JPH1152258A - Finder - Google Patents

Finder

Info

Publication number
JPH1152258A
JPH1152258A JP9220893A JP22089397A JPH1152258A JP H1152258 A JPH1152258 A JP H1152258A JP 9220893 A JP9220893 A JP 9220893A JP 22089397 A JP22089397 A JP 22089397A JP H1152258 A JPH1152258 A JP H1152258A
Authority
JP
Japan
Prior art keywords
lens
light beam
optical
finder
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9220893A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9220893A priority Critical patent/JPH1152258A/en
Priority to US09/110,681 priority patent/US6141159A/en
Publication of JPH1152258A publication Critical patent/JPH1152258A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4288Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having uniform diffraction efficiency over a large spectral bandwidth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate the aberration of an optical system by the diffraction action of a diffraction optical element, especially, to excellently compensate transverse chromatic aberration. SOLUTION: A 1st lens group L1, a 2nd lens group L2, a 3rd lens group L3, a 1st image inversion optical member L4, a visual field frame S, a 2nd image inversion optical member L5 and an ocular group L6 are arranged in order from an object side. A and A' show axial light beam bundles, B and B' show the light beam bundles at a maximum viewing angle decided by a light beam passage restricting member such as the visual field frame S arranged near a primary image-formation plane and marking within visual field, and C shows a main light beam bisecting the light beam bundle on a meridian cross section. At such a time, a diffraction optical plane is arranged in a lens group satisfying a condition |HD|>|H| assuming that the distance of a maximum zone in the axial light beam bundles A and A' from the optical axis is H and the distance of the off-axis main light beam C bisecting the off-axis light beam bundle at a used maximum surface angle from the optical axis is HD.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばレンズシャ
ッタカメラ用の外部ファインダや肉眼観察光学系に利用
されるファインダに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external finder for a lens shutter camera and a finder used for a visual observation optical system.

【0002】[0002]

【従来の技術】近年、レンズシャッタカメラは撮影光学
系が小型化されたものが多く提案されている。そして、
それに準じてカメラに装着される外部のファインダも小
型でかつ光学性能の良いものが要求されている。
2. Description of the Related Art In recent years, many lens shutter cameras have been proposed in which the photographing optical system is reduced in size. And
Correspondingly, an external finder mounted on a camera is required to be small and have good optical performance.

【0003】一般に、小型なファインダの達成にはレン
ズ枚数の削減と共に、各レンズ群の屈折力を強め変倍時
のレンズ群の移動量を減少する工夫がなされている。し
かし、それは同時に諸収差の発生を招き、結果として高
性能な光学系の達成は困難となってくる。
In general, in order to achieve a small finder, it has been devised to reduce the number of lenses, increase the refractive power of each lens unit, and reduce the amount of movement of the lens unit during zooming. However, it also causes various aberrations, and as a result, it is difficult to achieve a high-performance optical system.

【0004】更に、近年においてレンズシャッタ用の外
部ファインダの光学部品は、コストの低減及び生産性を
考慮して、プラスチック材料が使用されていることが多
くなっている。このようなレンズ材料を選択する自由度
がない中で、コスト及び生産性を犠牲にせずに、光学系
の高性能化、小型化を達成することが重要となってい
る。
Furthermore, in recent years, plastic materials are often used for optical components of an external finder for a lens shutter in consideration of cost reduction and productivity. It is important to achieve high performance and miniaturization of the optical system without sacrificing cost and productivity while there is no freedom to select such a lens material.

【0005】[0005]

【発明が解決しようとする課題】ファインダの光学性能
を考えるとき、ファインダの見え方の善し悪しを決定す
るものとして、残存色収差量の大小が大きな関わりを持
つ。この量が大きいと、観察物体の輪郭に色にじみが出
たりフレア成分が発生したりして、良いファインダ像の
見え方にはならない。
When considering the optical performance of the viewfinder, the magnitude of the residual chromatic aberration has a great influence on the quality of the viewfinder. If this amount is large, color bleeding occurs on the contour of the observation object or a flare component occurs, and the viewfinder image does not look good.

【0006】特に、ファインダの広角化に際しては、画
角が広くなるに従い倍率の色収差が多く発生し、前記し
たコスト、生産性との関わりにより限られた光学材料で
かつ少枚数レンズの構成では、その補正が困難である。
In particular, when the angle of view of the viewfinder is widened, the chromatic aberration of magnification is increased as the angle of view is widened. The correction is difficult.

【0007】一般に、通常の屈折光学素子により実像フ
ァインダの光学性能改善のためには、正の屈折力と負の
屈折力を有するレンズ群の組み合わせを配置することに
より行われるが、更に諸収差の補正をバランス良く行う
には、レンズ枚数を増加することが必要となってくる。
In general, the improvement of the optical performance of a real image finder by a normal refractive optical element is performed by arranging a combination of lens groups having a positive refractive power and a negative refractive power. In order to perform the correction in a well-balanced manner, it is necessary to increase the number of lenses.

【0008】また、光学性能を維持しながらレンズ枚数
の削減を行うためには、非球面レンズの導入が有効とな
る。しかしながら色収差に関しては、その補正のために
はレンズの正、負の屈折力とその材質の異なる分散値の
組み合わせにより決定されるため、その補正効果は望め
ない。
In order to reduce the number of lenses while maintaining optical performance, it is effective to introduce an aspheric lens. However, since the chromatic aberration is corrected by the combination of the positive and negative refractive power of the lens and the dispersion value of the material, the correction effect cannot be expected.

【0009】このような中で、光学材料の分散特性によ
らずに色収差発生量をコントロールし得るものとして、
光学系中に回折光学素子を用いるものが、例えば特開平
6−324262公報等において開示されている。
[0009] Under such circumstances, as a device capable of controlling the amount of chromatic aberration generated irrespective of the dispersion characteristics of the optical material,
An optical system using a diffractive optical element in an optical system is disclosed in, for example, JP-A-6-324262.

【0010】しかしながら、それは写真撮影用の光学系
であり、本発明のようにファインダに用いたものについ
ての提案はなされていない。
However, this is an optical system for photographing, and no proposal has been made for an optical system used for a finder as in the present invention.

【0011】本発明の目的は、回折光学素子を導入し、
その回折作用により光学系の諸収差を補正し、特に前記
した倍率色収差を良好に補正するファインダを提供する
ことにある。
An object of the present invention is to introduce a diffractive optical element,
It is an object of the present invention to provide a finder that corrects various aberrations of an optical system by its diffractive action, and particularly corrects the chromatic aberration of magnification described above.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係るファインダは、物体側から結像系の対
物光学系、像反転光学系、前記対物レンズにより結像さ
れた光線を***行光線とする接眼光学系を有するファイ
ンダ光学系において、軸上光線束における最大輪帯の光
軸からの距離をH、使用最大面角の軸外光線束を2分す
る軸外主光線の光軸からの距離をHDとしたとき、|H
D|>|H|なる条件中に回転対称の回折光学面を配置
したことを特徴とする。
According to the present invention, there is provided a finder for achieving the above-mentioned object, comprising: an objective optical system of an image forming system, an image inverting optical system, and a light beam formed by the objective lens from an object side. In a finder optical system having an eyepiece optical system having near-parallel rays, the distance from the optical axis of the largest annular zone in the on-axis ray bundle is H, and the off-axis chief ray that bisects the off-axis ray bundle with the maximum surface angle used is When the distance from the optical axis is HD, | H
It is characterized in that a rotationally symmetric diffractive optical surface is arranged in a condition of D |> | H |.

【0013】[0013]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment.

【0014】図1は実像式ファインダの構成を簡易的に
示したものである。物体側から順に第1レンズ群L1、
第2レンズ群L2、第3レンズ群L3、第1の像反転光
学部材L4、視野枠S、第2の像反転光学部材L5、接
眼レンズ群L6が配列され、Pはアイポイントとされて
いる。A,A’は軸上の光線束を示し、B、B’は一次
結像面近傍に配置された視野枠S等の光線通過制限部材
や視野範囲のマーキング等によって決定される最大画角
の光線束を示し、Cは子午断面上その光線束を2分する
主光線を示している。接眼レンズ群L6は結像された光
線を***行光線としている。
FIG. 1 schematically shows the structure of a real image type finder. The first lens unit L1, in order from the object side,
A second lens group L2, a third lens group L3, a first image reversing optical member L4, a field frame S, a second image reversing optical member L5, and an eyepiece lens group L6 are arranged, and P is an eye point. . A and A 'indicate axial ray bundles, and B and B' indicate the maximum angle of view determined by a ray passage restricting member such as a field frame S disposed near the primary imaging plane, marking of a field of view, and the like. C indicates a chief ray that bisects the ray bundle on a meridional section. The eyepiece lens group L6 converts the formed light beam into a near-parallel light beam.

【0015】このとき、軸上光線束A、A’における最
大輪帯の光軸からの距離をH、使用最大面角の軸外光線
束を2分する軸外主光線Cの光軸からの距離をHDとし
たとき、次の条件を満足するレンズ群中に回折光学面が
配置されている。
At this time, the distance from the optical axis of the largest annular zone in the on-axis ray bundles A and A 'is H, and the off-axis principal ray C which divides the off-axis ray bundle of the maximum used surface angle into two is from the optical axis. Assuming that the distance is HD, the diffractive optical surface is arranged in a lens group satisfying the following condition.

【0016】 |HD|>|H| …(1) | HD |> | H | (1)

【0017】このように回折光学面をこの範囲中に配置
することにより、軸上光線と軸外光線の回折光学面への
光線入射域を共通使用領域が少なくなるように変化させ
ることができる。従って、倍率色収差の原因となる入射
画角による各波長における倍率変化を回折光学素子の作
用により任意画角において、他の画角に対して影響をあ
まり与えることなく補正を行い、効果的に倍率色収差補
正を行うことが可能となる。
By arranging the diffractive optical surface in this range as described above, it is possible to change the incident area of the on-axis ray and the off-axis ray on the diffractive optical face so that the common use area is reduced. Therefore, the magnification change at each wavelength due to the incident angle of view, which causes the chromatic aberration of magnification, is corrected by the action of the diffractive optical element at an arbitrary angle of view without significantly affecting other angle of view, and the magnification is effectively increased. Chromatic aberration correction can be performed.

【0018】また、像反転光学部材L4、L5には図2
に示すようなペシャンダハプリズムを用いているが、像
反転光学部材L4、L5はポロプリズムのような他の形
状の像反転プリズム又はミラーを用いてもよく、図3に
簡易的に示したような変倍を行う対物レンズ群L7、変
倍を行う再結像レンズ群L8、接眼レンズ群L6から成
る2次結像タイプの実像ファインダとしてもよい。
Further, the image reversing optical members L4 and L5 have the configuration shown in FIG.
However, the image reversing optical members L4 and L5 may use image reversing prisms or mirrors of other shapes such as Porro prisms, as shown in FIG. A secondary image forming type real image finder including an objective lens group L7 for performing magnification, a re-imaging lens group L8 for performing magnification, and an eyepiece lens group L6 may be used.

【0019】図4〜図6は実施例1〜3のそれぞれ広角
状態、中間状態、望遠状態のレンズ断面図を示し、像反
転光学部材L4、L5は展開して示している。対物光学
系を物体側から負の第1レンズ群L1、負の第2レンズ
群L2、正の第3レンズ群L3とし、広角端から望遠端
への変倍に際して第1レンズ群L1は光軸上で固定し、
第2レンズ群L2と第3レンズ群L3は空気間隔が狭ま
るように光軸上の移動を行っている。
FIGS. 4 to 6 show lens cross-sectional views of the first to third embodiments in the wide-angle state, the intermediate state, and the telephoto state, respectively, and the image inverting optical members L4 and L5 are shown in an expanded manner. The objective optical system is composed of a first negative lens unit L1, a second negative lens unit L2, and a third positive lens unit L3 from the object side, and the first lens unit L1 has an optical axis when zooming from the wide-angle end to the telephoto end. Fixed on
The second lens unit L2 and the third lens unit L3 move on the optical axis so as to reduce the air gap.

【0020】実施例1では、第1レンズ群L1の像面側
のレンズの物体側レンズ面、第3レンズ群L3の物体側
のレンズの物体側レンズ面と像面側のレンズの物体側レ
ンズ面、接眼レンズ群L6の物体側レンズ面が非球面と
されている。また、第1レンズ群L1の最も物体側のレ
ンズ面に回折光学面が設けられている。
In the first embodiment, the object-side lens surface of the lens on the image plane side of the first lens unit L1, the object-side lens surface of the object-side lens of the third lens unit L3, and the object-side lens of the lens on the image plane side The surface and the object-side lens surface of the eyepiece lens unit L6 are aspherical. Further, a diffractive optical surface is provided on the lens surface closest to the object in the first lens unit L1.

【0021】実施例2においては、非球面は実施例1と
同様なレンズ面に設けられており、回折光学面は第1レ
ンズ群L1の物体側のレンズの像面側レンズ面に設けら
れている。
In the second embodiment, the aspherical surface is provided on the same lens surface as in the first embodiment, and the diffractive optical surface is provided on the image side lens surface of the object side lens of the first lens unit L1. I have.

【0022】実施例3では、第1レンズ群L1の像面側
のレンズの物体側レンズ面、第3レンズ群L3の像面側
のレンズの物体側レンズ面、接眼レンズ群L6の物体側
レンズ面が非球面とされ、第1レンズ群L1の像面側の
レンズの物体側レンズ面に回折光学面が設けられてい
る。
In the third embodiment, the object-side lens surface of the image-side lens of the first lens unit L1, the object-side lens surface of the image-side lens of the third lens unit L3, and the object-side lens of the eyepiece L6 The surface is aspherical, and a diffractive optical surface is provided on the object-side lens surface of the lens on the image plane side of the first lens unit L1.

【0023】非球面については、Xをレンズ頂点光軸か
ら方向への変位量、hを光軸からの距離、rを曲率半径
とすると、次式で与えられるものとする。ただし、K、
A、B、C、Dは非球面係数である。
The aspherical surface is given by the following equation, where X is the amount of displacement from the lens vertex optical axis to the direction, h is the distance from the optical axis, and r is the radius of curvature. Where K,
A, B, C, and D are aspheric coefficients.

【0024】 X=(h2 /r)/{1+(1−(1+K)・(h/r)2}1/2+A・h2 +B ・h4 +C・h6 +D・h8 …(2) X = (h 2 / r) / {1+ (1− (1 + K) · (h / r) 2 } 1/2 + A · h 2 + B · h 4 + Ch · 6 + D · h 8 (2 )

【0025】回転対称な回折光学面は、hを光軸からの
距離、φ(h)をhにおける位相、λを基準波長(d
線)、その位相係数をC2・iとしたとき次式で表すことが
できる。
In the rotationally symmetric diffractive optical surface, h is the distance from the optical axis, φ (h) is the phase at h, and λ is the reference wavelength (d
Line), and its phase coefficient can be expressed by the following equation when C 2 · i is used.

【0026】 φ(h)=(2π/λ)・(C2・H2 +C4+H4 +C6・H6 +・・・・・・・ +C2・i・H2・i ) …(3) Φ (h) = (2π / λ) · (C 2 · H 2 + C 4 + H 4 + C 6 · H 6 +... + C 2 · i · H 2 · i ) (3) )

【0027】一般に、屈折光学系のアッべ数(分散値)
νdは、d、C、F線の各波長における屈折力をNd、
NC、NFとしたとき、次式で表される。
Generally, the Abbe number (dispersion value) of a refractive optical system
νd is the refractive power at each wavelength of the d, C, and F lines, Nd,
When NC and NF are used, they are expressed by the following equations.

【0028】 νd=(Nd−1)/(NF−NC) …(4) Νd = (Nd−1) / (NF−NC) (4)

【0029】一方、回折光学素子のアッベ数νdは、
d、C、F線の各波長をλd、λC、λFとしたとき、
On the other hand, the Abbe number νd of the diffractive optical element is
When the wavelengths of the d, C, and F lines are λd, λC, and λF,

【0030】 νd=λd/(λF一λC) …(5) Νd = λd / (λF-λC) (5)

【0031】と表され、νd=−3.45となり、任意
波長における分散性は屈折光学系と逆作用を有すること
を示している。
Νd = −3.45, which indicates that the dispersion at an arbitrary wavelength has an effect opposite to that of the refractive optical system.

【0032】また、回折光学素子の主波長(d線)にお
ける近軸的な一次回折光の屈折力ψは、回折光学素子の
位相を表す前式より2次項の係数をC2としたとき、ψ=
−2・C2と表される。
Further, the refractive power ψ of paraxial first-order diffracted light in the main wavelength (d-line) of the diffractive optical element, when the coefficients of the quadratic term from the previous expression representing the phase of the diffraction optical element was C 2, ψ =
Represented as -2 · C 2.

【0033】更に、任意波長をλ、基準波長をλ0 とし
たとき、任意波長の屈折力ψ’は、次式となる。
Further, when the arbitrary wavelength is λ and the reference wavelength is λ 0 , the refractive power 屈折 ′ of the arbitrary wavelength is given by the following equation.

【0034】 ψ’=(λ/λ0 )・(−2・C2) …(6) Ψ ′ = (λ / λ 0 ) · (−2 · C 2 ) (6)

【0035】これにより、回折光学系の特長として、
(6) 式の位相係数C2を変化させることにより、弱い近軸
屈折力変化により大きな分散性が得られることが理解で
きる。これは色収差以外の諸収差に大きな影響を与える
ことなく、色収差の補正を行うことができることにな
る。
Thus, as a feature of the diffractive optical system,
(6) by varying the phase coefficients C 2 of formula, it can be understood that the greater dispersibility by a weak paraxial refractive power change is obtained. This makes it possible to correct chromatic aberration without significantly affecting various aberrations other than chromatic aberration.

【0036】また、位相係数C4以降の高次項の係数は、
回折素子面の光線入射高変化に対する屈折力変化が、非
球面と類似した効果を得ることができると同時に、光線
入射高変化に応じて基準波長に対し、任意波長の屈折力
変化を与えることができるため、倍率色収差の補正に有
効である。
The coefficients of higher-order terms after the phase coefficient C 4 are as follows:
The refractive power change with respect to the incident light height change of the diffractive element surface can obtain an effect similar to that of the aspherical surface, and at the same time, the refractive power change of an arbitrary wavelength can be given to the reference wavelength according to the light incident height change. This is effective for correcting lateral chromatic aberration.

【0037】従って、前記した(1) 式の条件式の下に回
折光学面を配置することにより、回折光学素子の特長を
利用して、少レンズ枚数の構成にも拘らず、肉視による
ファインダの見えの善し悪しを決定する諸収差中で、特
に倍率色収差を良好に補正したファインダの光学系が得
られる。
Therefore, by arranging the diffractive optical surface under the conditional expression (1), the characteristics of the diffractive optical element can be used to make the finder visible with the naked eye, despite the small number of lenses. Among various aberrations that determine the quality of the appearance of the finder, a finder optical system in which chromatic aberration of magnification is particularly well corrected can be obtained.

【0038】また、回折光学面を有するレンズLh の近
軸屈折力をψh、その回折光学の2次の係数をC2h とし
たとき、次式を満たすことが望ましい。
Further, Pusaih paraxial refractive power of the lens L h having a diffractive optical surface, when the second-order coefficients of the diffraction optical and C 2h, it is desirable to satisfy the following equation.

【0039】 ψh・C2h <0 …(7) Ψh · C 2h <0 (7)

【0040】この条件式(7) は色収差補正を良好に行う
ための条件であり、回転対称な回折光学素子のアッベ数
νdは、前記したように負の値を有するため効果的な色
収差補正を行うためには、レンズLh の回折光学素子の
2次係数は、レンズLh の回折光学素子による近軸屈折
力を含める屈折力と逆符号を取るようにして、屈折系の
レンズLh で発生する色収差を補正することが望まれ
る。
This condition (7) is a condition for satisfactorily correcting chromatic aberration. The Abbe number νd of the rotationally symmetric diffractive optical element has a negative value as described above, so that effective chromatic aberration correction can be performed. to do the second order coefficient of the diffractive optical element of the lens L h is to to take power and opposite sign to include paraxial refractive power by the diffractive optical element of the lens L h, a lens L h of refraction system It is desired to correct the generated chromatic aberration.

【0041】更には、第i番目の回折素子の2次係数を
C2i 、ファインダ光学系に含まれるレンズの総数をn、
第iレンズの近軸屈折力をψi 、そのレンズのアッべ数
をνi とするとき、次の条件式を満足することが好まし
い。
Further, the second order coefficient of the i-th diffraction element is
C 2i , the total number of lenses included in the viewfinder optical system is n,
When the paraxial refractive power of the i-th lens is ψi and the Abbe number of the lens is νi, it is preferable that the following conditional expression is satisfied.

【0042】[0042]

【式3】 (Equation 3)

【0043】条件式(8) の右辺の第1項はファインダ光
学系における屈折光学系の色消し状態を、簡略的な式で
表したものである。同様に、第2項は回折光学素子にお
ける色補正量を簡略的に表したものとなり、条件式(8)
は屈折光学系で残存している色収差を回折光学系で補正
させるための条件となる。
The first term on the right side of the conditional expression (8) expresses the achromatic state of the refractive optical system in the finder optical system by a simple expression. Similarly, the second term simply represents the amount of color correction in the diffractive optical element, and the conditional expression (8)
Is a condition for correcting the chromatic aberration remaining in the refractive optical system by the diffractive optical system.

【0044】また、より有効的に色収差を補正するため
には、次の条件式を満足することが好ましい。
In order to more effectively correct the chromatic aberration, it is preferable that the following conditional expression is satisfied.

【0045】[0045]

【式4】 (Equation 4)

【0046】条件式(9) を外れると、屈折光学系での残
存色収差を回折光学系で補正するために、補正不足又は
補正過剰となる。
If the condition (9) is not satisfied, the residual chromatic aberration in the refractive optical system is corrected by the diffractive optical system, resulting in insufficient or excessive correction.

【0047】本発明で提案する回折光学系の導入は、こ
の形式の実像式ファインダに限るものでなく、前述した
条件を満たすことにより、様々なタイプのズーム又は単
焦点のファインダに効果的である。
The introduction of the diffractive optical system proposed in the present invention is not limited to the real image type finder of this type, but is effective for various types of zoom or single focus finder by satisfying the above-mentioned conditions. .

【0048】本実施例では、回折光学面を対物レンズ系
に用いたが、接眼レンズ系や像反転光学系中に回折光学
面を用いれば、更なる良好な光学性能を期待できる。同
様に、回折光学面を対物レンズ系中のレンズ面に更に追
加導入しても、光学性能の向上が期待できる。
In this embodiment, the diffractive optical surface is used for the objective lens system. However, if a diffractive optical surface is used in the eyepiece lens system or the image inverting optical system, better optical performance can be expected. Similarly, improvement in optical performance can be expected by additionally introducing a diffractive optical surface to the lens surface in the objective lens system.

【0049】また、次表は各実施例1〜3の数値実施例
1〜3を示し、Riは物体側から順に第i番目のレンズの
曲率半径、diはレンズ厚又は空気間隔、Niとνi は第i
番目のレンズのガラスの屈折率とアッべ数である。
The following table shows Numerical Examples 1 to 3 of Examples 1 to 3, where Ri is the radius of curvature of the i-th lens in order from the object side, di is the lens thickness or air gap, and Ni and νi Is the i-th
The refractive index and Abbe number of the glass of the second lens.

【0050】 数値実施例1 f=152019.03〜 -5604.63 2ω= 62〜30° 射出瞳径= φ8.8 〜4.8 R1 = ∝ D1 = 1.40 N1=1.491710 ν1=57.4 R2 = ∝ D2 = 1.85 R3 = ∝ D3 = 3.00 N2=1.491710 ν2=57.4 R4 = 19.626 D4 =可変 R5 = -4.322 D5 = 1.30 N3=1.491710 ν3=57.4 R6 =-21.358 D6 =可変 R7 = 11.599 D7 = 2.80 N4=1.491710 ν4=57.4 R8 =-12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5=1.491710 ν5=57.4 R10= -7.964 D10=可変 R11= ∝ D11=14.50 N6=1.570900 ν6=33.8 R12= ∝ D12= 1.50 R13= ∝ D13=24.00 N7=1.570900 ν7=33.8 R14= ∝ D14= 0.20 R15= 27.633 D15= 2.50 N8=1.491710 ν8=57.4 R16=-12.281 D16=15.00 R17=アイポイントNumerical Example 1 f = 152019.03- -5604.63 2ω = 62-30 ° Exit pupil diameter = φ8.8-4.8 R1 = ∝D1 = 1.40 N1 = 1.491710 ν1 = 57.4 R2 = ∝D2 = 1.85 R3 = ∝D3 = 3.00 N2 = 1.491710 ν2 = 57.4 R4 = 19.626 D4 = Variable R5 = -4.322 D5 = 1.30 N3 = 1.491710 ν3 = 57.4 R6 = -21.358 D6 = Variable R7 = 11.599 D7 = 2.80 N4 = 1.491710 ν4 = 57.4 R8 = -12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5 = 1.491710 ν5 = 57.4 R10 = -7.964 D10 = variable R11 = ∝ D11 = 14.50 N6 = 1.570900 ν6 = 33.8 R12 = ∝ D12 = 1.50 R13 = ∝ D13 = 24.00 N7 = 1.570900 ν7 = 33.8 R14 = ∝ D14 = 0.20 R15 = 27.633 D15 = 2.50 N8 = 1.491710 ν8 = 57.4 R16 = -12.281 D16 = 15.00 R17 = eye point

【0051】 [0051]

【0052】 非球面係数 3面 K=0 A=0 B= 7.86283・10-4 C=-2.35476・10-5 D=9.26607・10-7 7面 K=0 A=0 B=-1.23089・10-4 C=-6.88633・10-6 D=4.95196・10-8 9面 K=0 A=0 B=-8.15588・10-4 C=-9.81455・10-7 D=0 15面 K=0 A=0 B=-9.65364・10-5 C=-9.11764・10-8 D=0Aspherical surface coefficient 3 surface K = 0 A = 0 B = 7.86283 ・ 10 -4 C = -2.35476 ・ 10 -5 D = 9.26607 ・ 10 -7 7 surface K = 0 A = 0 B = -1.23089 ・ 10 -4 C = -6.88633 ・ 10 -6 D = 4.95196 ・ 10 -8 9 face K = 0 A = 0 B = -8.15588 ・ 10 -4 C = -9.81455 ・ 10 -7 D = 0 15 face K = 0 A = 0 B = -9.65364 ・ 10 -5 C = -9.11764 ・ 10 -8 D = 0

【0053】 [0053]

【0054】 数値実施例2 f=152015.95〜 -5604.63 2ω= 62〜30° 射出瞳径= φ8.8 〜4.8 R1 = ∝ D1 = 1.40 N1=1.491710 ν1=57.4 R2 = ∝ D2 = 1.85 R3 = ∝ D3 = 3.00 N2=1.491710 ν2=57.4 R4 = 19.626 D4 =可変 R5 = -4.322 D5 = 1.30 N3=1.491710 ν3=57.4 R6 =-21.358 D6 =可変 R7 = 11.599 D7 = 2.80 N4=1.491710 ν4=57.4 R8 =-12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5=1.491710 ν5=57.4 R10= -7.964 D10=可変 R11= ∝ D11=14.50 N6=1.570900 ν6=33.8 R12= ∝ D12= 1.50 R13= ∝ D13=24.00 N7=1.570900 ν7=33.8 R14= ∝ D14= 0.20 R15= 27.633 D15= 2.50 N8=1.491710 ν8=57.4 R16=-12.281 D16=15.00 R17=アイポイントNumerical Example 2 f = 152015.95- -5604.63 2ω = 62-30 ° Exit Pupil Diameter = φ8.8-4.8 R1 = ∝D1 = 1.40 N1 = 1.491710 ν1 = 57.4 R2 = ∝D2 = 1.85 R3 = ∝D3 = 3.00 N2 = 1.491710 ν2 = 57.4 R4 = 19.626 D4 = Variable R5 = -4.322 D5 = 1.30 N3 = 1.491710 ν3 = 57.4 R6 = -21.358 D6 = Variable R7 = 11.599 D7 = 2.80 N4 = 1.491710 ν4 = 57.4 R8 = -12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5 = 1.491710 ν5 = 57.4 R10 = -7.964 D10 = variable R11 = ∝ D11 = 14.50 N6 = 1.570900 ν6 = 33.8 R12 = ∝ D12 = 1.50 R13 = ∝ D13 = 24.00 N7 = 1.570900 ν7 = 33.8 R14 = ∝ D14 = 0.20 R15 = 27.633 D15 = 2.50 N8 = 1.491710 ν8 = 57.4 R16 = -12.281 D16 = 15.00 R17 = eye point

【0055】 [0055]

【0056】 非球面係数 3面 K=0 A=2.01093・10-7 B= 5.69397・10-4 C=-3.55099・10-6 D=4.67785・10-7 7面 K=0 A=0 B=-1.23089・10-4 C=-6.88633・10-6 D=4.95196・10-8 9面 K=0 A=0 B=-8.15588・10-4 C=-9.81455・10-7 D=0 15面 K=0 A=0 B=-9.65364・10-5 C=-9.11764・10-8 D=0Aspherical surface coefficient 3 surface K = 0 A = 2.01093 ・ 10 -7 B = 5.69397 ・ 10 -4 C = -3.55099 ・ 10 -6 D = 4.67785 ・ 10 -7 7 surface K = 0 A = 0 B = -1.23089 ・ 10 -4 C = -6.88633 ・ 10 -6 D = 4.95196 ・ 10 -8 9 K = 0 A = 0 B = -8.15588 ・ 10 -4 C = -9.81455 ・ 10 -7 D = 0 15 K = 0 A = 0 B = -9.65364 ・ 10 -5 C = -9.11764 ・ 10 -8 D = 0

【0057】 [0057]

【0058】 数値実施例3 f=152019.38〜 -5604.63 2ω= 62〜30° 射出瞳径= φ8.8 〜4.8 R1 = ∝ D1 = 1.40 N1=1.491710 ν1=57.4 R2 = ∝ D2 = 1.85 R3 = ∝ D3 = 3.00 N2=1.491710 ν2=57.4 R4 = 19.626 D4 =可変 R5 = -4.322 D5 = 1.30 N3=1.491710 ν3=57.4 R6 =-21.358 D6 =可変 R7 = 11.599 D7 = 2.80 N4=1.491710 ν4=57.4 R8 =-12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5=1.491710 ν5=57.4 R10= -7.964 D10=可変 R11= ∝ D11=14.50 N6=1.570900 ν6=33.8 R12= ∝ D12= 1.50 R13= ∝ D13=24.00 N7=1.570900 ν7=33.8 R14= ∝ D14= 0.20 R15= 27.633 D15= 2.50 N8=1.491710 ν8=57.4 R16=-12.281 D16=15.00 R17=アイポイントNumerical Example 3 f = 152019.38- -5604.63 2ω = 62-30 ° Exit Pupil Diameter = φ8.8-4.8 R1 = ∝D1 = 1.40 N1 = 1.491710 ν1 = 57.4 R2 = ∝D2 = 1.85 R3 = ∝D3 = 3.00 N2 = 1.491710 ν2 = 57.4 R4 = 19.626 D4 = Variable R5 = -4.322 D5 = 1.30 N3 = 1.491710 ν3 = 57.4 R6 = -21.358 D6 = Variable R7 = 11.599 D7 = 2.80 N4 = 1.491710 ν4 = 57.4 R8 = -12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5 = 1.491710 ν5 = 57.4 R10 = -7.964 D10 = variable R11 = ∝ D11 = 14.50 N6 = 1.570900 ν6 = 33.8 R12 = ∝ D12 = 1.50 R13 = ∝ D13 = 24.00 N7 = 1.570900 ν7 = 33.8 R14 = ∝ D14 = 0.20 R15 = 27.633 D15 = 2.50 N8 = 1.491710 ν8 = 57.4 R16 = -12.281 D16 = 15.00 R17 = eye point

【0059】 [0059]

【0060】 非球面係数 3面 K=0 A=0 B=-1.62237・10-4 C=-7.05311・10-6 D=5.88948・10-8 9面 K=0 A=0 B=-7.37946 ・10-4C=-1.16001・10-5 D=7.47669・10-7 15面 K=0 A=0 B=-9.65364e-05 C=-9.11764e-08 D=0Aspherical surface coefficient 3 surface K = 0 A = 0 B = -1.62237 ・ 10 -4 C = -7.05311 ・ 10 -6 D = 5.88948 ・ 10 -8 9 surface K = 0 A = 0 B = -7.37946 ・10 -4 C = -1.16001 ・ 10 -5 D = 7.47669 ・ 10 -7 15 K = 0 A = 0 B = -9.65364e-05 C = -9.11764e-08 D = 0

【0061】 [0061]

【0062】 数値実施例1 数値実施例2 数値実施例3 条件式(1) の広角端におけるH 1.65 1.47 1.65 条件式(1) の広角端におけるHD 5.32 4.84 3.69 条件式(8) 1.94・10-14 8.37・10-11 5.39・10-15 条件式(9) -0.0015. -0.0015 -0.0015Numerical Embodiment 1 Numerical Embodiment 2 Numerical Embodiment 3 H 1.65 1.47 1.65 at Wide Angle End of Conditional Expression (1) HD 5.32 4.84 3.69 Conditional Expression (8) 1.94 · 10 − 14 8.37 ・ 10 -11 5.39 ・ 10 -15 Conditional expression (9) -0.0015 .- 0.0015 -0.0015

【0063】図7〜図15は各実施例1〜3の広角状
態、中間状態、望遠状態の収差図を示し、dはd線、C
はC線、FはF線、ΔSはサジタル像面、ΔMはメリジ
オナル像面を示している。なお、物体高は最も物体側の
レンズ面から3mの距離における各変倍域における最大
画角での物体高である。
7 to 15 show aberration diagrams of the first to third embodiments in the wide-angle state, the intermediate state, and the telephoto state.
Represents a C line, F represents an F line, ΔS represents a sagittal image plane, and ΔM represents a meridional image plane. Note that the object height is the object height at the maximum angle of view in each zoom range at a distance of 3 m from the lens surface closest to the object.

【0064】これらの実施例と比較のために、実施例1
と同様な条件で回折光学面のみを設けない従来例を次に
示す。次の表はその数値例であり、図16〜図18はそ
の収差図であり、実施例1〜3の収差図に比較して倍率
色収差が改善されていないことが分かる。
For comparison with these examples, the first embodiment was used.
A conventional example in which only the diffractive optical surface is not provided under the same conditions as described above is shown below. The following tables are numerical examples, and FIGS. 16 to 18 are aberration diagrams thereof. It can be seen that the chromatic aberration of magnification is not improved as compared with the aberration diagrams of Examples 1 to 3.

【0065】 数値例 f=152019.38〜 -5604.63 2ω= 62〜30° 射出瞳径= φ8.8 〜4.8 R1 = ∝ D1 = 1.40 N1=1.491710 ν1=57.4 R2 = ∝ D2 = 1.85 R3 = ∝ D3 = 3.00 N2=1.491710 ν2=57.4 R4 = 19.626 D4 =可変 R5 = -4.322 D5 = 1.30 N3=1.491710 ν3=57.4 R6 =-21.358 D6 =可変 R7 = 11.599 D7 = 2.80 N4=1.491710 ν4=57.4 R8 =-12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5=1.491710 ν5=57.4 R10= -7.964 D10=可変 R11= ∝ D11=14.50 N6=1.570900 ν6=33.8 R12= ∝ D12= 1.50 R13= ∝ D13=24.00 N7=1.570900 ν7=33.8 R14= ∝ D14= 0.20 R15= 27.633 D15= 2.50 N8=1.491710 ν8=57.4 R16=-12.281 D16=15.00 R17=アイポイントNumerical example f = 152019.38- -5604.63 2ω = 62-30 ° Exit pupil diameter = φ8.8-4.8 R1 = ∝D1 = 1.40 N1 = 1.491710 ν1 = 57.4 R2 = ∝D2 = 1.85 R3 = ∝D3 = 3.00 N2 = 1.491710 ν2 = 57.4 R4 = 19.626 D4 = Variable R5 = -4.322 D5 = 1.30 N3 = 1.491710 ν3 = 57.4 R6 = -21.358 D6 = Variable R7 = 11.599 D7 = 2.80 N4 = 1.491710 ν4 = 57.4 R8 = -12.444 D8 = 1.53 R9 = ∝ D9 = 4.20 N5 = 1.491710 ν5 = 57.4 R10 = -7.964 D10 = Variable R11 = ∝ D11 = 14.50 N6 = 1.570900 ν6 = 33.8 R12 = ∝ D12 = 1.50 R13 = ∝ D13 = 24.00 N7 = 1.570900 ν7 = 33.8 R14 = ∝ D14 = 0.20 R15 = 27.633 D15 = 2.50 N8 = 1.491710 ν8 = 57.4 R16 = -12.281 D16 = 15.00 R17 = eye point

【0066】 [0066]

【0067】 非球面係数 3面 K=0 A=0 B= 6.83625・10-4 C=-2.08926・10-5 D=7.97515・10-7 7面 K=0 A=0 B=-1.23089・10-4 C=-6.88633・10-3 D=4.95196・10-8 9面 K=0 A=0 B=-8.15588・10-4 C=-9.81455・10-7 D=0 15面 K=0 A=0 B=-9.65364・10-5 C=-9.11764・10-8 D=0 Aspherical surface coefficient 3 surface K = 0 A = 0 B = 6.83625 ・ 10 -4 C = -2.0892 6・ 10 -5 D = 7.97515 ・ 10 -7 7 surface K = 0 A = 0 B = −1.23089 ・10 -4 C = -6.88633 ・ 10 -3 D = 4.95196 ・ 10 -8 9 face K = 0 A = 0 B = -8.15588 ・ 10 -4 C = -9.81455 ・ 10 -7 D = 0 15 face K = 0 A = 0 B = -9.65364 ・ 10 -5 C = -9.11764 ・ 10 -8 D = 0

【0068】回折光学素子は微小な幅と溝で形成される
ため、その面に傷及び汚れが付き易い。従って、回折光
学素面は極力ファインダ光学系の最も物体側及び像面側
の面以外に配置することが好ましい。
Since the diffractive optical element is formed with a minute width and a groove, the surface thereof is easily scratched and stained. Therefore, it is preferable to arrange the diffractive optical elementary surface as far as possible other than the surface closest to the object side and the image surface side of the finder optical system.

【0069】回折光学素子の製法としては、バイナリオ
プティクス形状をフォトレジストにより直接レンズ表面
に成形する方法の他に、この方法により作成した型によ
りレプリカ成形やモールド成形を行う方法がある。ま
た、図19に示す鋸状形状(キノフォーム)とすれば、
回折効率が上がり理想値に近い回折効果が期待できる。
As a method of manufacturing a diffractive optical element, there is a method of forming a binary optics shape directly on a lens surface by using a photoresist, or a method of performing replica molding or molding using a mold prepared by this method. Further, if a saw-like shape (kinoform) shown in FIG.
Diffraction efficiency is increased, and a diffraction effect close to an ideal value can be expected.

【0070】このの回折格子の構成は、基材1の表面に
紫外線硬化樹脂を塗布し、樹脂部2に波長530nmで
1次回折効率が100%となるような格子厚dの回折格
子3を形成している。図20はこの回折光学素子の1次
回折効率の波長依存特性を示し、設計次数での回折効率
は最適化した波長580nmから離れるに従って低下
し、一方で設計次数近傍の次数0次、2次回折光が増大
している。この設計次数以外の回折光の増加はフレアと
なり、光学系の解像度の低下につながる。
The structure of this diffraction grating is such that an ultraviolet curable resin is applied to the surface of the base material 1 and the diffraction grating 3 having a grating thickness d such that the primary diffraction efficiency becomes 100% at a wavelength of 530 nm at the resin portion 2. Has formed. FIG. 20 shows the wavelength dependence of the first-order diffraction efficiency of this diffractive optical element. The diffraction efficiency in the design order decreases as the distance from the optimized wavelength of 580 nm increases, while the 0th-order and second-order diffracted light in the vicinity of the design order are reduced. Is increasing. This increase in diffracted light other than the design order causes a flare, which leads to a decrease in the resolution of the optical system.

【0071】そこで、図21に示す積層型の回折光学素
子とすることが好ましい。具体的な構成としては、基材
1上に紫外線硬化樹脂(nd=1.499、νd=5
4)から成る第1の回折格子4を形成し、その上に別の
紫外線硬化樹脂(nd=l.598、νd=28)から
成る第2の回折格子5を形成している。この材質の組み
合わせでは、第1の回折格子4の格子厚dlはdl=1
3.8μm、第2の回折格子5の格子厚d2はd=1
0.5μmとしている。
Therefore, it is preferable to use a laminated diffractive optical element shown in FIG. As a specific configuration, an ultraviolet curable resin (nd = 1.499, νd = 5)
4) is formed, and a second diffraction grating 5 made of another ultraviolet curable resin (nd = 1.598, vd = 28) is formed thereon. In this combination of materials, the grating thickness dl of the first diffraction grating 4 is dl = 1
3.8 μm, the grating thickness d2 of the second diffraction grating 5 is d = 1
It is 0.5 μm.

【0072】図22はこの構成の回折光学素子の1次回
折効率の波長依存特性であり、このように積層構造の回
折格子にすることで、設計次数の回折効率は使用波長城
全域で95%以上の高い回折効率を有している。
FIG. 22 shows the wavelength dependence of the first-order diffraction efficiency of the diffractive optical element having this configuration. By using a diffraction grating having a laminated structure in this way, the diffraction efficiency of the design order is 95% over the entire operating wavelength range. It has the above high diffraction efficiency.

【0073】積層構造の回折格子を用いることは、低周
波数の解像力が改善され、所望の光学特性を得ることに
有効である。従って、実施例の回折光学素子に積層構造
の回折格子を用いることで、光学性能は更に改善される
こととなる。
The use of a diffraction grating having a laminated structure is effective in improving the resolution at low frequencies and obtaining desired optical characteristics. Therefore, by using a diffraction grating having a laminated structure for the diffractive optical element of the embodiment, the optical performance is further improved.

【0074】なお、前述の積層構造の回折光学素子は材
質を紫外線硬化樹脂に限定するものではなく、他のプラ
スチック材などを使用することも可能である。
The material of the above-described diffractive optical element having a laminated structure is not limited to an ultraviolet curable resin, and other plastic materials can be used.

【0075】また、使用基材によっては、第1の回折格
子4を直接基材1に形成してもよい。更に、各格子厚が
異なる必要はなく、材料の組み合わせによっては図23
に示すように2つの格子厚を等しくできる。この場合
は、回折光学素子表面に格子形状が形成されないので、
防塵性に優れ、回折光学素子の組み立て作業性が向上
し、より安価な光学系が得られる。
Further, the first diffraction grating 4 may be formed directly on the substrate 1 depending on the substrate used. Further, it is not necessary that the lattice thicknesses be different, and depending on the combination of materials, FIG.
As shown in (2), the two grating thicknesses can be made equal. In this case, since no grating shape is formed on the surface of the diffractive optical element,
It is excellent in dust resistance, improves the workability of assembling the diffractive optical element, and obtains a cheaper optical system.

【0076】[0076]

【発明の効果】以上説明したように本発明に係るファイ
ンダは、回折光学素子を導入することによって、小型で
も良好な光学性能を有することができる。
As described above, the finder according to the present invention can have good optical performance even with a small size by introducing a diffractive optical element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ファインダ光学系及び光路の簡略的な構成図で
ある。
FIG. 1 is a simplified configuration diagram of a finder optical system and an optical path.

【図2】像反転用のプリズム及び簡易的なレンズ配置構
成図である。
FIG. 2 is a configuration diagram of a prism for image inversion and a simple lens arrangement.

【図3】2次結像系の実像ファインダの簡略的な構成図
である。
FIG. 3 is a simplified configuration diagram of a real image finder of a secondary imaging system.

【図4】実施例1のレンズ断面図である。FIG. 4 is a lens cross-sectional view of Example 1.

【図5】実施例2のレンズ断面図である。FIG. 5 is a sectional view of a lens according to a second embodiment.

【図6】実施例3のレンズ断面図である。FIG. 6 is a sectional view of a lens according to a third embodiment.

【図7】実施例1の広角状態の収差図である。FIG. 7 is an aberration diagram of a wide-angle state according to the first embodiment.

【図8】実施例1の中間状態の収差図である。FIG. 8 is an aberration diagram of the intermediate state of the first embodiment.

【図9】実施例1の望遠状態の収差図である。FIG. 9 is an aberration diagram of a telephoto state according to the first embodiment.

【図10】実施例2の広角状態の収差図である。FIG. 10 is an aberration diagram of a wide-angle state according to the second embodiment.

【図11】実施例1の中間状態の収差図である。FIG. 11 is an aberration diagram of the intermediate state of the first embodiment.

【図12】実施例2の望遠状態の収差図である。FIG. 12 is an aberration diagram of a telephoto state according to the second embodiment.

【図13】実施例3の広角状態の収差図である。FIG. 13 is an aberration diagram of a wide-angle state according to the third embodiment.

【図14】実施例3の中間状態の収差図である。FIG. 14 is an aberration diagram of the intermediate state of the third embodiment.

【図15】実施例3の望遠状態の収差図である。FIG. 15 is an aberration diagram of a telephoto state according to the third embodiment.

【図16】従来例の広角状態の収差図である。FIG. 16 is an aberration diagram of a conventional example in a wide-angle state.

【図17】従来例の中間状態の収差図である。FIG. 17 is an aberration diagram of a conventional example in an intermediate state.

【図18】従来例の望遠状態の収差図である。FIG. 18 is an aberration diagram of a conventional example in a telephoto state.

【図19】回折光学素子のレンズ断面図である。FIG. 19 is a sectional view of a lens of a diffractive optical element.

【図20】波長依存特性のグラフ図である。FIG. 20 is a graph showing wavelength dependence characteristics.

【図21】積層構造の回折光学素子のレンズ断面図であ
る。
FIG. 21 is a lens sectional view of a diffractive optical element having a laminated structure.

【図22】波長依存特性のグラフ図である。FIG. 22 is a graph showing wavelength dependence characteristics.

【図23】他の積層構造の回折光学素子のレンズ断面図
である。
FIG. 23 is a lens sectional view of a diffractive optical element having another laminated structure.

【符号の説明】[Explanation of symbols]

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群 L4、L5 像反転光学部材 L6 接眼レンズ群 1 基材 2 樹脂部 3、4、5 回折格子 L1 First lens group L2 Second lens group L3 Third lens group L4, L5 Image reversing optical member L6 Eyepiece lens group 1 Base material 2 Resin section 3, 4, 5 Diffraction grating

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側から結像系の対物光学系、像反転
光学系、前記対物レンズにより結像された光線を***行
光線とする接眼光学系を有するファインダ光学系におい
て、軸上光線束における最大輪帯の光軸からの距離を
H、使用最大画角の軸外光線束を2分する軸外主光線の
光軸からの距離をHDとしたとき、|HD|>|H|な
る条件中に回転対称の回折光学面を配置したことを特徴
とするファインダ。
1. A finder optical system comprising: an objective optical system of an imaging system, an image inverting optical system, and an eyepiece optical system that converts a light beam imaged by the objective lens into a near-parallel light beam from an object side. | HD |> | H |, where H is the distance from the optical axis of the largest annular zone and HD is the distance from the optical axis of the off-axis principal ray that bisects the off-axis ray bundle having the maximum angle of view in use. A finder, wherein a rotationally symmetric diffractive optical surface is arranged in a condition.
【請求項2】 前記対物光学系は変倍機能を有する請求
項1に記載のファインダ。
2. The finder according to claim 1, wherein the objective optical system has a zooming function.
【請求項3】 Hを光軸からの距離、φ(H)をHにお
ける位相、λを基準波長(d線)とし、前記回転対称な
回折光学素子の位相係数を次式で表し、 φ(H)=(2π/λ)・(C2・H2 +C4・H4 +C6
6 +・・・+C2・i・H2・i ) 前記回折光学面を有するレンズの近軸屈折力をψh、前
記回折光学の2次係数をC2h としたとき、ψh・C2h
0となる条件の前記回折光学面を少なくとも1面設けた
請求項1又は2に記載のファインダ。
3. H is the distance from the optical axis, φ (H) is the phase at H, λ is the reference wavelength (d-line), and the phase coefficient of the rotationally symmetric diffractive optical element is represented by the following equation: H) = (2π / λ) · (C 2 · H 2 + C 4 · H 4 + C 6 ·
H 6 +... + C 2 · i · H 2 · i ) When the paraxial refractive power of the lens having the diffractive optical surface is Δh and the quadratic coefficient of the diffractive optical is C 2h , Δh · C 2h <
3. The finder according to claim 1, wherein at least one diffractive optical surface having a condition of zero is provided.
【請求項4】 前記回折光学面の第i番目の回折素子の
2次係数をC2i 、ファインダ光学系に含まれるレンズの
総数をn、第i番目のレンズの近軸屈折力をψi 、該レ
ンズのアッべ数をνi とするとき、次の条件式を満足す
る請求項1又は2に記載のファインダ。 【式1】
4. The second order coefficient of the ith diffraction element on the diffractive optical surface is C 2i , the total number of lenses included in the finder optical system is n, the paraxial refractive power of the ith lens is ψi, 3. The finder according to claim 1, wherein the following conditional expression is satisfied when the Abbe number of the lens is νi. (Equation 1)
【請求項5】 第i番目の回折素子の2次係数をC2i
ファインダ光学系に含まれるレンズの総数をn、第i番
目のレンズの近軸屈折力をψi 、該レンズのアッべ数を
νi とするとき、次の条件式を満足する請求項1又は2
に記載のファインダ。 【式2】
5. The second-order coefficient of the i-th diffraction element is C 2i ,
The following conditional expression is satisfied, where n is the total number of lenses included in the finder optical system, ψi is the paraxial refractive power of the i-th lens, and νi is the Abbe number of the lens.
The finder described in. (Equation 2)
JP9220893A 1997-07-11 1997-07-31 Finder Pending JPH1152258A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9220893A JPH1152258A (en) 1997-07-31 1997-07-31 Finder
US09/110,681 US6141159A (en) 1997-07-11 1998-07-07 Viewfinder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220893A JPH1152258A (en) 1997-07-31 1997-07-31 Finder

Publications (1)

Publication Number Publication Date
JPH1152258A true JPH1152258A (en) 1999-02-26

Family

ID=16758193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220893A Pending JPH1152258A (en) 1997-07-11 1997-07-31 Finder

Country Status (1)

Country Link
JP (1) JPH1152258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540446A (en) * 2019-09-23 2021-03-23 三星电子株式会社 Optical device, camera module including the same, and apparatus including the camera module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540446A (en) * 2019-09-23 2021-03-23 三星电子株式会社 Optical device, camera module including the same, and apparatus including the camera module

Similar Documents

Publication Publication Date Title
JP5424745B2 (en) Optical system and optical apparatus having the same
US7133221B2 (en) Lens system and optical device having the same
US7196852B2 (en) Zoom lens system and image pickup device having zoom lens system
US7274519B2 (en) Zoom lens system
US5930043A (en) Optical system with refracting and diffracting optical units, and optical instrument including the optical system
JP3832935B2 (en) Zoom lens
US20050286139A1 (en) Zoom lens system and image pickup apparatus including the same
JP3359277B2 (en) Diffractive refraction rear attachment lens
JP3314021B2 (en) Zoom lens
JP3505980B2 (en) Imaging device
JPH1152244A (en) Small-sized zoom lens
JPH11149043A (en) Small zoom lens
JPH11305126A (en) Optical lens system
CN112136068B (en) Optical system and optical apparatus
JPH1152236A (en) Rear focus type zoom lens
JP4208293B2 (en) Zoom lens
US6757103B2 (en) Zoom lens and optical equipment using the same
US6141159A (en) Viewfinder optical system
JP4439608B2 (en) Viewfinder optical system
JPH1152238A (en) Zoom lens
JPH052134A (en) Keplerian type zoom finder optical system
JP2855849B2 (en) Kepler-type zoom finder optical system
JP3387329B2 (en) Viewfinder optical system
JPH1152258A (en) Finder
JPH10148768A (en) Zoom finder optical system