JPH115036A - Catalytic component carried titania fiber and its production - Google Patents

Catalytic component carried titania fiber and its production

Info

Publication number
JPH115036A
JPH115036A JP10047261A JP4726198A JPH115036A JP H115036 A JPH115036 A JP H115036A JP 10047261 A JP10047261 A JP 10047261A JP 4726198 A JP4726198 A JP 4726198A JP H115036 A JPH115036 A JP H115036A
Authority
JP
Japan
Prior art keywords
fiber
catalyst component
titania
titania fiber
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10047261A
Other languages
Japanese (ja)
Inventor
Yasuyuki Oki
泰行 沖
Hironobu Koike
宏信 小池
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10047261A priority Critical patent/JPH115036A/en
Publication of JPH115036A publication Critical patent/JPH115036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain catalytic component carried titania fibers having a large active surface area, less liable to the falling of the catalytic component and capable of maintaining high activity over a long period of time. SOLUTION: A metal, a metal oxide or a multiple metal oxide as a catalytic component is carried on titania fibers having >=10 m<2> /g BET specific surface area, >=0.05 cc/g pore volume measured by a nitrogen adsorption method, >=0.02 cc/g pore volume of pores each having >=10 Å pore radius and >=0.1 GPa tensile strength of the single fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素酸化物の還元、
有機物の酸化等に使用する触媒成分担持チタニア繊維お
よびその製造方法に関するものであり、更に詳細には特
定物性を有するチタニア繊維に触媒成分を担持してな
る、活性表面積が大きく、触媒成分の脱落が少なく、長
期にわたって高活性の維持が可能な触媒成分担持チタニ
ア繊維およびその製造方法に関するものである。
The present invention relates to the reduction of nitrogen oxides,
The present invention relates to a catalyst component-carrying titania fiber used for oxidation of organic substances and a method for producing the same, and more particularly to a catalyst component carried on titania fiber having specific physical properties. The present invention relates to a catalyst component-carrying titania fiber capable of maintaining high activity for a long period of time and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタンは、 V,W,Al,As,
Ni,Zr,Mo,Ru,Mg,CaおよびPt等の金
属または酸化物または複合酸化物のうち少なくとも1種
の触媒成分を担持することで窒素酸化物の還元用触媒、
有機物の酸化用触媒等として用いられている。その触媒
性能は、触媒成分の種類や担持量、一次粒子径、比表面
積、細孔容積等に起因することが知られている。
2. Description of the Related Art Titanium oxide is composed of V, W, Al, As,
A catalyst for reducing nitrogen oxides by supporting at least one catalyst component of metals, oxides or composite oxides such as Ni, Zr, Mo, Ru, Mg, Ca and Pt;
It is used as a catalyst for oxidizing organic substances. It is known that the catalytic performance is caused by the type and amount of the catalyst component, the primary particle diameter, the specific surface area, the pore volume, and the like.

【0003】上記触媒成分担持にもちいられる酸化チタ
ンは、通常、粉末形状であることより、窒素酸化物の還
元用あるいは酸化用触媒として実際に使用するために
は、造粒や成形等により粒やペレットとして使用され
る。
[0003] The titanium oxide used for carrying the above catalyst component is usually in the form of a powder, so that in order to actually use it as a catalyst for reducing or oxidizing nitrogen oxides, it is necessary to form particles or granules by granulation or molding. Used as pellets.

【0004】一方、無機質繊維を触媒担体として応用す
る方法は、特開昭50−87974号公報や特公平8−
11196号公報に見られる如く、古くから知られてい
る。これらは、シリカまたはアルミナ質繊維を酸等の可
溶性液体に浸漬し、繊維表面を部分腐蝕させて表面積を
増大させる方法である。
On the other hand, a method of applying an inorganic fiber as a catalyst carrier is disclosed in JP-A-50-87974 and JP-B-8-87974.
As seen in Japanese Patent Publication No. 11196, it has been known for a long time. In these methods, silica or alumina fibers are immersed in a soluble liquid such as an acid to partially corrode the fiber surface to increase the surface area.

【0005】また、チタニア繊維に触媒成分を担持させ
たものとしては以下のものが知られている。特開平5−
184923号公報には、チタンアルコキシドおよびバ
ナジウム化合物、あるいはチタンアルコキシドおよびバ
ナジウム化合物と他のアルコキシドとの混合アルコキシ
ド溶液を加水分解しゲル化させるゾルゲル法により作製
したアモルファス繊維を熱処理し、アナターゼ型酸化チ
タンと酸化バナジウムの結晶を析出させることによって
触媒繊維が得られることを示している。特開平6−13
4306号公報には、チタンおよびケイ素の有機アルコ
キシドを原料として、ゾルーゲル法にてTiとSiから
なる重合体を形成させた後、繊維状に紡糸し、この繊維
を乾燥、焼成してTiO2−SiO2からなる繊維を得、
その後に五酸化バナジウムおよび/または酸化タングス
テンを担持して触媒繊維が得られることを示している。
[0005] The following are known as those in which a catalyst component is supported on titania fibers. Japanese Patent Laid-Open No. 5-
No. 184923 discloses that an amorphous fiber produced by a sol-gel method of hydrolyzing and gelling a titanium alkoxide and a vanadium compound or a mixed alkoxide solution of a titanium alkoxide and a vanadium compound and another alkoxide is heat-treated, This shows that catalyst fibers can be obtained by depositing crystals of vanadium oxide. JP-A-6-13
Japanese Patent No. 4306 discloses that a polymer composed of Ti and Si is formed by a sol-gel method from an organic alkoxide of titanium and silicon as a raw material, then spun into a fiber, and the fiber is dried and fired to obtain TiO 2 —SiO 2. Fiber consisting of
Thereafter, it is shown that the catalyst fiber can be obtained by carrying vanadium pentoxide and / or tungsten oxide.

【0006】[0006]

【発明が解決しようとする課題】触媒繊維を窒素酸化物
の還元、有機物の酸化等に用いようとする場合、大きな
比表面積、細孔容積および十分な繊維強度を有する必要
があり、特に窒素酸化物の還元用触媒担体として用いる
場合は、結晶形はアナターゼ型であることが必要であ
る。しかしながら、特開平5−184923号公報にお
いては、アモルファス酸化チタン相とアナターゼ型酸化
チタン相が共存しており、繊維形状を十分に保持できな
いことや、脱硝性能が低いといった問題があった。ま
た、特開平6−134306号公報においては、担体で
あるチタニア繊維としてアナターゼ型結晶を有する酸化
チタンを用いることの開示はあるものの、チタニア繊維
の表面積や細孔容積等の物性が触媒性能に与えるに影響
についての記載はない。また、従来のチタニア繊維を、
前述した特開昭50−87974号公報や特公平8−1
1196号公報の方法で、多孔質チタニア繊維担体とす
ることは考えられるが、該方法によって得られた繊維
は、繊維表面に均一な細孔を与える等の微細な調製は困
難であり、繊維表面に充分な腐食を与える場合には、処
理後の繊維強度が著しく低下するといった問題点があ
り、さらに、部分腐蝕させる方法自体が煩雑であるとい
った問題点がある。
When the catalyst fiber is used for reducing nitrogen oxides, oxidizing organic substances, etc., it is necessary to have a large specific surface area, a large pore volume and a sufficient fiber strength. When used as a catalyst carrier for reducing substances, the crystal form needs to be an anatase type. However, in JP-A-5-184923, the amorphous titanium oxide phase and the anatase-type titanium oxide phase coexist, and there are problems that the fiber shape cannot be sufficiently maintained and the denitration performance is low. Further, JP-A-6-134306 discloses that titanium oxide having anatase type crystal is used as a titania fiber as a carrier, but physical properties such as surface area and pore volume of the titania fiber give the catalyst performance. There is no mention of the effect on. In addition, conventional titania fiber,
JP-A-50-87974 and JP-B-8-1
Although it is conceivable to use a porous titania fiber carrier by the method of JP-A No. 1196, it is difficult to finely prepare the fiber obtained by the method, for example, to give uniform fine pores on the fiber surface, When sufficient corrosion is imparted, there is a problem that the fiber strength after the treatment is remarkably reduced, and further, there is a problem that the method of partially corroding itself is complicated.

【0007】本発明者らは上記問題点を解決すべく鋭意
検討を重ねた結果、特定の繊維物性を有するチタニア繊
維を用い、これに触媒成分を担持させる場合には、活性
表面積が大きく、触媒成分の脱落が少なく、長期にわた
って高活性の維持が可能な触媒成分担持チタニア繊維が
得られることを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, when titania fibers having specific fiber properties are used and a catalyst component is supported thereon, the active surface area is large, and The present inventors have found that a catalyst component-carrying titania fiber capable of maintaining a high activity for a long time with a small amount of components falling off has been obtained, thereby completing the present invention.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、BET
比表面積が10m2/g以上であり、窒素吸着法で測定
される細孔容積が0.05cc/g以上であり、10オ
ングストローム以上の細孔半径を有する細孔容積が0.
02cc/g以上であり、単繊維の引張強度が0.1G
Pa以上であるチタニア繊維に、金属または金属酸化物
または複合金属酸化物よりなる触媒成分が担持されてい
ることを特徴とする触媒成分担持チタニア繊維を提供す
ることにある。
That is, the present invention provides a BET
The specific surface area is 10 m 2 / g or more, the pore volume measured by a nitrogen adsorption method is 0.05 cc / g or more, and the pore volume having a pore radius of 10 Å or more is 0.
02 cc / g or more, and the tensile strength of a single fiber is 0.1 G
An object of the present invention is to provide a catalyst component-carrying titania fiber characterized in that a catalyst component composed of a metal, a metal oxide or a composite metal oxide is supported on titania fibers having a pressure of Pa or more.

【0009】また本発明は、BET比表面積が10m2
/g以上であり、窒素吸着法で測定される細孔容積が
0.05cc/g以上であり、10オングストローム以
上の細孔半径を有する細孔容積が0.02cc/g以上
であり、単繊維の引張強度が0.1GPa以上であるチ
タニア繊維を、触媒成分を含有する溶液に浸漬し、乾燥
後、焼成することを特徴とする触媒成分担持チタニア繊
維の製造方法を提供することにある。
Further, the present invention has a BET specific surface area of 10 m 2.
/ G or more, a pore volume measured by a nitrogen adsorption method is 0.05 cc / g or more, a pore volume having a pore radius of 10 Å or more is 0.02 cc / g or more, and a single fiber It is an object of the present invention to provide a method for producing a catalyst component-carrying titania fiber, characterized in that a titania fiber having a tensile strength of 0.1 GPa or more is immersed in a solution containing a catalyst component, dried, and fired.

【0010】[0010]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る。本発明の触媒成分担持に用いるチタニア繊維は、繊
維径は約2〜50μmが好ましく、BET比表面積が約
10m2/g以上、好ましくは約20m2/g〜300m
2/gである。BET比表面積が約10m2/gより小さ
い場合、該繊維に触媒成分を担持させても、十分な活性
が得難い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Titania fiber used in the catalyst component carrying the present invention, the fiber diameter is approximately 2~50μm preferably, BET specific surface area of about 10 m 2 / g or more, preferably about 20 m 2/300 m
2 / g. When the BET specific surface area is less than about 10 m 2 / g, it is difficult to obtain a sufficient activity even when the catalyst component is supported on the fiber.

【0011】本発明の触媒担体として用いるチタニア繊
維は、窒素吸着法で測定される細孔容積が約0.05c
c/g以上であり、10オングストローム以上の細孔半
径を有する細孔容積が約0.02cc/g以上である。
好ましくは約0.10cc/g以上の細孔容積を有し、
10オングストローム以上の細孔半径を有する細孔容積
は約0.04cc/g以上が望ましい。細孔容積が約
0.05cc/gよりも小さい場合、該繊維に触媒成分
を担持させても、十分な活性が得難く、また、10オン
グストローム以上の細孔半径を有する細孔容積が約0.
02cc/gよりも小さい場合、十分な触媒活性が得難
く、また使用時に担持触媒が担体より脱落し、活性の継
続的維持が困難である。本発明にもちいるチタニア繊維
はその細孔半径のピークを約10〜300オングストロ
ーム、好ましくは約10〜100オングストロームの範
囲に持つものの使用が推奨される。この範囲に細孔半径
のピークを有する繊維は触媒保持、触媒活性に優れると
ともに、触媒担体として必要な繊維強度を有する。本発
明にもちいるチタニア繊維は、単繊維の引張強度が約
0.1GPa以上であり、好ましくは約0.3GPa以
上である。0.1GPaより小さい場合でも、触媒とし
ては使用できるが、繊維形状を十分に保持させたい場合
や、織物あるいは不織布の形で使用する場合には引張強
度は高い方がよい。
The titania fiber used as the catalyst carrier of the present invention has a pore volume of about 0.05 c as measured by a nitrogen adsorption method.
c / g or more and a pore volume having a pore radius of 10 Å or more is about 0.02 cc / g or more.
Preferably having a pore volume of about 0.10 cc / g or more;
A pore volume having a pore radius of 10 Å or more is desirably about 0.04 cc / g or more. When the pore volume is less than about 0.05 cc / g, sufficient activity is difficult to obtain even if the catalyst component is supported on the fiber, and the pore volume having a pore radius of 10 Å or more is about 0 Å. .
If it is less than 02 cc / g, it is difficult to obtain a sufficient catalytic activity, and the supported catalyst drops off from the carrier during use, making it difficult to maintain the activity continuously. It is recommended that the titania fibers used in the present invention have a pore radius peak in the range of about 10 to 300 angstroms, preferably about 10 to 100 angstroms. A fiber having a peak of the pore radius in this range has excellent catalyst retention and catalytic activity, and also has the necessary fiber strength as a catalyst carrier. The titania fiber used in the present invention has a tensile strength of a single fiber of about 0.1 GPa or more, preferably about 0.3 GPa or more. Even if it is less than 0.1 GPa, it can be used as a catalyst, but when it is desired to keep the fiber shape sufficiently or when it is used in the form of a woven or non-woven fabric, the higher the tensile strength, the better.

【0012】本発明に於いて担体として用いるチタニア
繊維は、シリカ成分を含有するものであってもよい。し
かしながらチタニア担体としては主成分がアナターゼ型
酸化チタンであることが望ましい点より、シリカ含有量
は約40重量%以下が好ましい。シリカは繊維の機械的
強度を高める役割を担っているが、シリカを含有しなく
ても特に問題はない。しかし、シリカ含有量が約40重
量%を越える場合、機械的強度はもはやそれ以上改良さ
れず、むしろチタニア成分量が相対的に低下するため
に、触媒繊維活性の低下を引き起こすので好ましくな
い。
The titania fiber used as a carrier in the present invention may contain a silica component. However, from the viewpoint that the main component of the titania carrier is desirably anatase type titanium oxide, the silica content is preferably about 40% by weight or less. Although silica plays a role in increasing the mechanical strength of the fiber, there is no particular problem even if silica is not contained. However, when the silica content exceeds about 40% by weight, the mechanical strength is no longer improved, but rather, the content of the titania component is relatively reduced, which is not preferable because the catalytic fiber activity is reduced.

【0013】また、本発明に於いてもちいるチタニア繊
維は、主成分がアナターゼ型酸化チタンであるが、ルチ
ル型酸化チタンとの混合物であっても特に問題はない。
しかしながら、触媒繊維活性の点からはアナターゼ型酸
化チタンであることが好ましい。
The titania fiber used in the present invention is mainly composed of anatase type titanium oxide, but there is no particular problem even if it is a mixture with rutile type titanium oxide.
However, from the viewpoint of catalytic fiber activity, anatase type titanium oxide is preferred.

【0014】本発明の触媒成分担持チタニア繊維の製造
方法としては、特に制限されないが、BET比表面積が
10m2/g以上であり、窒素吸着法で測定される細孔
容積が0.05cc/g以上であり、10オングストロ
ーム以上の細孔半径を有する細孔容積が0.02cc/
g以上であり、単繊維の引張強度が0.1GPa以上で
あるチタニア繊維を、触媒成分を含有する溶液に浸漬
し、乾燥後、焼成する方法が挙げられる。
The method for producing the catalyst component-carrying titania fiber of the present invention is not particularly limited, but the BET specific surface area is 10 m 2 / g or more, and the pore volume measured by the nitrogen adsorption method is 0.05 cc / g. The pore volume having a pore radius of 10 Å or more is 0.02 cc /
g or more, and a titania fiber having a tensile strength of a single fiber of 0.1 GPa or more is immersed in a solution containing a catalyst component, dried, and fired.

【0015】触媒成分としては用途により異なるが、通
常V,W,Al,As,Ni,Zr,Mo,Ru,M
g,CaおよびPtからなる群れから選ばれた金属また
は酸化物または複合酸化物の少なくとも1種を担持させ
ればよい。窒素酸化物の還元用としてはV,WまたはM
oからなる群れから選ばれた金属または酸化物または複
合酸化物の少なくとも1種を担持させればよい。
Although the catalyst component varies depending on the application, it is usually V, W, Al, As, Ni, Zr, Mo, Ru, M
What is necessary is to support at least one kind of metal or oxide or composite oxide selected from the group consisting of g, Ca and Pt. V, W or M for reducing nitrogen oxides
At least one kind of metal or oxide or composite oxide selected from the group consisting of o may be supported.

【0016】チタニア繊維への担持に際しては、触媒成
分であるV,W,Al,As,Ni,Zr,Mo,R
u,Mg,CaおよびPtのうち少なくとも1種の金属
または金属化合物を含有する溶液に繊維を単に浸漬する
か、あるいは該繊維を浸漬させながら真空引きを行って
該溶液を繊維の細孔内に積極的に浸透させた後、引き上
げ、乾燥した後、焼成してもよい。焼成温度は触媒反応
の種類や反応温度等によって異なり、特に限定されない
が、一般的には約200〜1000℃である。触媒成分
によっては高温での焼成は触媒粒子のシンタリング等に
よる触媒活性の低下を引き起こすため焼成温度は触媒成
分によって適宜決定すればよい。
In carrying on the titania fiber, the catalyst components V, W, Al, As, Ni, Zr, Mo, R
The fibers are simply immersed in a solution containing at least one metal or metal compound of u, Mg, Ca and Pt, or the solution is introduced into the pores of the fibers by evacuating while immersing the fibers. After infiltration actively, it may be pulled up, dried, and fired. The firing temperature varies depending on the type of the catalytic reaction, the reaction temperature, and the like, and is not particularly limited, but is generally about 200 to 1000 ° C. Depending on the catalyst component, calcination at a high temperature causes a reduction in catalytic activity due to sintering of the catalyst particles and the like, so that the calcination temperature may be appropriately determined depending on the catalyst component.

【0017】チタニア繊維に対する触媒成分の担持量
は、触媒反応の種類によって最適値は異なり一義的では
ないが、触媒成分である金属または酸化物または複合酸
化物の量として約0.5〜50重量%、窒素酸化物の還
元触媒に於いては約0.5〜30重量%が適当である。
担持量が約0.5重量%よりも小さい場合は、活性表面
積が小さく十分な触媒活性が得難く、また、担持量が約
50重量%よりも多い場合は、触媒成分が繊維内部のみ
ならず繊維外表面にも相当量担持されるので脱落の原因
となり、活性表面積はもはや増大しないので、コスト的
にも不利である。
The amount of the catalyst component carried on the titania fiber is not unique because the optimum value varies depending on the type of the catalytic reaction, but is not limited to about 0.5 to 50% by weight of the metal, oxide or composite oxide as the catalyst component. %, And about 0.5 to 30% by weight in a nitrogen oxide reduction catalyst.
When the supported amount is less than about 0.5% by weight, the active surface area is small and it is difficult to obtain sufficient catalytic activity. When the supported amount is more than about 50% by weight, the catalyst component is not only contained in the fiber but also in the fiber. Since a considerable amount is carried on the outer surface of the fiber, it causes falling off, and the active surface area no longer increases, which is disadvantageous in cost.

【0018】本発明にもちいるチタニア繊維は、BET
比表面積が10m2/g以上であり、窒素吸着法で測定
される細孔容積が0.05cc/g以上であり、10オ
ングストローム以上の細孔半径を有する細孔容積が0.
02cc/g以上であり、単繊維の引張強度が0.1G
Pa以上であるチタニア繊維であればよく、かかる物性
を有するものであれば特にその製法は制限されるもので
はないが、例えば一製造例として、チタンアルコキシド
のアルコール溶液に、水分を添加して加水分解反応およ
び重合反応を行い、該アルコールに不溶性の重合体を生
成・析出させた後、該重合体を該重合体が可溶な有機溶
剤に再溶解させ紡糸液となし、次いで該紡糸液を紡糸し
て前駆体繊維を得、得られた前駆体繊維を焼成前および
/または焼成時に水蒸気処理するチタニア繊維の製造方
法を挙げることができる。
The titania fiber used in the present invention is BET
The specific surface area is 10 m 2 / g or more, the pore volume measured by a nitrogen adsorption method is 0.05 cc / g or more, and the pore volume having a pore radius of 10 Å or more is 0.
02 cc / g or more, and the tensile strength of a single fiber is 0.1 G
The production method is not particularly limited as long as it is titania fiber having Pa or more, and as long as it has such physical properties, for example, as an example of production, water is added to an alcohol solution of titanium alkoxide to add water. After performing a decomposition reaction and a polymerization reaction to produce and precipitate a polymer insoluble in the alcohol, the polymer is redissolved in an organic solvent in which the polymer is soluble to form a spinning solution, and then the spinning solution is dissolved. A method for producing titania fibers is provided in which a precursor fiber is obtained by spinning, and the obtained precursor fiber is subjected to steam treatment before and / or during firing.

【0019】上記製造例に於いて、使用されるチタンア
ルコキシドは一般式〔1〕 Ti(OR14(但し、式
中R1は炭素原子数が1〜4のアルキル基を表す)で示
される。より具体的にはチタンテトラメトキシド、チタ
ンテトラエトキシド、チタンテトラn−プロポキシド、
チタンテトラiso−プロポキシド、チタンテトラn−
ブトキシド、チタンテトラsec−ブトキシド、チタン
テトラtert−ブトキシド等が挙げられるが、就中R
1がイソプロピル基であるチタンイソプロポキシドが挙
げられる。一般式〔1〕のR1の炭素原子数が4を越え
る場合、生成する重合体中の残存有機物量が多くなり、
その結果得られるチタニア繊維の機械的強度が低くな
る。
In the above production examples, the titanium alkoxide used is represented by the general formula [1] Ti (OR 1 ) 4 (wherein R 1 represents an alkyl group having 1 to 4 carbon atoms). It is. More specifically, titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide,
Titanium tetra iso-propoxide, titanium tetra n-
Butoxide, titanium tetrasec-butoxide, titanium tetratert-butoxide and the like.
Titanium isopropoxide wherein 1 is an isopropyl group is exemplified. When the number of carbon atoms of R 1 in the general formula [1] exceeds 4, the amount of residual organic matter in the resulting polymer increases,
The resulting titania fibers have low mechanical strength.

【0020】本発明で使用するアルコールは一般式
〔2〕 R2OH(但し、式中R2は炭素原子数が1〜4
のアルキル基を表す)で示されるものであり、このよう
なアルコールとしてはエタノール、イソプロピルアルコ
ール等が挙げられる。一般式〔2〕のR2の炭素原子数
が4を越える場合、沸点が高くなり、後工程に於いてア
ルコールを除去しにくくなるので好ましくない。
The alcohol used in the present invention is represented by the general formula [2] R 2 OH (wherein R 2 has 1 to 4 carbon atoms)
Which represents an alkyl group), and such alcohols include ethanol, isopropyl alcohol and the like. When the number of carbon atoms of R 2 in the general formula [2] exceeds 4, the boiling point becomes high, and it becomes difficult to remove the alcohol in the subsequent step, which is not preferable.

【0021】チタンアルコキシドに対するアルコールの
使用量は水分添加による加水分解に際しアルコキシドと
水が不混和にならない程度であればよく、チタンアルコ
キシド1モルに対し約0.5モル〜約50モルの範囲で
使用される。多すぎても特に問題はないが後工程での重
合体との分離コストが高くなる。
The amount of the alcohol to be used relative to the titanium alkoxide may be such that the alkoxide and water do not become immiscible upon hydrolysis by the addition of water, and may be used in the range of about 0.5 mol to about 50 mol per 1 mol of titanium alkoxide. Is done. There is no particular problem if the amount is too large, but the cost of separation from the polymer in the subsequent step increases.

【0022】本発明に於いては、チタンアルコキシドの
アルコール溶液のみを原料溶液とし、これを加水分解・
縮重合反応して、得られた重合物を有機溶媒に溶解せし
め、これを紡糸液として紡糸し、得られる前駆体繊維を
水蒸気処理した後に、焼成することによって、多孔質で
あり、かつ機械的強度の高いチタニア繊維を製造するこ
とができるが、より高い機械的強度を有するチタニア繊
維を望む場合には、焼成後得られるチタニア繊維中のシ
リカ含有量が約1〜約40重量%となるように、ケイ素
化合物を紡糸液中に添加・存在せしめることが好まし
い。該ケイ素含有化合物を添加する時期は、紡糸液を紡
糸する前迄に紡糸液中に添加しておればよく、例えば、
チタンアルコキシドのアルコール溶液、またはチタンア
ルコキシドと活性水素を有する化合物とのアルコール溶
液にケイ素化合物を混合させておいてもよいし、あるい
は加水分解・縮重合反応により得られた重合体の有機溶
媒への溶解時に、或いは溶解後に、ケイ素化合物を添加
し、紡糸液中に存在させてもよい。
In the present invention, only an alcohol solution of titanium alkoxide is used as a raw material solution, and this is hydrolyzed.
The polycondensation reaction causes the obtained polymer to be dissolved in an organic solvent, which is spun as a spinning solution, and the resulting precursor fiber is subjected to steam treatment and then fired to be porous and mechanical. Although high strength titania fiber can be produced, if a titania fiber having higher mechanical strength is desired, the silica content in the titania fiber obtained after firing is about 1 to about 40% by weight. Preferably, a silicon compound is added to the spinning solution. When adding the silicon-containing compound, it may be added to the spinning solution before spinning the spinning solution, for example,
A silicon compound may be mixed in an alcohol solution of titanium alkoxide, or an alcohol solution of titanium alkoxide and a compound having active hydrogen, or a polymer obtained by hydrolysis and polycondensation reaction to an organic solvent. During or after dissolution, a silicon compound may be added and may be present in the spinning solution.

【0023】ケイ素化合物の添加量は、焼成後得られる
チタニア繊維中のシリカ含有量が約1〜約40重量%、
好ましくは約5〜約30重量%となるようにする。シリ
カ含有量が40重量%を越える場合は、得られるチタニ
ア系繊維の機械的強度はもはや高くならないし、むしろ
チタニア成分量が相対的に低下するために触媒活性の低
下を引き起こすので好ましくない。
The amount of the silicon compound added is such that the content of silica in the titania fiber obtained after firing is about 1 to about 40% by weight,
Preferably it will be from about 5 to about 30% by weight. If the silica content exceeds 40% by weight, the mechanical strength of the titania-based fiber obtained no longer increases, but rather the content of titania component is relatively reduced, which causes a decrease in catalytic activity, which is not preferred.

【0024】本発明に使用し得るケイ素化合物はチタニ
ア中に均一に混合・分散し得るものであれば特に制限さ
れないが、通常一般式〔3〕 Sinn-1(OR3
2n+2(但し、式中R3は炭素原子数1〜4のアルキル基
を表し、nは1以上の数を表す)で表されるアルキルシ
リケートであることが好ましい。特に好ましく使用され
るアルキルシリケートは、一般式〔3〕中のR3がエチ
ル基であり、nが4〜6の、エチルシリケートが挙げら
れる。
The silicon compound that can be used in the present invention is not particularly limited as long as it can be uniformly mixed and dispersed in titania, but is usually represented by the general formula [3] Si n On -1 (OR 3 )
The alkyl silicate is preferably represented by 2n + 2 (wherein, R 3 represents an alkyl group having 1 to 4 carbon atoms, and n represents a number of 1 or more). Particularly preferred alkyl silicates include ethyl silicates wherein R 3 in the general formula [3] is an ethyl group and n is 4 to 6.

【0025】本発明では、チタンアルコキシドのアルコ
ール溶液中に水分を添加し、加水分解反応および重合反
応して、該アルコール溶液には不溶性の重合体を生成さ
せるのであるが、加水分解反応および重合反応を制御す
るために、該アルコール溶液中に活性水素を有する化合
物を添加しておくこともできる。活性水素を有する化合
物を適当な量添加しておくことによって、チタンアルコ
キシドの加水分解反応および重合反応が制御され、アル
コール中に析出した重合体の有機溶媒への溶解性を向上
させることができる。
In the present invention, water is added to an alcohol solution of titanium alkoxide, and a hydrolysis reaction and a polymerization reaction are performed to form an insoluble polymer in the alcohol solution. In order to control the reaction, a compound having active hydrogen may be added to the alcohol solution. By adding an appropriate amount of the compound having active hydrogen, the hydrolysis reaction and the polymerization reaction of the titanium alkoxide can be controlled, and the solubility of the polymer precipitated in the alcohol in the organic solvent can be improved.

【0026】活性水素を有する化合物の添加量は、チタ
ンアルコキシド1モルに対して約0.05〜約1.9モ
ル、好ましくは約0.1〜約1.0モルである。チタン
アルコキシド1モルに対する活性水素を有する化合物の
添加量が約0.05より少ない場合には、添加効果が認
められず、また1.9より多い場合には、加水分解と重
合反応が抑制されすぎて重合が進行しにくくなり、得ら
れる重合体中の残存有機物量も多くなり、その結果得ら
れるチタニア繊維の機械的強度が低くなる。
The amount of the compound having active hydrogen is about 0.05 to about 1.9 mol, preferably about 0.1 to about 1.0 mol, per 1 mol of titanium alkoxide. When the amount of the compound having active hydrogen added per mole of titanium alkoxide is less than about 0.05, no addition effect is observed, and when it is more than 1.9, the hydrolysis and polymerization reaction are excessively suppressed. As a result, the polymerization hardly proceeds, the amount of residual organic matter in the obtained polymer increases, and as a result, the mechanical strength of the resulting titania fiber decreases.

【0027】活性水素を有する化合物としては、一般式
〔4〕 R4COCH2COR5(ただし、式中R4、R5
は炭素原子数1〜4のアルキル基またはアルコキシ基を
表す)で示されるβ−ジケトン化合物またはサリチル酸
アルキルエステルが好ましい。より具体にはβ−ジケト
ン化合物として、アセト酢酸エチル、アセト酢酸イソプ
ロピルが、またサリチル酸アルキルエステルとしては、
サリチル酸エチル、サリチル酸メチル等の使用が推奨さ
れる。
As the compound having active hydrogen, a compound represented by the general formula [4] R 4 COCH 2 COR 5 (wherein R 4 and R 5
Represents an alkyl group or an alkoxy group having 1 to 4 carbon atoms), and is preferably a β-diketone compound or a salicylic acid alkyl ester. More specifically, as the β-diketone compound, ethyl acetoacetate, isopropyl acetoacetate, and as the salicylic acid alkyl ester,
The use of ethyl salicylate, methyl salicylate and the like is recommended.

【0028】本発明の実施に際しては、チタンアルコキ
シドのアルコール溶液に、水分を添加することによって
加水分解と重合反応を進行させるが、添加する水分は、
チタンアルコキシドを溶解させたアルコールと同じアル
コールで水分濃度が約1〜約50重量%に希釈した水分
であることが好ましい。直接、水を添加すると、局部的
に反応が進行して、有機溶媒に不溶の重合体が析出する
場合がある。
In the practice of the present invention, hydrolysis and polymerization are allowed to proceed by adding water to an alcohol solution of titanium alkoxide.
The water is preferably diluted with the same alcohol as the alcohol in which the titanium alkoxide is dissolved to a water concentration of about 1 to about 50% by weight. When water is directly added, the reaction locally proceeds, and a polymer insoluble in an organic solvent may be precipitated.

【0029】原料チタンアルコキシドのアルコール溶液
中に水分を添加する場合の温度は、室温以下から使用す
るアルコールの沸点温度までのいずれの温度でもよく、
特に限定されない。しかし工業的な観点、即ち早い反応
速度を望む場合には反応温度は高い方が好ましい。例え
ば水およびアルコールの添加を室温で実施し、その後沸
点温度で還流させて反応を行ってもよい。
The temperature at which water is added to the alcohol solution of the raw material titanium alkoxide may be any temperature from room temperature or lower to the boiling point of the alcohol used.
There is no particular limitation. However, from an industrial point of view, that is, when a high reaction rate is desired, a higher reaction temperature is preferable. For example, the reaction may be carried out by adding water and alcohol at room temperature and then refluxing at the boiling point.

【0030】また工業的観点からは、チタン濃度は高い
方が好ましい。従って、チタンアルコキシドのアルコー
ル溶液中への水分(アルコール希釈水)の添加をアルコ
ールの沸点下で行い、かつ添加した水分中に含有される
アルコールの容量と同じ容量のアルコールを留出させな
がら、水分添加を行えば、水分添加によるチタン濃度の
低下を抑制できるので、工業的にはこの方法が推奨され
る。
From the industrial point of view, the higher the titanium concentration, the better. Therefore, the addition of water (alcohol dilution water) to the alcohol solution of titanium alkoxide is performed at the boiling point of the alcohol, and while distilling out the same volume of alcohol as the volume of alcohol contained in the added water, If the addition is performed, a decrease in the titanium concentration due to the addition of water can be suppressed, so this method is industrially recommended.

【0031】本発明は、チタンアルコキシドのアルコー
ル溶液に、水分を添加して加水分解と重合反応を進行さ
せて、該アルコールには不溶であるが、他の有機溶媒に
は溶解する重合体を生成させ、析出させることを特徴と
している。
According to the present invention, water is added to an alcohol solution of titanium alkoxide to promote hydrolysis and polymerization reaction to form a polymer which is insoluble in the alcohol but soluble in other organic solvents. And deposited.

【0032】本発明に於けるチタンアルコキシドの加水
分解と重合反応をアルコール以外の溶媒、例えばエーテ
ル類を用いて実施した場合には、得られる重合体は3次
元的なネットワーク構造になりやすく、溶媒を取り込む
かたちでいわゆるゲル化しやすいものとなり、本発明で
得られるような適度な重合度をもつ重合体を製造するこ
とはできない。
When the hydrolysis and polymerization reaction of the titanium alkoxide according to the present invention is carried out using a solvent other than alcohol, for example, ethers, the resulting polymer tends to have a three-dimensional network structure. Thus, a polymer having an appropriate degree of polymerization as obtained in the present invention cannot be produced.

【0033】本発明の実施に於いて、該アルコールには
不溶であるが、他の有機溶媒には溶解する重合体を生
成、析出させる条件として、チタンアルコキシドのアル
コール溶液に添加する水分量は重要である。添加する水
分量が少なすぎる場合には、アルコールに可溶性の重合
体が得られる。かかる重合体は重合度が低く、重合体中
に残存する有機物量も相対的に高い。このような重合体
を用いて紡糸液とし、紡糸した場合には、曵糸性は良好
だが、前駆体繊維中に多量の有機成分が残存するために
機械的強度の高いチタニア繊維は得られない。
In the practice of the present invention, the amount of water to be added to an alcohol solution of titanium alkoxide is important as a condition for forming and depositing a polymer which is insoluble in the alcohol but soluble in other organic solvents. It is. If the amount of water to be added is too small, a polymer soluble in alcohol is obtained. Such a polymer has a low degree of polymerization, and the amount of organic substances remaining in the polymer is relatively high. When spinning is performed using such a polymer and spun, spinning properties are good, but titania fibers with high mechanical strength cannot be obtained because a large amount of organic components remain in the precursor fibers. .

【0034】添加する水分量を多くしてゆくと、アルコ
ールに不溶性の重合体が生成し、析出してくる。添加す
る水分量が適当である場合、アルコールには不溶である
ものの、他の有機溶媒にはよく溶解するものとなる。こ
のような重合体は重合度が高く、チタン−酸素−チタン
の結合を多く有しており相対的に有機物量が少ない。従
って、この重合体を紡糸液とし、紡糸して得られるチタ
ニア繊維は、機械的強度の高いものとなる。
As the amount of water to be added increases, a polymer insoluble in alcohol is formed and precipitates. If the amount of water to be added is appropriate, it will be insoluble in alcohol but well soluble in other organic solvents. Such a polymer has a high degree of polymerization, has many bonds of titanium-oxygen-titanium, and has a relatively small amount of organic substances. Accordingly, titania fibers obtained by spinning this polymer into a spinning solution have high mechanical strength.

【0035】ただし、大過剰に水分を添加し重合反応を
すすめると、該アルコールのみならず、他の有機溶媒に
も溶解しないものとなり、紡糸液としての調製が不可能
となる。加水分解・重合反応によりアルコール溶液中に
析出した重合体は、次いで懸濁状態のまま、或いはアル
コールを完全にあるいは一部分除去した後、有機溶媒と
接触混合し、溶解せしめ紡糸液を製造する。通常は、重
合体からアルコールを完全に除去し有機溶媒に溶解する
ことが好ましい。
However, if a large excess of water is added to promote the polymerization reaction, the polymerization reaction will not be dissolved in not only the alcohol but also other organic solvents, making it impossible to prepare a spinning solution. The polymer precipitated in the alcohol solution by the hydrolysis / polymerization reaction is then mixed with an organic solvent in a suspended state or after completely or partially removing the alcohol, and dissolved to produce a spinning solution. Usually, it is preferable to completely remove the alcohol from the polymer and dissolve it in an organic solvent.

【0036】アルコール溶液と重合体の分離方法はとく
に制限されないが、例えば濾過による分離、遠心分離、
加熱濃縮除去、減圧濃縮除去、更に必要に応じて加熱あ
るいは減圧による乾燥などがあげられる。
The method of separating the alcohol solution and the polymer is not particularly limited, but for example, separation by filtration, centrifugation,
Removal by heat concentration, removal by concentration under reduced pressure, and, if necessary, drying by heating or reduced pressure may be mentioned.

【0037】チタンアルコキシドのアルコール溶液に水
分を添加し、加水分解・重合反応による重合体の生成、
該アルコール溶液と重合体の分離、さらには得られた重
合体を有機溶媒に溶解せしめ紡糸液を製造するこれら工
程は回分式でも連続式でも実施可能である。
Water is added to an alcohol solution of titanium alkoxide to form a polymer by hydrolysis and polymerization reaction,
These steps of separating the alcohol solution and the polymer, and further, dissolving the obtained polymer in an organic solvent to produce a spinning solution can be carried out by a batch system or a continuous system.

【0038】本発明の実施に於いて、チタンアルコキシ
ドの加水分解・重合反応は、チタンアルコキシドのアル
コール溶液に水分を添加し該アルコールには不溶である
が、アルコール以外の有機溶媒には可溶である各種物性
に優れた重合体を析出せしめる水分を添加すればよく、
通常、チタンアルコキシド1モルに対し水を約1.5〜
約4モルの範囲で添加し、反応に供すればよいが、該水
の添加量の上限は必ずしも限定されるものではなく、我
々の多くの実験からは、チタンアルコキシドのアルコー
ル溶液への添加水分量(A)と、該アルコール溶液の水
分添加による重合体を生成・析出させる工程から、析出
した重合体を該アルコール溶液より分離し、有機溶媒に
溶解する重合体を得るまでに反応系外に排出された水分
量(B)の差(A−B)がチタンアルコキシド1モルに
対し約1.5〜約1.95モル、好ましくは約1.6〜
約1.90モルとなるように添加水分量を調整すればよ
く、重合体を得るまでに反応系外に排出する水の量が多
い場合には添加水分量を多くしてもよい。該水分量の
差、即ち実質加水分解反応に消費した水分量が1.5モ
ルより少ない場合は得られる重合体の重合度が小さく、
相対的に有機物含有量の多い重合体となり、これを有機
溶媒に溶解し紡糸液として紡糸しても高い機械的強度を
有するチタニア繊維は得られない。他方、水分量の差
が、1.95モルを越える場合には生成した重合体は有
機溶媒に溶解させるのがきわめて困難となる。
In the practice of the present invention, the hydrolysis and polymerization reaction of titanium alkoxide is performed by adding water to an alcohol solution of titanium alkoxide and insoluble in the alcohol, but soluble in an organic solvent other than alcohol. What is necessary is just to add water to precipitate a polymer excellent in certain physical properties,
Usually, about 1.5 to about 1 mole of titanium alkoxide is added to water.
It may be added in the range of about 4 mol and subjected to the reaction, but the upper limit of the amount of the water is not necessarily limited, and many experiments have shown that the amount of water added to the alcohol solution of titanium alkoxide is The amount (A) and the step of producing and precipitating a polymer by adding water to the alcohol solution, and separating the precipitated polymer from the alcohol solution until the polymer dissolved in the organic solvent is obtained. The difference (AB) in the amount of discharged water (B) is about 1.5 to about 1.95 mol, preferably about 1.6 to about 1 mol of titanium alkoxide.
The amount of added water may be adjusted so as to be about 1.90 mol. When the amount of water discharged out of the reaction system before obtaining the polymer is large, the amount of added water may be increased. If the difference in the amount of water, that is, the amount of water consumed in the substantial hydrolysis reaction is less than 1.5 mol, the degree of polymerization of the obtained polymer is small,
A polymer having a relatively high organic content is obtained, and even if this is dissolved in an organic solvent and spun as a spinning solution, titania fibers having high mechanical strength cannot be obtained. On the other hand, if the difference in water content exceeds 1.95 mol, it is extremely difficult to dissolve the produced polymer in an organic solvent.

【0039】重合体を溶解させる有機溶媒は、エーテル
類または芳香族系炭化水素類を含有する有機溶媒である
ことが好ましい。該有機溶媒は、紡糸液中の主溶媒であ
るので、高沸点の溶媒は好ましくない。好ましい有機溶
媒としては、テトラヒドロフラン、ジエチルエーテル、
トルエン等が挙げられる。
The organic solvent for dissolving the polymer is preferably an organic solvent containing ethers or aromatic hydrocarbons. Since the organic solvent is the main solvent in the spinning solution, a solvent having a high boiling point is not preferred. Preferred organic solvents include tetrahydrofuran, diethyl ether,
Toluene and the like.

【0040】溶解した重合体溶液は、加熱による溶媒除
去あるいは減圧による溶媒除去などによって濃縮し、重
合体の濃度で50〜80重量%になるように調製され
る。また紡糸にあたっては紡糸液の粘度が制御される。
適当な紡糸液の粘度は、約10ポイズ〜約2000ポイ
ズ、好ましくは約20ポイズ〜約500ポイズの範囲
で、これら粘度は紡糸液の濃度や紡糸液の温度を調整す
ることにより制御することができる。
The dissolved polymer solution is concentrated by removing the solvent by heating or removing the solvent by reducing the pressure, so that the concentration of the polymer is adjusted to 50 to 80% by weight. In spinning, the viscosity of the spinning solution is controlled.
A suitable spinning solution has a viscosity of about 10 poise to about 2000 poise, preferably about 20 poise to about 500 poise, and these viscosities can be controlled by adjusting the concentration of the spinning solution and the temperature of the spinning solution. it can.

【0041】このように粘度調整した紡糸液は、次いで
紡糸して前駆体繊維とする。紡糸方法としては特に制限
されるものではなく、ノズル押し出し紡糸、遠心紡糸、
吹き出し紡糸など公知の紡糸方法が適用できる。紡糸に
際し、前駆体繊維を回転するローラーや高速の空気流等
により延伸することも可能である。また、紡糸にあた
り、紡糸雰囲気や吹き出し空気の温度や湿度を調整する
ことは、安定して良好な繊維を得るのに望ましい方法で
ある。
The spinning solution whose viscosity has been adjusted in this way is then spun into precursor fibers. The spinning method is not particularly limited, and nozzle extrusion spinning, centrifugal spinning,
Known spinning methods such as blow spinning can be applied. In spinning, the precursor fiber can be drawn by a rotating roller or a high-speed air stream. In spinning, adjusting the spinning atmosphere and the temperature and humidity of the blown air is a desirable method for stably obtaining good fibers.

【0042】本発明においては、紡糸された前駆体繊維
は、水蒸気処理した後に焼成される。水蒸気処理は、8
5℃以上300℃以下、および0.3気圧以上の水蒸気
分圧を有する雰囲気下、1時間以上実施する。温度およ
び水蒸気分圧が高いほど、処理時間は短くなる。処理温
度が、85℃よりも低い場合、水蒸気分圧が高い雰囲気
下においても、長時間の処理が必要となり、工業的には
好ましくない。また、水蒸気分圧が0.3気圧よりも低
い場合も同様に長時間の処理が必要であり、好ましくな
い。
In the present invention, the spun precursor fiber is baked after steam treatment. Steam treatment is 8
It is performed for 1 hour or more in an atmosphere having a temperature of 5 ° C. or more and 300 ° C. or less and a partial pressure of water vapor of 0.3 atm or more. The higher the temperature and the partial pressure of steam, the shorter the processing time. When the treatment temperature is lower than 85 ° C., long-time treatment is required even in an atmosphere having a high partial pressure of water vapor, which is not industrially preferable. Also, when the partial pressure of water vapor is lower than 0.3 atm, a long time treatment is similarly required, which is not preferable.

【0043】前記した紡糸液から紡糸して得られる前駆
体繊維は、溶媒および重合体側鎖の有機基にもとずく有
機成分を含有している。該前駆体繊維が水蒸気処理を受
けると、繊維中の重合体はさらに加水分解を受け、側鎖
の有機成分が脱離してOH基に変化し、さらに重合反応
によってTi−O−Ti結合が増加してゆくものと思わ
れる。この有機成分の脱離とTi−O−Ti結合の生成
によって、繊維中に多くの空隙が形成され、その空隙の
大きさが比較的大きいために、焼成過程においても、そ
の空隙が消失せずに残存することによって、多孔質繊維
になるものと思われる。
The precursor fiber obtained by spinning from the above-mentioned spinning solution contains a solvent and an organic component based on the organic group of the polymer side chain. When the precursor fiber is subjected to the steam treatment, the polymer in the fiber is further hydrolyzed, and the organic component of the side chain is eliminated to change to an OH group, and the Ti—O—Ti bond is increased by the polymerization reaction. It seems to be going on. Due to the desorption of the organic component and generation of the Ti—O—Ti bond, many voids are formed in the fiber, and since the size of the voids is relatively large, the voids do not disappear even in the firing process. It is thought that by remaining in the porous fiber, a porous fiber is obtained.

【0044】焼成過程においては、前駆体繊維中の有機
成分は、300℃までにはほとんど脱離する。従って、
水蒸気処理は300℃以下の温度で実施され、好ましく
は200℃以下である。通常、前駆体繊維を水蒸気処理
した後に焼成するが、焼成工程の中に水蒸気処理を組み
込むことも可能である。紡糸した前駆体繊維を焼成する
際に、85℃以上300℃の間で、0.3気圧以上の水
蒸気分圧を有する雰囲気下で1時間以上保持できればよ
く、その後は水蒸気分圧を下げて通常に焼成してもよ
い。
In the firing process, the organic components in the precursor fibers are almost completely eliminated by 300 ° C. Therefore,
The steaming is performed at a temperature of 300 ° C or less, preferably 200 ° C or less. Usually, the precursor fiber is fired after steaming, but it is also possible to incorporate steaming into the firing step. When baking the spun precursor fiber, it is sufficient that the precursor fiber can be maintained at 85 ° C. or more and 300 ° C. for 1 hour or more under an atmosphere having a partial pressure of steam of 0.3 atm or more. May be fired.

【0045】水蒸気処理した後の前駆体繊維の焼成方法
は特に制限されるものではなく、通常は空気中で焼成さ
れる。必要に応じて、焼成して得られたチタニア繊維を
再度焼成してもよい。焼成時、前駆体繊維あるいはチタ
ニア繊維に張力をかけて焼成してもよい。
The method for firing the precursor fiber after the steam treatment is not particularly limited, and is usually fired in air. If necessary, the titania fibers obtained by firing may be fired again. During firing, the precursor fibers or titania fibers may be fired under tension.

【0046】多孔質チタニア繊維を製造するための焼成
温度は、水蒸気処理条件と関連するので、特に限定され
ないが、通常500℃〜1100℃の範囲である。焼成
温度が高いほど、多孔性、即ちBET比表面積や細孔容
積は、減少する方向であるが、水蒸気処理条件として、
高温で高水蒸気分圧雰囲気下で長時間処理されたものほ
ど、高い焼成温度でも多孔性が維持される。焼成温度
が、500℃よりも低い場合は、多孔質繊維ではある
が、繊維強度が低くいので好ましくなく、1100℃よ
りも高い場合、多孔性が減少するので好ましくない。
The firing temperature for producing the porous titania fiber is not particularly limited because it is related to the steam treatment conditions, but is usually in the range of 500 ° C. to 1100 ° C. As the firing temperature is higher, the porosity, that is, the BET specific surface area and the pore volume are in a decreasing direction, but as the steam treatment conditions,
The higher the temperature and the higher the temperature, the higher the porosity is maintained even at a high firing temperature. If the sintering temperature is lower than 500 ° C., the fiber is a porous fiber, but the fiber strength is low, which is not preferable.

【0047】以上、詳述した方法により、BET比表面
積が10m2/g以上であり、窒素吸着法で測定される
細孔容積が0.05cc/g以上であり、10オングス
トローム以上の細孔半径を有する細孔容積が0.02c
c/g以上であり、単繊維の引張強度が0.1GPa以
上であるチタニア繊維を得ることができる。特に水蒸気
処理条件を調節することにより、BET比表面積が50
2/g以上であり、窒素吸着法で測定される細孔容積
が0.1cc/g以上であり、10オングストローム以
上の細孔半径を有する細孔容積が0.04cc/g以上
で、その繊維の細孔が10オングストローム〜300オ
ングストローム、通常は10オングストローム〜100
オングストロームに集合ピークを有し、且つ繊維強度と
して約0.1GPa以上、好ましくは0.3GPa以上
のものを得ることができる。
According to the method described in detail above, the BET specific surface area is 10 m 2 / g or more, the pore volume measured by the nitrogen adsorption method is 0.05 cc / g or more, and the pore radius is 10 Å or more. With a pore volume of 0.02c
c / g or more, and titania fibers having a tensile strength of a single fiber of 0.1 GPa or more can be obtained. In particular, by adjusting the steam treatment conditions, the BET specific surface area becomes 50
m 2 / g or more, the pore volume measured by the nitrogen adsorption method is 0.1 cc / g or more, and the pore volume having a pore radius of 10 Å or more is 0.04 cc / g or more. Fiber pores are between 10 Å and 300 Å, typically between 10 Å and 100 Å
A fiber having an aggregate peak in Angstrom and a fiber strength of about 0.1 GPa or more, preferably 0.3 GPa or more can be obtained.

【0048】[0048]

【実施例】以下に実施例により本発明をさらに詳細に説
明するが、本発明はかかる実施例により制限を受けるも
のではない。尚、本発明に於いて、繊維径、引張強度、
繊維の結晶形、BET比表面積、細孔容積、SEM観
察、EPMA分析は以下の方法により測定した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In the present invention, the fiber diameter, tensile strength,
Fiber crystal form, BET specific surface area, pore volume, SEM observation, and EPMA analysis were measured by the following methods.

【0049】繊維径:試料を光学顕微鏡で観察し、視野
中に存在する繊維20本を無作為に選択して繊維径を測
定し、その平均値を算出して繊維径とした。
Fiber diameter: The sample was observed with an optical microscope, 20 fibers present in the visual field were randomly selected, the fiber diameter was measured, and the average value was calculated to obtain the fiber diameter.

【0050】引張強度:繊維を単繊維自動引張試験装置
(東洋ボールドウィン株式会社製、制御部;モデルAM
F−C、引張装置部;TENSILON、UTM−2−
20)を用いて、測定長25mm、引張速度1mm/分
で引っ張り、繊維が破断する強度を引張強度とした。尚
測定値は単繊維30本の引張強度の平均値である。
Tensile strength: A fiber is used as a single fiber automatic tensile tester (Toyo Baldwin Co., Ltd., control unit; model AM
FC, tension device part; TENSILON, UTM-2-
Using 20), the fiber was pulled at a measurement length of 25 mm and a tensile speed of 1 mm / min, and the strength at which the fiber broke was defined as the tensile strength. The measured value is the average value of the tensile strength of 30 single fibers.

【0051】繊維の結晶形:繊維を乳鉢にて軽く粉砕
し、X線回折装置(理学電機株式会社製、RAD−II
A)を用いて分析した。
Crystal form of fiber: The fiber is lightly pulverized in a mortar, and an X-ray diffractometer (RAD-II, manufactured by Rigaku Corporation)
Analyzed using A).

【0052】繊維のBET比表面積および細孔分布:繊
維を乳鉢にて軽く粉砕し、ガス吸着/脱着アナライザー
オムニソープ360(COULTER社製)を用いて、
窒素ガスにて測定した。
BET specific surface area and pore distribution of fiber: The fiber was lightly pulverized in a mortar, and was analyzed using a gas adsorption / desorption analyzer Omnisorp 360 (manufactured by COULTER).
It was measured with nitrogen gas.

【0053】繊維のSEM観察:繊維を試料台にセット
し、イオンスパッタリング装置(日本電子製、JFC−
1100E)を用いて金蒸着した後、走査型電子顕微鏡
(日本電子製、JSM−T300)で繊維表面および破
断面を観察した。
SEM observation of the fiber: The fiber was set on a sample table, and an ion sputtering device (manufactured by JEOL, JFC-
After gold deposition using 1100E), the fiber surface and the fracture surface were observed with a scanning electron microscope (JSM-T300, manufactured by JEOL Ltd.).

【0054】繊維のEPMA分析:繊維を室温型硬化樹
脂にて包埋し、硬化後切断して、繊維破断面を元素分析
した(島津製作所製 EPM−810)。
EPMA analysis of fiber: The fiber was embedded in a room-temperature curing resin, cut after curing, and the fiber fracture surface was subjected to elemental analysis (EPM-810 manufactured by Shimadzu Corporation).

【0055】実施例1 [チタニア繊維の製造例]まず、担体である多孔質チタ
ニア繊維の製造例を示す。チタンイソプロポキシド(和
光純薬、試薬1級)300.0g、およびアセト酢酸エ
チル(和光純薬、試薬特級)54.9gをイソプロピル
アルコール(和光純薬、試薬特級)700.0gに溶解
させ、窒素雰囲気下、1時間リフラックスして、原料の
アルコール溶液を調製した。このとき、アセト酢酸エチ
ルのチタンイソプロポキシドに対するモル比は0.40
である。純水51.0gをイソプロピルアルコール46
0.2gと混合し、水濃度10重量%のアルコール溶液
を調製した。この水分量はチタンアルコキシド1モルに
対して2.7モル量である。
Example 1 Production Example of Titania Fiber First, a production example of a porous titania fiber as a carrier will be described. 300.0 g of titanium isopropoxide (Wako Pure Chemicals, first grade reagent) and 54.9 g of ethyl acetoacetate (Wako Pure Chemicals, special grade reagent) are dissolved in 700.0 g of isopropyl alcohol (Wako Pure Chemical, special grade reagent), The mixture was refluxed for 1 hour in a nitrogen atmosphere to prepare an alcohol solution of a raw material. At this time, the molar ratio of ethyl acetoacetate to titanium isopropoxide was 0.40.
It is. 51.0 g of pure water is added to isopropyl alcohol 46
The mixture was mixed with 0.2 g to prepare an alcohol solution having a water concentration of 10% by weight. This water content is 2.7 moles per mole of titanium alkoxide.

【0056】原料のアルコール溶液を窒素雰囲気中で加
熱し沸騰下で還流させると同時に、アルコールを留出さ
せながら、水濃度10重量%のアルコール溶液を撹拌
下、添加した。アルコールの留出速度と添加速度はほぼ
等しくなるように調整し、また添加時間は135分とな
るように調整した。
The alcohol solution as a raw material was heated in a nitrogen atmosphere and refluxed under boiling. At the same time, an alcohol solution having a water concentration of 10% by weight was added with stirring while distilling off the alcohol. The distillation rate of the alcohol and the addition rate were adjusted to be substantially equal, and the addition time was adjusted to be 135 minutes.

【0057】添加を開始し、チタンアルコキシド1モル
に対して、2.1モル量の水分を添加した頃から、重合
体の析出が始まり、水分を全量添加した時点では、完全
にスラリー状態となった。留出させたアルコール中の水
分を分析したところ、チタンアルコキシド1モルに対し
て、水分は0.19モル量であった。
When the addition was started and the precipitation of the polymer started from the time when 2.1 mol of water was added to 1 mol of titanium alkoxide, the slurry was completely changed to the slurry state when the whole water was added. Was. When the water in the distilled alcohol was analyzed, the water was 0.19 mol per 1 mol of titanium alkoxide.

【0058】該スラリーを1時間リフラックスした後、
そのまま加熱によりアルコールを留出させ、さらに14
3℃の油バスにて留出液が出なくなるまで加熱を続け
て、重合体を乾燥した。乾燥後の重合体は黄色の粉末で
あり、その重量は144gであった。この操作によって
系外に排出した水分量は、チタンアルコキシド1モルに
対して0.61モル量であった。従って、添加した水分
量と、アルコール等と一緒に系外に排出された水分量と
の差〔2.7−(0.19+0.61)〕は、チタンア
ルコキシド1モルに対して、1.80モル量であった。
After refluxing the slurry for one hour,
Distill alcohol by heating as it is, and further 14
Heating was continued in a 3 ° C. oil bath until no distillate remained, and the polymer was dried. The polymer after drying was a yellow powder, and the weight was 144 g. The amount of water discharged out of the system by this operation was 0.61 mol per 1 mol of titanium alkoxide. Therefore, the difference [2.7− (0.19 + 0.61)] between the amount of water added and the amount of water discharged out of the system together with alcohol or the like is 1.80 to 1 mol of titanium alkoxide. It was a molar amount.

【0059】該重合体をテトラヒドロフラン(和光純
薬、試薬特級)460gに溶解させた後、エチルシリケ
ート40(多摩化学工業)を37.2g加えて、1時間
リフラックスした。エチルシリケートの添加量は、紡
糸、焼成して得られるチタニア系繊維中にシリカとして
15重量%となる量である。
After dissolving the polymer in 460 g of tetrahydrofuran (Wako Pure Chemical Industries, special grade of reagent), 37.2 g of ethyl silicate 40 (Tama Chemical Industry) was added and refluxed for 1 hour. The amount of ethyl silicate added is such that the titania-based fiber obtained by spinning and firing becomes 15% by weight as silica.

【0060】重合体溶液をテフロン製の3μmのメンブ
レンフィルターで濾過した後、加熱してテトラヒドロフ
ランを留出させて濃縮し、200gの紡糸液を得た。こ
の時の紡糸液の粘度は、40℃で50ポイズであった。
After the polymer solution was filtered through a 3 μm membrane filter made of Teflon, the mixture was heated to distill off tetrahydrofuran and concentrated to obtain 200 g of a spinning solution. At this time, the viscosity of the spinning solution was 50 poise at 40 ° C.

【0061】40℃の該紡糸液を、20kg/cm2
窒素ガスで、口径50μmのノズルから、40℃、60
%RHの空気雰囲気中に押し出し、70m/分の速度で
巻き取り、前駆体繊維を得た。
The spinning solution at 40 ° C. was sprayed with nitrogen gas at 20 kg / cm 2 through a nozzle having a diameter of 50 μm through a nozzle at 40 ° C. and 60 ° C.
% RH and rolled up at a speed of 70 m / min to obtain a precursor fiber.

【0062】得られた前駆体繊維を85℃、相対湿度9
5%(水蒸気分圧0.54気圧)の恒温恒湿器の中に入
れて15時間の水蒸気処理を実施した後、昇温速度20
0℃/hr、空気中で900℃で30分間焼成して、担
体である多孔質チタニア繊維を得た。
The obtained precursor fiber was heated at 85 ° C. and a relative humidity of 9
After being placed in a 5% (water vapor partial pressure 0.54 atm) thermostat and subjected to steam treatment for 15 hours, the temperature was raised at a heating rate of 20%.
It was baked at 900C for 30 minutes in air at 0 ° C / hr to obtain a porous titania fiber as a carrier.

【0063】該繊維は、繊維径16μm、BET比表面
積が134m2/gであり、窒素吸着法による細孔容積
は0.22cc/gであり、10オングストローム以上
の細孔半径を有する細孔容積は0.22cc/gであっ
た。また、引張強度は0.2GPaであり、XRD分析
によれば、該繊維はアナターゼ形の酸化チタンであり、
アナターゼ以外のピークは認められなかった。
The fiber has a fiber diameter of 16 μm, a BET specific surface area of 134 m 2 / g, a pore volume by a nitrogen adsorption method of 0.22 cc / g, and a pore volume having a pore radius of 10 Å or more. Was 0.22 cc / g. Further, the tensile strength is 0.2 GPa, and according to XRD analysis, the fiber is anatase-type titanium oxide,
No peak other than anatase was observed.

【0064】[チタニア繊維への触媒成分の担持]以下
の方法により、脱硝触媒として用いられる酸化バナジウ
ム/酸化チタン系の触媒繊維を製造した。0.5mol
/Lの蓚酸水溶液を調製し、該水溶液にメタバナジン酸
アンモニウムが5wt%になるように添加して調製した
溶液に、上記で製造して得たチタニア繊維を浸漬し、引
き上げた後、110℃で2時間乾燥させた。乾燥後は4
00℃で1時間焼成して触媒繊維を得た。
[Support of Catalyst Component on Titania Fiber] A vanadium oxide / titanium oxide-based catalyst fiber used as a denitration catalyst was produced by the following method. 0.5mol
/ L of oxalic acid aqueous solution was prepared, and the titania fiber obtained above was immersed in a solution prepared by adding ammonium metavanadate to the aqueous solution so as to be 5 wt%, pulled up, and then heated at 110 ° C. Dry for 2 hours. 4 after drying
It was calcined at 00 ° C. for 1 hour to obtain a catalyst fiber.

【0065】該触媒繊維を評価したところ、酸化バナジ
ウム担持量は6.2wt%であった。SEMで観察した
ところ、図1に示す如く、該触媒繊維外表面には脱落し
そうな酸化バナジウム粒子は存在しなかった。該触媒繊
維の破断面をEPMAで分析したところ酸化バナジウム
が該触媒繊維内部に均一に担持されていることを確認し
た。
When the catalyst fiber was evaluated, the amount of vanadium oxide carried was 6.2 wt%. When observed by SEM, as shown in FIG. 1, there was no vanadium oxide particles likely to fall off on the outer surface of the catalyst fiber. Analysis of the fracture surface of the catalyst fiber by EPMA confirmed that vanadium oxide was uniformly supported inside the catalyst fiber.

【0066】[触媒性能試験]該触媒繊維を2g秤量
し、内径24mmφの反応管内に充填高さが2cmにな
るように充填し、該反応管にNO:100ppm、NH
3:100ppm、O2:10%を含有する200℃のガ
スを1L/分のガス速度で流通させ脱硝試験を行ったと
ころ、脱硝率は97%であった。
[Catalyst Performance Test] 2 g of the catalyst fiber was weighed and packed into a reaction tube having an inner diameter of 24 mmφ so that the packing height became 2 cm.
When a gas at 200 ° C. containing 3 : 100 ppm and O 2 : 10% was passed at a gas rate of 1 L / min to conduct a denitration test, the denitration rate was 97%.

【0067】実施例2 実施例1で得られた前駆体繊維を、85℃、相対湿度9
5%(水蒸気分圧0.54気圧)の恒温恒湿器の中に入
れて5時間の水蒸気処理を実施した後、昇温速度200
℃/hr、空気中で700℃で30分間焼成して、担体
である多孔質チタニア繊維を得た。該繊維は、繊維径1
6μm、BET比表面積が149m2/gであり、窒素
吸着法による細孔容積は0.14cc/gであり、10
オングストローム以上の細孔半径を有する細孔容積は
0.06cc/gであった。また、引張強度は0.6G
Paであり、XRD分析によれば、該繊維はアナターゼ
形の酸化チタンであった。次に、該多孔質チタニア繊維
を用いて実施例1と同様の方法で触媒繊維を調製した。
該触媒繊維の酸化バナジウム担持量は5.9wt%であ
り、SEMで観察すると、該触媒繊維外表面には脱落し
そうな酸化バナジウム粒子は存在しなかった。該触媒繊
維の破断面をEPMAで分析したところ該触媒繊維内部
には実施例1よりも少量の酸化バナジウムが均一に担持
されていることを確認した。該触媒繊維を実施例1と同
様の方法で脱硝試験を行ったところ、脱硝率は72%で
あった。
Example 2 The precursor fiber obtained in Example 1 was used at 85 ° C. and a relative humidity of 9
After being placed in a 5% (water vapor partial pressure 0.54 atm) thermostat and subjected to steam treatment for 5 hours, the heating rate was increased to 200%.
Calcination was performed at 700 ° C. for 30 minutes in air at 700 ° C./hr to obtain a porous titania fiber as a carrier. The fiber has a fiber diameter of 1
6 μm, BET specific surface area is 149 m 2 / g, pore volume by nitrogen adsorption method is 0.14 cc / g,
The pore volume having a pore radius of Å or more was 0.06 cc / g. The tensile strength is 0.6G
Pa, and according to XRD analysis, the fiber was anatase-type titanium oxide. Next, using the porous titania fiber, a catalyst fiber was prepared in the same manner as in Example 1.
The amount of vanadium oxide carried on the catalyst fiber was 5.9 wt%, and when observed by SEM, no vanadium oxide particles likely to fall off were present on the outer surface of the catalyst fiber. When the fracture surface of the catalyst fiber was analyzed by EPMA, it was confirmed that a smaller amount of vanadium oxide was uniformly carried inside the catalyst fiber than in Example 1. The catalyst fiber was subjected to a denitration test in the same manner as in Example 1, and the denitration rate was 72%.

【0068】実施例3 実施例1で得られた前駆体繊維を、85℃、相対湿度9
5%(水蒸気分圧0.54気圧)の恒温恒湿器の中に入
れて10時間の水蒸気処理を実施した後、昇温速度20
0℃/hr、空気中で900℃で30分間焼成して、担
体である多孔質チタニア繊維を得た。該繊維は、繊維径
15μm、BET比表面積が77m2/gであり、窒素
吸着法による細孔容積は0.11cc/gであり、10
オングストローム以上の細孔半径を有する細孔容積は
0.11cc/gであった。また、引張強度は0.7G
Paであり、XRD分析によれば、該繊維はアナターゼ
形の酸化チタンであった。次に、該多孔質チタニア繊維
を用いて実施例1と同様の方法で触媒繊維を調製した。
該触媒繊維の酸化バナジウム担持量は6.0wt%であ
り、SEMで観察すると、該触媒繊維外表面には脱落し
そうな酸化バナジウム粒子は存在しなかった。該触媒繊
維の破断面をEPMAで分析したところ該触媒繊維内部
には実施例1と実施例2の中間の量の酸化バナジウムが
均一に担持されていることを確認した。該触媒繊維を実
施例1と同様の方法で脱硝試験を行ったところ、脱硝率
は92%であった。
Example 3 The precursor fiber obtained in Example 1 was used at 85 ° C. and a relative humidity of 9
After being placed in a 5% (water vapor partial pressure 0.54 atm) thermostat and subjected to steam treatment for 10 hours, the temperature was raised at a heating rate of 20%.
It was baked at 900C for 30 minutes in air at 0 ° C / hr to obtain a porous titania fiber as a carrier. The fiber had a fiber diameter of 15 μm, a BET specific surface area of 77 m 2 / g, a pore volume by a nitrogen adsorption method of 0.11 cc / g, and
The pore volume having a pore radius of Å or more was 0.11 cc / g. The tensile strength is 0.7G
Pa, and according to XRD analysis, the fiber was anatase-type titanium oxide. Next, using the porous titania fiber, a catalyst fiber was prepared in the same manner as in Example 1.
The amount of vanadium oxide supported on the catalyst fiber was 6.0 wt%, and when observed by SEM, no vanadium oxide particles likely to fall off were present on the outer surface of the catalyst fiber. When the fracture surface of the catalyst fiber was analyzed by EPMA, it was confirmed that an intermediate amount of vanadium oxide between Example 1 and Example 2 was uniformly carried inside the catalyst fiber. The catalyst fiber was subjected to a denitration test in the same manner as in Example 1 to find that the denitration rate was 92%.

【0069】比較例1 実施例1で得られた前駆体繊維を、85℃、相対湿度9
5%(水蒸気分圧0.54気圧)の恒温恒湿器の中に入
れて1時間の水蒸気処理を実施した後、昇温速度200
℃/hr、空気中で900℃で30分間焼成して、担体
である多孔質チタニア繊維を得た。該繊維は、繊維径1
5μm、BET比表面積が0.4m2/gであり、窒素
吸着法による細孔容積は0.01cc/g未満であり、
よって10オングストローム以上の細孔半径を有する細
孔容積も0.01cc/g未満であった。また、引張強
度は1.0GPaであり、XRD分析によれば、該繊維
はアナターゼ形の酸化チタンであった。次に、該多孔質
チタニア繊維を用いて実施例1と同様の方法で触媒繊維
を調製した。該触媒繊維の酸化バナジウム担持量は5.
3wt%であり、SEMで観察したところ、該繊維外表
面には細孔容積が小さいため、繊維内に入りきれなかっ
たためか図2に示す如く繊維表面に酸化バナジウム粒子
が多量に被着、存在していた。該触媒繊維の破断面をE
PMAで分析したところ酸化バナジウムが該触媒繊維内
部には少量しか担持されていないことを確認した。該触
媒繊維を実施例1と同様の方法で脱硝試験を行ったとこ
ろ、脱硝率は29%であった。
Comparative Example 1 The precursor fiber obtained in Example 1 was used at 85 ° C. and a relative humidity of 9
After being placed in a 5% (water vapor partial pressure 0.54 atm) constant temperature and humidity chamber for 1 hour of steam treatment, the temperature was raised at a rate of 200
Calcination was performed at 900 ° C. for 30 minutes in air at 900 ° C./hr to obtain a porous titania fiber as a carrier. The fiber has a fiber diameter of 1
5 μm, BET specific surface area is 0.4 m 2 / g, pore volume by nitrogen adsorption method is less than 0.01 cc / g,
Therefore, the pore volume having a pore radius of 10 Å or more was also less than 0.01 cc / g. The tensile strength was 1.0 GPa, and the fiber was anatase-type titanium oxide according to XRD analysis. Next, using the porous titania fiber, a catalyst fiber was prepared in the same manner as in Example 1. The amount of vanadium oxide supported on the catalyst fiber was 5.
3 wt%, and observation by SEM revealed that a large amount of vanadium oxide particles adhered to the fiber surface as shown in FIG. Was. The fracture surface of the catalyst fiber is E
Analysis by PMA confirmed that only a small amount of vanadium oxide was supported inside the catalyst fiber. The catalyst fiber was subjected to a denitration test in the same manner as in Example 1, and the denitration rate was 29%.

【0070】比較例2 実施例1で得られた前駆体繊維を、85℃、相対湿度9
5%(水蒸気分圧0.54気圧)の恒温恒湿器の中に入
れて3時間の水蒸気処理を実施した後、昇温速度200
℃/hr、空気中で600℃で30分間焼成して、担体
である多孔質チタニア繊維を得た。該繊維は、繊維径1
5μm、BET比表面積が90m2/gであり、窒素吸
着法による細孔容積は0.06cc/gであり、10オ
ングストローム以上の細孔半径を有する細孔容積は0.
01cc/gであった。また、引張強度は0.6GPa
であり、XRD分析によれば、該繊維はアナターゼ形の
酸化チタンであった。次に、該多孔質チタニア繊維を用
いて実施例1と同様の方法で触媒繊維を調製した。該触
媒繊維の酸化バナジウム担持量は6.1wt%であり、
SEMで観察したところ、該触媒繊維外表面には比較例
1ほどではないが少量の酸化バナジウム粒子が存在して
いた。該触媒繊維の破断面をEPMAで分析したところ
該触媒繊維内部には実施例1〜3よりも少量の酸化バナ
ジウムが担持されていることを確認した。該触媒繊維を
実施例1と同様の方法で脱硝試験を行ったところ、脱硝
率は44%であった。
Comparative Example 2 The precursor fiber obtained in Example 1 was used at 85 ° C. and a relative humidity of 9
After being placed in a 5% (water vapor partial pressure 0.54 atm) thermostat and subjected to steam treatment for 3 hours, the temperature was raised at a rate of 200
Calcination was performed at 600 ° C. for 30 minutes in air at 600 ° C./hr to obtain a porous titania fiber as a carrier. The fiber has a fiber diameter of 1
5 μm, the BET specific surface area is 90 m 2 / g, the pore volume by the nitrogen adsorption method is 0.06 cc / g, and the pore volume having a pore radius of 10 Å or more is 0.1 μm.
It was 01 cc / g. The tensile strength is 0.6 GPa
According to XRD analysis, the fiber was anatase-type titanium oxide. Next, using the porous titania fiber, a catalyst fiber was prepared in the same manner as in Example 1. The amount of vanadium oxide supported on the catalyst fiber was 6.1 wt%,
Observation by SEM revealed that a small amount of vanadium oxide particles was present on the outer surface of the catalyst fiber, although not as much as in Comparative Example 1. When the fracture surface of the catalyst fiber was analyzed by EPMA, it was confirmed that a smaller amount of vanadium oxide was carried inside the catalyst fiber than in Examples 1 to 3. The catalyst fiber was subjected to a denitration test in the same manner as in Example 1 to find that the denitration rate was 44%.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【発明の効果】本発明により得られた触媒成分担持チタ
ニア繊維は活性表面積が大きく、触媒成分の脱落が少な
く、長期にわたって高活性の維持が可能であり、窒素酸
化物の還元や有機物の酸化用触媒等としてその産業上の
利用価値は頗る大である。
The catalyst component-carrying titania fiber obtained according to the present invention has a large active surface area, has a small falling off of the catalyst component, can maintain a high activity for a long time, and is useful for reducing nitrogen oxides and oxidizing organic substances. Its industrial utility value as a catalyst or the like is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒成分含有チタニア繊維の繊維形状
を示す。
FIG. 1 shows a fiber shape of a titania fiber containing a catalyst component of the present invention.

【図2】従来法による触媒成分含有チタニア繊維の繊維
形状を示す。
FIG. 2 shows a fiber shape of a titania fiber containing a catalyst component according to a conventional method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/16 B01J 23/22 A 23/22 23/42 A 23/42 23/46 301A 23/46 301 32/00 23/755 35/10 301H 32/00 37/10 35/10 301 D01F 9/08 Z 37/10 B01D 53/36 102D D01F 9/08 B01J 23/74 321A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/16 B01J 23/22 A 23/22 23/42 A 23/42 23/46 301A 23/46 301 32/00 23 / 755 35/10 301H 32/00 37/10 35/10 301 D01F 9/08 Z 37/10 B01D 53/36 102D D01F 9/08 B01J 23/74 321A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 BET比表面積が10m2/g以上であ
り、窒素吸着法で測定される細孔容積が0.05cc/
g以上であり、10オングストローム以上の細孔半径を
有する細孔容積が0.02cc/g以上であり、単繊維
の引張強度が0.1GPa以上であるチタニア繊維に、
金属または金属酸化物または複合金属酸化物よりなる触
媒成分が担持されていることを特徴とする触媒成分担持
チタニア繊維。
1. A BET specific surface area of 10 m 2 / g or more and a pore volume measured by a nitrogen adsorption method of 0.05 cc /
g of a titania fiber having a pore volume of 0.02 cc / g or more having a pore radius of 10 Å or more and a tensile strength of a single fiber of 0.1 GPa or more,
A catalyst component-supporting titania fiber, wherein a catalyst component comprising a metal, a metal oxide, or a composite metal oxide is supported.
【請求項2】 チタニア繊維として、シリカ含有量が4
0重量%以下で、かつ主成分がアナターゼ型酸化チタン
であるチタニア繊維を用いることを特徴とする請求項1
記載の触媒成分担持チタニア繊維。
2. The titania fiber having a silica content of 4
2. A titania fiber containing 0% by weight or less and having a main component of anatase type titanium oxide is used.
The titania fiber carrying the catalyst component according to the above.
【請求項3】 触媒成分がV,W,Al, As,N
i,Zr,Mo,Ru,Mg,CaおよびPtからなる
群れから選ばれた元素の金属または金属酸化物または複
合酸化物の少なくとも1種であることを特徴とする請求
項1記載の触媒成分担持チタニア繊維。
3. The catalyst component is V, W, Al, As, N
2. The catalyst component support according to claim 1, wherein the catalyst component is at least one selected from the group consisting of i, Zr, Mo, Ru, Mg, Ca and Pt. Titania fiber.
【請求項4】 触媒成分がV,Wおよび Moからなる
群れから選ばれた元素の金属または金属酸化物または複
合酸化物の少なくとも1種であることを特徴とする請求
項1記載の触媒成分担持チタニア繊維。
4. The catalyst component carrier according to claim 1, wherein the catalyst component is at least one of a metal, a metal oxide, and a complex oxide of an element selected from the group consisting of V, W, and Mo. Titania fiber.
【請求項5】 BET比表面積が10m2/g以上であ
り、窒素吸着法で測定される細孔容積が0.05cc/
g以上であり、10オングストローム以上の細孔半径を
有する細孔容積が0.02cc/g以上であり、単繊維
の引張強度が0.1GPa以上であるチタニア繊維を、
触媒成分を含有する溶液に浸漬し、乾燥後、焼成するこ
とを特徴とする触媒成分担持チタニア繊維の製造方法。
5. The BET specific surface area is 10 m 2 / g or more, and the pore volume measured by a nitrogen adsorption method is 0.05 cc /
g, a pore volume having a pore radius of 10 angstroms or more, a pore volume of 0.02 cc / g or more, and a titania fiber having a tensile strength of a single fiber of 0.1 GPa or more.
A method for producing a catalyst component-carrying titania fiber, comprising immersing in a solution containing a catalyst component, drying and baking.
【請求項6】 触媒成分担持に使用されるチタニア繊維
が、チタンアルコキシドのアルコール溶液に、水分を添
加して加水分解反応および重合反応を行い、該アルコー
ルに不溶性の重合体を生成・析出させた後、該重合体を
該重合体が可溶な有機溶剤に再溶解させ紡糸液となし、
次いで該紡糸液を紡糸して前駆体繊維を得、得られた前
駆体繊維を焼成前および/または焼成時に水蒸気処理し
て得られるチタニア繊維を用いることを特徴とする請求
項5記載の触媒成分担持チタニア繊維の製造方法。
6. A titania fiber used for carrying a catalyst component is subjected to a hydrolysis reaction and a polymerization reaction by adding water to an alcohol solution of titanium alkoxide to produce and precipitate a polymer insoluble in the alcohol. Thereafter, the polymer is redissolved in an organic solvent in which the polymer is soluble to form a spinning solution,
Next, the spinning solution is spun to obtain a precursor fiber, and a titania fiber obtained by subjecting the obtained precursor fiber to a steam treatment before and / or at the time of firing is used. A method for producing a supported titania fiber.
【請求項7】 前駆体繊維の水蒸気処理条件が、温度8
5℃〜300℃、0.3気圧以上の水蒸気分圧を有する
雰囲気下で、1時間以上保持することを特徴とする請求
項5記載の触媒成分担持チタニア繊維の製造方法。
7. The steam treatment conditions for the precursor fiber are set at a temperature of 8
The method for producing titania fiber carrying a catalyst component according to claim 5, wherein the temperature is maintained at 5 ° C. to 300 ° C. in an atmosphere having a partial pressure of water vapor of 0.3 atm or more for 1 hour or more.
JP10047261A 1997-04-25 1998-02-27 Catalytic component carried titania fiber and its production Pending JPH115036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10047261A JPH115036A (en) 1997-04-25 1998-02-27 Catalytic component carried titania fiber and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10962797 1997-04-25
JP9-109627 1997-04-25
JP10047261A JPH115036A (en) 1997-04-25 1998-02-27 Catalytic component carried titania fiber and its production

Publications (1)

Publication Number Publication Date
JPH115036A true JPH115036A (en) 1999-01-12

Family

ID=26387426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10047261A Pending JPH115036A (en) 1997-04-25 1998-02-27 Catalytic component carried titania fiber and its production

Country Status (1)

Country Link
JP (1) JPH115036A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700087A (en) * 1986-12-23 1987-10-13 Tektronix, Inc. Logic signal level conversion circuit
EP1072311A2 (en) * 1999-07-29 2001-01-31 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same
EP1072312A2 (en) * 1999-07-29 2001-01-31 Sumitomo Chemical Company, Limited Acid resistant catalyst sheet and process for producing same
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
EP1164212A3 (en) * 2000-06-13 2002-01-23 Ube Industries, Ltd. Silica-group composite oxide fiber and process for the production thereof
EP1195198A2 (en) * 2000-10-04 2002-04-10 Mitsubishi Heavy Industries, Ltd. Catalyst filter, method for producing the same and method for treating exhaust gas with the same
US6399540B1 (en) 1999-08-12 2002-06-04 Sumitomo Chemical Co., Ltd. Porous titania, catalyst comprising the porous titania
JPWO2007123114A1 (en) * 2006-04-18 2009-09-03 帝人株式会社 Titania fiber and method for producing titania fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700087A (en) * 1986-12-23 1987-10-13 Tektronix, Inc. Logic signal level conversion circuit
EP1072311A2 (en) * 1999-07-29 2001-01-31 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same
EP1072312A2 (en) * 1999-07-29 2001-01-31 Sumitomo Chemical Company, Limited Acid resistant catalyst sheet and process for producing same
US6495489B1 (en) 1999-07-29 2002-12-17 Sumitomo Chemical Company, Limited Acid resistant catalyst sheet and process for producing same
US6465389B1 (en) 1999-07-29 2002-10-15 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same
EP1072312A3 (en) * 1999-07-29 2002-02-13 Sumitomo Chemical Company, Limited Acid resistant catalyst sheet and process for producing same
EP1072311A3 (en) * 1999-07-29 2002-02-13 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same
US6444608B1 (en) 1999-08-12 2002-09-03 Sumitomo Chemical Company, Limited Porous titania, catalyst comprising the porous titania
US6399540B1 (en) 1999-08-12 2002-06-04 Sumitomo Chemical Co., Ltd. Porous titania, catalyst comprising the porous titania
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
EP1164212A3 (en) * 2000-06-13 2002-01-23 Ube Industries, Ltd. Silica-group composite oxide fiber and process for the production thereof
EP1195198A2 (en) * 2000-10-04 2002-04-10 Mitsubishi Heavy Industries, Ltd. Catalyst filter, method for producing the same and method for treating exhaust gas with the same
EP1195198A3 (en) * 2000-10-04 2003-04-23 Mitsubishi Heavy Industries, Ltd. Catalyst filter, method for producing the same and method for treating exhaust gas with the same
JPWO2007123114A1 (en) * 2006-04-18 2009-09-03 帝人株式会社 Titania fiber and method for producing titania fiber

Similar Documents

Publication Publication Date Title
US6086844A (en) Titania fiber, method for producing the fiber and method for using the fiber
US6444608B1 (en) Porous titania, catalyst comprising the porous titania
TW588017B (en) Titanium-containing materials
US6627336B1 (en) Titanium oxide sol, thin film, and processes for producing these
JP3524342B2 (en) Titanium dioxide sol and thin film for thin film formation
JP5722790B2 (en) Composite oxide, method for producing the same and exhaust gas purification catalyst
Son et al. Direct electrospinning of ultrafine titania fibres in the absence of polymer additives and formation of pure anatase titania fibres at low temperature
US6162759A (en) Method for producing a catalyst component-carrying titania fiber
AU2007286908A1 (en) Nanocomposite particle and process of preparing the same
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
JPH115036A (en) Catalytic component carried titania fiber and its production
US7807605B2 (en) Process for the preparation of a TiO2-containing catalyst or catalyst support which is stable to high temperatures
JPH10325021A (en) Titania fiber and its production
EP1182169A1 (en) Process for producing anatase titania or composite oxide containing anatase titania
CA2716144A1 (en) Method of surface treatment of aluminum foil and its alloy and method of producing immobilized nanocatalyst of transition metal oxides and their alloys
EP2276694A1 (en) Production of tailored metal oxide materials using a reaction sol-gel approach
JP2004315356A (en) Acicular titanium oxide particulate, method for manufacturing the same and application for the same
JP2001114519A (en) Porous titania, catalyst by using the same and method for production thereof
KR20150145425A (en) Method for manufacturing nanoparticle-supported catalyst
JP2000220038A (en) Production of catalyst component-containing titania fiber
KR101007887B1 (en) METHOD FOR PREPARING SiO2-TiO2-BASED COMPOSITE INORGANIC FIBERS USING TWO-STEP HEAT-TREATMENT
WO2008066095A1 (en) Process for production of metal oxide
US7030165B2 (en) Perovskite titanium-type composite oxide particle and production process thereof
JP2000192336A (en) Titania fiber and its production
JP2000218170A (en) Production of titania fiber for photocatalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011