solution of vanadyl sulfate,
After calcining at 00 ° C., the sheet catalyst was further impregnated with a 30% aqueous solution of sodium silicate and heat-treated at a temperature of 350 ° C. to strengthen the plate catalyst.

【0015】比較例1 触媒成形体を温度500℃で焼成し、強化処理を行わな
かった。 比較例2 触媒成形体を温度500℃で焼成した後にさらに濃度3
0%の珪酸ナトリウム水溶液を含浸させ、温度350℃
で加熱処理して板状触媒を強化した。
Comparative Example 1 A molded catalyst was fired at a temperature of 500 ° C., and no strengthening treatment was performed. Comparative Example 2 After firing the formed catalyst at a temperature of 500 ° C., the concentration was further increased to 3
Impregnated with 0% sodium silicate aqueous solution, temperature 350 ° C
To strengthen the plate catalyst.

【0016】実施例4 触媒成形体を温度500℃で焼成した後にさらに濃度3
0%の珪酸ナトリウム水溶液とアルミナ粒子を等重量づ
つ混合した調整液に2回浸漬して付着させ、温度350
℃で加熱処理して板状触媒を強化した。 比較例3 実施例4において、珪酸ナトリウム水溶液とアルミナ粒
子の混合液の水分量を減少させて粘度を増加させた液
に、触媒を1回浸漬して実施例4と同じ量を付着させた
以外は実施例4と同様にして板状触媒を強化した。
Example 4 After sintering the molded catalyst at a temperature of 500 ° C., the concentration was further increased to 3%.
A 0% aqueous solution of sodium silicate and alumina particles were immersed twice in an adjusting solution in which the particles were mixed by an equal weight, and adhered thereto.
Heat treatment at ℃ strengthened the plate catalyst. Comparative Example 3 In Example 4, except that the catalyst was immersed once in a liquid whose viscosity was increased by decreasing the water content of a mixed solution of an aqueous solution of sodium silicate and alumina particles, and the same amount as in Example 4 was adhered. In the same manner as in Example 4, the plate catalyst was strengthened.

【0017】実施例5 触媒成形体を温度500℃で焼成し、次いで濃度38%
の珪酸ナトリウム水溶液とアルミナ粒子を2/3の重量
比で混合して調整した液をスポンジ製のペンキ塗り用の
ローラで、1回、触媒の端部を線上に塗布した。次に温
度350℃で加熱処理して板状触媒を強化した。実施例
6実施例5において、混合液の塗布を2回繰り返した以
外は実施例5と同様にして板状触媒を強化した。 比較例4 実施例5で使用した混合液に触媒を1回浸漬して付着さ
せ、温度350℃で加熱処理して板状触媒を強化した。
Example 5 The catalyst compact was calcined at a temperature of 500 ° C. and then a concentration of 38%
A solution prepared by mixing an aqueous solution of sodium silicate and alumina particles at a weight ratio of 2/3 was applied once to the end of the catalyst on a line with a sponge paint application roller. Next, heat treatment was performed at a temperature of 350 ° C. to strengthen the plate catalyst. Example 6 A plate catalyst was strengthened in the same manner as in Example 5 except that the application of the mixture was repeated twice. Comparative Example 4 The catalyst was immersed once in the mixed solution used in Example 5 to adhere thereto, and heat-treated at 350 ° C. to strengthen the plate-like catalyst.

【0018】実施例7 触媒成形体に硝酸アルミニウム水溶液を含浸させ、温度
500℃で焼成した。次いで濃度38%の珪酸ナトリウ
ム水溶液とアルミナ粒子を2/3の重量比で混合して調
整した液をスポンジ製のペンキ塗り用のローラで、2
回、触媒の端部分に線上に塗布した。次に温度350℃
で加熱処理して板状触媒を強化した。
Example 7 A catalyst compact was impregnated with an aqueous solution of aluminum nitrate and fired at a temperature of 500 ° C. Then, a solution prepared by mixing an aqueous solution of sodium silicate having a concentration of 38% and alumina particles at a weight ratio of 2/3 was applied to a sponge paint applying roller for 2 hours.
Once, a line was applied to the end of the catalyst. Next, temperature 350 ° C
To strengthen the plate catalyst.

【0019】<試験例>実施例1〜7および比較例1〜
4で得られた板状触媒の施工幅、厚さおよび強度を表1
に示した。なお、触媒の施工幅は、板状触媒の端から強
化処理が施されている触媒内側までの幅を示す。触媒の
厚さは、未強化の板状触媒(厚さ:1mm)に強化処理し
て付着層を形成した場合の厚さを示す。触媒強度は、磨
耗深さ(mm)で示し、数値が小さいほど強固であること
を示す。
<Test Examples> Examples 1 to 7 and Comparative Examples 1 to
Table 1 shows the working width, thickness and strength of the plate catalyst obtained in Table 4.
It was shown to. The working width of the catalyst indicates the width from the end of the plate-shaped catalyst to the inside of the catalyst subjected to the strengthening treatment. The thickness of the catalyst indicates the thickness when an unreinforced plate-like catalyst (thickness: 1 mm) is subjected to a reinforcing treatment to form an adhesion layer. The catalyst strength is indicated by the wear depth (mm), and the smaller the value, the stronger the catalyst.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から、実施例1〜3では、本発明の強
化処理で触媒内部表面と珪酸ナトリウムの間に金属酸化
物層が形成されたため、触媒の磨耗深さが3mm程度であ
り、強化処理しない触媒(比較例1)の摩耗深さ5.2
mm、珪酸ナトリウム処理だけを施した触媒(比較例2)
の摩耗深さ7.2mmに比較して強化処理効果が大幅に向
上していることがわかる。また珪酸ナトリウム水溶液と
アルミナ粒子の混合液に2回浸漬して付着させ、付着層
を密度の濃い層と薄い層の複数の重なりで形成して強化
処理を施した実施例4では、触媒の磨耗深さが0.3mm
であり、1回の浸漬で形成した同付着量の触媒(比較例
3)の摩耗深さ0.5mmに比較して強化処理効果が向上
することがわかる。
From Table 1, it can be seen that in Examples 1 to 3, the metal oxide layer was formed between the inner surface of the catalyst and sodium silicate by the strengthening treatment of the present invention, so that the wear depth of the catalyst was about 3 mm. 5.2 Wear Depth of Untreated Catalyst (Comparative Example 1)
mm, catalyst treated only with sodium silicate (Comparative Example 2)
It can be seen that the effect of the strengthening treatment was greatly improved as compared with the wear depth of 7.2 mm. Further, in Example 4 in which the coating was immersed twice in a mixed solution of an aqueous solution of sodium silicate and alumina particles and adhered, and the adhered layer was formed by a plurality of overlapping layers of a dense layer and a thin layer and subjected to a strengthening treatment, the catalyst was worn out. 0.3mm depth
It can be seen that the effect of the strengthening treatment is improved as compared with the wear depth of 0.5 mm of the catalyst (Comparative Example 3) having the same adhesion amount formed by one immersion.

【0022】また高濃度の混合液をローラで1回塗布し
て強化処理した触媒(実施例5)の施工幅が1.5mmと
少ないのにも関わらず磨耗深さが0.2mmと小さく、ロ
ーラ塗布による触媒の強化処理効果が大幅に向上するこ
とがわかる。これに対し、比較例4では、同じ混合液を
触媒に浸漬させて処理すると触媒の厚さが2.8mmと大
きくなり、触媒のガス流路を狭めるので許容できない厚
さとなった。また高濃度の混合液をローラで2階塗布し
て強化処理した触媒(実施例6)では磨耗深さは0.1
8mmであり、実施例5の1回だけの塗布の場合より、強
化効果が若干向上することがわかった。さらに触媒内部
に金属酸化物層を形成させた後に高濃度の混合液をロー
ラで2階塗布処理を行った場合(実施例7)の磨耗深さ
は0.13mmであり、金属酸化物層を形成させない場合
(実施例6)よりさらに強化処理効果が向上した。これ
は触媒自体が強固になり、触媒外部表面に付着している
強化層の揺らぎが少なくなったために強固になったと推
定される。
The catalyst (Example 5), which had been coated once with a high-concentration mixed solution with a roller and strengthened, had a small wear width of 0.2 mm despite the small working width of 1.5 mm. It can be seen that the effect of strengthening the catalyst by coating with a roller is greatly improved. On the other hand, in Comparative Example 4, when the same mixed solution was immersed in the catalyst and treated, the thickness of the catalyst was increased to 2.8 mm, and the gas flow path of the catalyst was narrowed, so that the thickness was unacceptable. In the case of the catalyst (Example 6) in which a high concentration mixed solution was applied on the second floor with a roller and reinforced, the wear depth was 0.1.
It was 8 mm, and it was found that the strengthening effect was slightly improved as compared with the case of only one application in Example 5. Further, when a metal oxide layer was formed inside the catalyst and then a high-concentration mixed solution was applied on the second floor using a roller (Example 7), the wear depth was 0.13 mm. The effect of the strengthening treatment was further improved as compared with the case where no formation was performed (Example 6). This is presumed to be due to the fact that the catalyst itself became strong, and the fluctuation of the reinforcing layer adhering to the outer surface of the catalyst was reduced, so that the catalyst became strong.

【0023】[0023]

【発明の効果】本願の請求項1の発明によれば、排ガス
入口部の触媒内部表面を珪酸ナトリウムで容易に保護強
化することができるため、触媒の排ガスの煤塵等に対す
る耐摩耗性を向上させることができる。本願の請求項2
の発明によれば、珪酸ナトリウムと粒状物を含む保護被
覆層を、粒状物の種類や性状等に影響されずに均一に被
覆することができため、排ガスの煤塵等に対する耐摩耗
性に優れた触媒を容易に得ることができる。本願の請求
項3の発明によれば、排ガス入口部の触媒内部表面を珪
酸ナトリウムで容易に保護強化することができ、かつ珪
酸ナトリウムと粒状物を含む保護被覆層を、粒状物の種
類や性状等に影響されずに均一に被覆することができる
ため、触媒の排ガスの煤塵等に対する耐摩耗性を向上さ
せるとともに、このような触媒を容易に得ることができ
る。
According to the first aspect of the present invention, since the inner surface of the catalyst at the exhaust gas inlet can be easily protected and strengthened with sodium silicate, the abrasion resistance of the catalyst against exhaust gas dust and the like is improved. be able to. Claim 2 of the present application
According to the invention, since the protective coating layer containing sodium silicate and particulate matter can be uniformly coated without being affected by the type and properties of the particulate matter, the abrasion resistance to dust and the like of exhaust gas is excellent. A catalyst can be easily obtained. According to the invention of claim 3 of the present application, the inner surface of the catalyst at the exhaust gas inlet can be easily protected and strengthened with sodium silicate, and the protective coating layer containing sodium silicate and the particulate matter is formed by changing the type and properties of the particulate matter. Since the coating can be uniformly applied without being affected by the above-mentioned effects, the abrasion resistance of the exhaust gas of the catalyst to dust and the like can be improved, and such a catalyst can be easily obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝口 忠昭 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tadaaki Mizoguchi 3-36 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi Kure Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 板状またはハニカム形状を有し、酸化チ
タンを主成分とする排ガス脱硝触媒の排ガス入口部を珪
酸ナトリウムで強化する方法において、該触媒の排ガス
入口部に、金属または金属酸化物の硫酸塩、硝酸塩およ
び酢酸塩の少なくとも一つの水溶液を添着させて加熱分
解した後、珪酸ナトリウムを添着させることを特徴とす
る排ガス脱硝触媒の強化方法。
1. A method for reinforcing an exhaust gas inlet portion of an exhaust gas denitration catalyst having a plate shape or a honeycomb shape and comprising titanium oxide as a main component with sodium silicate, wherein a metal or metal oxide is provided at the exhaust gas inlet portion of the catalyst. A method for strengthening an exhaust gas denitration catalyst, which comprises impregnating at least one aqueous solution of a sulfate, nitrate and acetate of the above and thermally decomposing the mixture, and then adhering sodium silicate.
【請求項2】 板状またはハニカム形状を有し、酸化チ
タンを主成分とする排ガス脱硝触媒の排ガス入口部を珪
酸ナトリウムで強化する方法において、該触媒の排ガス
入口表面に、珪酸ナトリウムと粒状物を含む保護被覆層
を、密度の濃い層と密度の薄い層の重なりで形成するこ
とを特徴とする排ガス脱硝触媒の強化方法。
2. A method for reinforcing an exhaust gas inlet portion of an exhaust gas denitration catalyst having a plate shape or a honeycomb shape and comprising titanium oxide as a main component with sodium silicate, wherein sodium silicate and particulate matter are provided on the exhaust gas inlet surface of the catalyst. A method for strengthening an exhaust gas denitration catalyst, characterized by forming a protective coating layer containing a superposed layer of a dense layer and a thin layer.
【請求項3】 板状またはハニカム形状を有し、酸化チ
タンを主成分とする排ガス脱硝触媒の排ガス入口部を珪
酸ナトリウムで強化する方法において、該触媒の排ガス
入口部に、金属または金属酸化物の硫酸塩、硝酸塩およ
び酢酸塩の少なくとも一つの水溶液を添着させて加熱分
解した後、珪酸ナトリウムと粒状物を含む保護被覆層
を、密度の濃い層と密度の薄い層の重なりで形成するこ
とを特徴とする排ガス脱硝触媒の強化方法。
3. A method for reinforcing an exhaust gas inlet portion of an exhaust gas denitration catalyst having a plate shape or a honeycomb shape and comprising titanium oxide as a main component with sodium silicate, wherein a metal or metal oxide is provided at the exhaust gas inlet portion of the catalyst. After impregnating and thermally decomposing at least one aqueous solution of sulfate, nitrate and acetate, a protective coating layer containing sodium silicate and particulate matter is formed by overlapping a dense layer and a thin layer. Characteristic method of strengthening exhaust gas denitration catalyst.
JP9222663A 1997-08-19 1997-08-19 Reinforcing method of exhaust gas denitrification catalyst Pending JPH1157489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9222663A JPH1157489A (en) 1997-08-19 1997-08-19 Reinforcing method of exhaust gas denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9222663A JPH1157489A (en) 1997-08-19 1997-08-19 Reinforcing method of exhaust gas denitrification catalyst

Publications (1)

Publication Number Publication Date
JPH1157489A true JPH1157489A (en) 1999-03-02

Family

ID=16785986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9222663A Pending JPH1157489A (en) 1997-08-19 1997-08-19 Reinforcing method of exhaust gas denitrification catalyst

Country Status (1)

Country Link
JP (1) JPH1157489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
WO2008035663A1 (en) * 2006-09-21 2008-03-27 Hitachi Zosen Corporation Method for production of catalyst and catalyst produced by the method
US7553349B2 (en) * 2005-08-26 2009-06-30 Corning Incorporated Composite coatings for thin-walled ceramic honeycomb structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
US7553349B2 (en) * 2005-08-26 2009-06-30 Corning Incorporated Composite coatings for thin-walled ceramic honeycomb structures
WO2008035663A1 (en) * 2006-09-21 2008-03-27 Hitachi Zosen Corporation Method for production of catalyst and catalyst produced by the method
JP2008073621A (en) * 2006-09-21 2008-04-03 Hitachi Zosen Corp Method of manufacturing catalyst and catalyst manufactured by the method
US7825060B2 (en) 2006-09-21 2010-11-02 Hitachi Zosen Corporation Method for production of catalyst and catalyst produced by the method

Similar Documents

Publication Publication Date Title
EP1735146B1 (en) Porous ceramic filters with catalyst coatings
JP2008529775A (en) Coated ceramic catalyst support and method
JP2007522919A (en) Ceramic structure with hydrophobic coating
JP3389005B2 (en) Nitrogen oxide removal catalyst
RU2553463C2 (en) Method of obtaining deactivation-resistant catalyst for selective catalytic reduction of nox
JP7257483B2 (en) Catalyst-carrying structure and manufacturing method thereof
EP1063003A2 (en) Catalytic structure for purifying exhaust gas
KR100553117B1 (en) Denitration catalyst, process for preparing the same, and exhaust gas purification method
JPH1157489A (en) Reinforcing method of exhaust gas denitrification catalyst
ZA200202734B (en) Ceramic-made filter and process for production thereof.
KR20130137024A (en) Exhaust gas purification device, and exhaust gas purification method using same
JP2019505363A (en) Catalyst and process for preparing the catalyst
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
US7553349B2 (en) Composite coatings for thin-walled ceramic honeycomb structures
JP2001269576A (en) Abrasion-resistant catalyst
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP3837627B2 (en) Method for curing the end of the catalyst
JP3789205B2 (en) NOx removal catalyst and its regeneration method
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JPH0155892B2 (en)
JP2880535B2 (en) Plate catalyst for removing nitrogen oxides, end face reinforcing agent thereof, and method for producing the catalyst
KR101351469B1 (en) Diesel particulate filter coated diesel oxydation catalyst and de-nitrogen oxide catalyst
JPH08299791A (en) Denitration catalyst
WO2020149313A1 (en) Catalyst for exhaust gas purification use
Tylus CeMn/AlSiO ceramic layers on metallic supports for high-temperature catalytic processes