JPH1150183A - Composite sintered alloy for molten nonferrous metal, and its production - Google Patents

Composite sintered alloy for molten nonferrous metal, and its production

Info

Publication number
JPH1150183A
JPH1150183A JP9203685A JP20368597A JPH1150183A JP H1150183 A JPH1150183 A JP H1150183A JP 9203685 A JP9203685 A JP 9203685A JP 20368597 A JP20368597 A JP 20368597A JP H1150183 A JPH1150183 A JP H1150183A
Authority
JP
Japan
Prior art keywords
titanium
carbide
carbon
titanium carbide
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9203685A
Other languages
Japanese (ja)
Other versions
JP3368178B2 (en
Inventor
Takahiro Gama
隆弘 蒲
Takeshi Mihashi
剛 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP20368597A priority Critical patent/JP3368178B2/en
Publication of JPH1150183A publication Critical patent/JPH1150183A/en
Application granted granted Critical
Publication of JP3368178B2 publication Critical patent/JP3368178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a metal - ceramic composite sintered alloy useful as a component material for a nonferrous metal caster, such as a die casting machine, and excellent in wear resistance and corrosion resistance. SOLUTION: This sintered alloy is produced by blending molybdenum carbide, titanium carbide and/or carbon, and titanium so that inequalities 16.0<=X<=26.0 and 19.9<=Y+0.29X+5Z<=29.9 are satisfied and then sintering the resultant powder mixture. In the course of sintering, molybdenum carbide is allowed to react with titanium to form titanium carbide and molybdenum [Mo2 C+Ti→2 Mo+TiC] and carbon is allowed to react with titanium to form titanium carbide [C+Ti→TiC]. The resultant composite sintered alloy has a composite structure where titanium carbide grains are dispersed in a Ti-Mo alloy matrix. In the above inequalities, X, Y, and Z represent the blending weight percentages of molybdenum carbide, titanium carbide, and carbon, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム等の
非鉄金属溶湯と接触するダイカストマシンの射出部構成
材料等として有用な耐腐食溶損性,耐摩耗性等にすぐれ
た、金属−セラミックス複合焼結合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite sintered body having excellent corrosion corrosion resistance, wear resistance, etc., which is useful as a material for forming an injection part of a die casting machine which comes into contact with a molten non-ferrous metal such as aluminum. Regarding bond gold.

【0002】[0002]

【従来の技術】ダイカストマシンは、アルミニウム,亜
鉛,銅,鉛,錫、またはこれらを主体とする非鉄金属製
品を高速・高精度で鋳造することができ、自動車,産業
機械,家電製品等における各種構成部材の製造法として
重要な地位を占めている。ダイカストマシンの射出部を
構成するプランジャースリーブ,ピストン,チップ,湯
口スリーブ等の部材料として、従来よりSKD61に代
表される熱間金型用合金工具鋼(JIS G4404)
が使用されてきた。しかし、溶融金属に対する腐食溶損
抵抗性が十分でなく、プランジャースリーブでは、腐食
溶損とピストンの摺動に伴う摩耗作用が重畳して摩耗損
傷が進み易く、メンテナンスに多大のコスト・労力を必
要とする。部材の腐食・摩耗等の表面損傷は、鋳造金属
溶湯を汚染し、ダイカスト鋳造製品の品質に悪影響を及
ぼすことにもなる。この対策として、緻密質窒化珪素等
のエンジニアリングセラミックス製品、あるいはチタン
合金粉末とセラミックス粉末の混合物を焼結処理して製
造される、金属−セラミックス複合焼結品などを適用す
ること等が提案されている(特開平2-280953号公報, 特
開平5-140692号公報, 特公平7-84601 号公報等)。
2. Description of the Related Art Die casting machines can cast aluminum, zinc, copper, lead, tin, or non-ferrous metal products mainly containing these at high speed and with high precision, and can be used in various products such as automobiles, industrial machines, and home appliances. It occupies an important position as a manufacturing method for components. Alloy material steel for hot molds (JIS G4404) conventionally represented by SKD61 as a material for parts such as a plunger sleeve, a piston, a tip, and a sprue sleeve that constitute an injection part of a die casting machine.
Has been used. However, corrosive erosion resistance to molten metal is not sufficient, and in the plunger sleeve, corrosive erosion and the wear action due to sliding of the piston are superimposed and wear damage easily progresses, which requires a great deal of cost and labor for maintenance. I need. Surface damage such as corrosion and wear of members contaminates the cast metal melt and adversely affects the quality of die cast products. As a countermeasure against this, it has been proposed to apply engineering ceramics products such as dense silicon nitride or metal-ceramics composite sintered products produced by sintering a mixture of titanium alloy powder and ceramics powder. (JP-A-2-280953, JP-A-5-140692, JP-B-7-84601, etc.).

【0003】[0003]

【発明が解決しようとする課題】窒化珪素等のセラミッ
クス焼結製品は、溶融アルミニウム等に対する卓抜した
腐食抵抗性を有し、耐摩耗性にもすぐれている反面、靱
性に乏しく、プランジャースリーブ等のように機械衝撃
の負荷が大きい部材では安定な使用を期し難い。チタン
合金とセラミックスからなる複合焼結合金は、2材種の
複合効果として、セラミックス単体材料の欠点を回避し
つつ、耐腐食溶損性,耐摩耗性等を改善しようとするも
のである。本発明は、非鉄金属溶湯用部材として使用さ
れる複合焼結合金の材料特性を向上安定化することを目
的としてなされたものである。
Ceramics sintered products such as silicon nitride have excellent corrosion resistance to molten aluminum and the like, and are excellent in wear resistance, but poor in toughness, and plunger sleeves and the like. It is difficult to achieve stable use with members that have a large mechanical shock load such as. A composite sintered alloy composed of a titanium alloy and ceramics is intended to improve the corrosion and corrosion resistance, the wear resistance and the like while avoiding the defects of the ceramics simple substance material as a composite effect of two kinds of materials. The present invention has been made for the purpose of improving and stabilizing the material properties of a composite sintered alloy used as a member for molten non-ferrous metal.

【0004】[0004]

〔但し、X: 粉末混合物中の炭化モリブデンの量比(重量%) Y: 粉末混合物中の炭化チタンの量比(重量%) Z: 粉末混合物中の炭素の量比(重量%) 〕[However, X: amount ratio of molybdenum carbide in the powder mixture (% by weight) Y: amount ratio of titanium carbide in the powder mixture (% by weight) Z: amount ratio of carbon in the powder mixture (% by weight)]

を満たす粉末混合物を焼結処理することにより製造され
る、Ti-Mo 合金からなるマトリックスに炭化チタン粒子
が分散した複合組織を有する焼結体であることを特徴と
している。
It is characterized by being a sintered body having a composite structure in which titanium carbide particles are dispersed in a matrix composed of a Ti-Mo alloy, which is produced by sintering a powder mixture satisfying the above conditions.

【0005】原料混合物の焼成処理において、炭化モリ
ブデンとチタンは、下記A式のように反応して、炭化チ
タンとモリブデンを生成する。炭化モリブデンはその全
量を反応Aに消費され、生成する炭化チタンは、製品焼
結体中の分散相粒子となり、モリブデンはチタンに固溶
してTi-Mo 合金のマトリックスを形成する。原料中に炭
素が配合されている場合は、反応Aのほかに、下記のB
式で示される炭素とチタンの反応により、分散相となる
炭化チタン粒子を生成する。原料中の炭化チタン粉末の
粒子は組成変化を生じず、製品焼結体の分散相粒子とな
る。 Mo2 C+Ti→2Mo+TiC …〔A〕 C+Ti→TiC …〔B〕
In the firing treatment of the raw material mixture, molybdenum carbide and titanium react as shown by the following formula A to produce titanium carbide and molybdenum. Molybdenum carbide is entirely consumed in the reaction A, the titanium carbide produced becomes dispersed phase particles in the product sintered body, and molybdenum forms a solid solution in titanium to form a matrix of Ti-Mo alloy. When carbon is mixed in the raw material, in addition to reaction A, the following B
The reaction between carbon and titanium represented by the formula produces titanium carbide particles as a dispersed phase. The particles of the titanium carbide powder in the raw material do not change in composition and become the dispersed phase particles of the product sintered body. Mo 2 C+Ti→2Mo+TiC... [A] C+Ti→TiC... [B]

【0006】マトリックスのTi-Mo 合金は、チタンの耐
食性(チタンはアルミニウム溶湯等に対する優れた腐食
抵抗性を有する)と、モリブデンの固溶効果による高硬
度・耐摩耗性を有する。Ti-Mo 合金のモリブデン含有量
は約19〜35重量%である。炭化チタン粒子は、分散
効果として複合焼結合金の硬度・耐摩耗性を強化する。
複合組織中の炭化チタン粒子量は、マトリックス100
重量部に対して約25〜43重量部である。
The matrix Ti-Mo alloy has the corrosion resistance of titanium (titanium has excellent corrosion resistance against molten aluminum etc.) and the high hardness and wear resistance due to the solid solution effect of molybdenum. The Ti-Mo alloy has a molybdenum content of about 19-35% by weight. The titanium carbide particles enhance the hardness and wear resistance of the composite sintered alloy as a dispersion effect.
The amount of titanium carbide particles in the composite structure is 100
It is about 25 to 43 parts by weight with respect to parts by weight.

【0007】[0007]

【発明の実施の形態】原料粉末混合物の組成を、前記式
1および2を満たすように調整するのは、マトリックス
のTi-Mo 合金組成,および複合組織中の分散相粒子量を
適切にバランスさせ、良好な耐食性および高硬度・耐摩
耗性を確保するためである。炭化モリブデンの配合量が
組成式1の下限値に満たないと、モリブデン生成量の不
足により、形成されるTi-Mo 合金の硬度・耐摩耗性が低
くなり、他方その上限値を越えると、モリブデン固溶量
が過多となり、マトリックスの脆弱化をきたす。また、
炭化物,炭素粉末の配合量が組成式2の下限値に満たな
いと、炭化チタン粒子の分散効果が不足し、他方その上
限値を越えると、炭化チタン粒子が過剰となり、複合焼
結体が脆弱化する。なお、原料粉末混合物の構成成分の
うち、炭化チタン粉末と炭素粉末とは、択一使用、また
は両者併用のいずれも可能である。炭素粉末の使用は材
料コスト面で有利である。
BEST MODE FOR CARRYING OUT THE INVENTION The composition of the raw material powder mixture is adjusted so as to satisfy the above equations 1 and 2 by appropriately balancing the Ti-Mo alloy composition of the matrix and the amount of dispersed phase particles in the composite structure. This is to ensure good corrosion resistance and high hardness/wear resistance. If the blending amount of molybdenum carbide is less than the lower limit of composition formula 1, the hardness and wear resistance of the formed Ti-Mo alloy will be low due to the insufficient amount of molybdenum formation. The amount of solid solution becomes excessive, causing the matrix to become brittle. Also,
If the blending amount of the carbide and carbon powder is less than the lower limit value of the composition formula 2, the dispersing effect of the titanium carbide particles is insufficient, while if it exceeds the upper limit value, the titanium carbide particles become excessive and the composite sintered body is fragile. Turn into. Of the constituent components of the raw material powder mixture, the titanium carbide powder and the carbon powder can be used either as an alternative or in combination. The use of carbon powder is advantageous in terms of material cost.

【0008】原料粉末混合物の焼結処理は、ホットプレ
ス,常圧焼結等の公知の手法を適用することができる。
就中、熱間静水圧加圧処理(HIP法)による場合は、
高加圧力の均一な作用下に、目的とする焼結製品の形状
・サイズを問わず、緻密質で均質性にすぐれた複合焼結
合金を製造することができる。HIP法による焼結処理
は、好ましくは温度: 1100〜1200℃,加圧力: 80〜100
MPaの条件下に行われる。これにより、反応式Aおよ
びBによる複合組織の形成を効率的に行わせ、かつ組織
の凝集粗大化を回避して微細均質な複合組織を確保する
ことができる。
For the sintering treatment of the raw material powder mixture, known methods such as hot pressing and atmospheric pressure sintering can be applied.
In particular, in the case of hot isostatic pressing (HIP method),
It is possible to produce a composite sintered alloy that is dense and excellent in homogeneity regardless of the shape and size of the target sintered product under the uniform action of high pressing force. The sintering process by the HIP method is preferably temperature: 1100 to 1200° C., pressure: 80 to 100
It is performed under the condition of MPa. This makes it possible to efficiently form the composite structure according to the reaction formulas A and B, and to avoid the aggregation and coarsening of the structure to ensure a fine and homogeneous composite structure.

【0009】[0009]

【実施例】金属チタン粉末(350 メッシュアンダー),
炭化モリブデン粉末(平均粒径 3μm),炭化チタン粉
末(平均粒径 3μm),黒鉛粉末(10μmアンダー)の
粉末混合物を金属製カプセルに充填し、脱気密封してH
IP処理(温度: 1150℃,加圧力: 100MPa,時間:3Hr)
する。得られた焼結体から試験片を切出し、機械性質お
よび耐食性を測定する。表1に供試材の原料組成,焼結
体の組成,および試験結果を示す。
[Example] Metallic titanium powder (350 mesh under),
Fill a metal capsule with a powder mixture of molybdenum carbide powder (average particle size 3 μm), titanium carbide powder (average particle size 3 μm), and graphite powder (10 μm under), deaeration and sealing
IP treatment (Temperature: 1150℃, Pressure: 100MPa, Time: 3Hr)
To do. A test piece is cut out from the obtained sintered body, and mechanical properties and corrosion resistance are measured. Table 1 shows the raw material composition of the test material, the composition of the sintered body, and the test results.

【0010】〔曲げ強度の測定〕 三点曲げ試験(JIS R 1601)による。 試験片サイズ: 3 × 4× 50 (mm) スパン距離: 30 mm 試験温度: 常温[Measurement of Bending Strength] According to a three-point bending test (JIS R 1601). Specimen size: 3 × 4 × 50 (mm) Span distance: 30 mm Test temperature: Room temperature

【0011】〔耐摩耗性試験〕理研−大越式迅速摩耗試
験機により、試験片を相手材(回転輪)に押付け一定時
間後の摩擦面の比摩耗量(x10-8mm3 / kg・ mm)を測定。 試験片サイズ: 40×20×10 (mm) 相手材: SUJ 鋼製リング 摩擦速度: 1.93 m/ 秒 摩擦距離: 600 m 最終荷重: 6.2 kgf
[Abrasion resistance test] A specific wear amount (x10 -8 mm 3 / kg・mm) of the friction surface after a certain period of time after pressing a test piece against a mating material (rotary ring) by a RIKEN-Okoshi rapid wear tester ) Measured. Specimen size: 40×20×10 (mm) Counterpart material: SUJ steel ring Friction speed: 1.93 m/sec Friction distance: 600 m Final load: 6.2 kgf

【0012】〔耐食性性試験〕アルミ合金溶浴中に試験
片を所定時間浸漬した後、試験片表面の溶損層厚(mm)
を測定し、SKD61合金工具鋼の溶損層厚を1とする
比率を算出する。 試験片サイズ: 40×17×5.5 (mm) 浴組成: Al-9.5Si-3.0Cu(JIS H 5202 AC 4B) 浴温度: 750 ℃ 浸漬時間: 24 Hr
[Corrosion resistance test] After immersing the test piece in an aluminum alloy bath for a predetermined time, the thickness of the erosion layer on the surface of the test piece (mm)
Is measured and the ratio of the SKD61 alloy tool steel having a melt-damage layer thickness of 1 is calculated. Specimen size: 40 x 17 x 5.5 (mm) Bath composition: Al-9.5Si-3.0Cu (JIS H 5202 AC 4B) Bath temperature: 750 °C Immersion time: 24 Hr

【0013】表1に示したように、発明例のものは、従
来材であるSKD61合金工具鋼材(No.15 )に比し著
しく高い耐摩耗性,耐食性を具備し、また比較例No.14
(Ti-Mo 合金粉末と炭化チタン粉末の混合物の焼結体)
に対し、同等以上の特性を有している。比較例No. 10〜
13の複合焼結合金は、発明例に類似した組成を有してい
るが、No.10 (Mo2 C量が組成式1の下限値を逸
脱),No.11(組成式2の下限値を逸脱)は、硬度耐摩耗
性の改善効果に乏しく、No.12 (組成式2の上限規定値
を逸脱),No.13(Mo2 C量が組成式1の上限値を逸
脱)は、曲げ強度が低く、靱性が不足している。
As shown in Table 1, the invention examples have significantly higher wear resistance and corrosion resistance than the conventional SKD61 alloy tool steel (No.15), and the comparative example No.14.
(Sintered body of a mixture of Ti-Mo alloy powder and titanium carbide powder)
However, it has the same or higher characteristics. Comparative example No. 10 ~
The composite sintered alloy of No. 13 has a composition similar to that of the invention example, but No. 10 (Mo 2 C content deviates from the lower limit of composition formula 1), No. 11 (lower limit of composition formula 2). Is less effective in improving hardness and wear resistance, and No. 12 (deviation from the upper limit specified in Composition Formula 2) and No. 13 (Mo 2 C amount deviates from the upper limit specified in Composition Formula 1) Bending strength is low and toughness is insufficient.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明の複合焼結合金は、焼結処理で形
成されるTi-Mo 合金マトリックスと炭化チタン粒子から
なる複合組織を有することにより、ダイカストマシンの
射出部構成部品に要求される非鉄金属溶湯に対する良好
な溶損腐食抵抗性、耐摩耗性等を有し、部材の耐久性の
向上・メンテナンスの軽減、鋳造操業の効率化等に寄与
し、また良好な溶損腐食抵抗性は、溶湯の汚染防止・鋳
造品質の向上を可能とする。
EFFECTS OF THE INVENTION The composite sintered alloy of the present invention has a composite structure composed of a Ti-Mo alloy matrix and titanium carbide particles formed by a sintering process, and therefore is required for an injection part component of a die casting machine. It has good erosion and corrosion resistance to non-ferrous metal melt, wear resistance, etc., which contributes to improving the durability of members, reducing maintenance, improving the efficiency of casting operations, etc. It enables to prevent contamination of molten metal and improve casting quality.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 29/06 C22C 29/06 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code FI C22C 29/06 C22C 29/06 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化モリブデンと,炭化チタン及び/又
は炭素と,チタンとからなる、下記の組成式1および
2: 16.0≦X≦26.0 …〔1〕 19.9≦Y+0.29X+5Z≦29.9…〔2〕 〔但し、X: 粉末混合物中の炭化モリブデンの量比(重
量%) Y: 粉末混合物中の炭化チタンの量比(重量%) Z: 粉末混合物中の炭素の量比(重量%) 〕 を満たす粉末混合物を焼結処理することにより製造され
る、Ti-Mo 合金からなるマトリックスに炭化チタン粒子
が分散した複合組織を有する焼結体であることを特徴と
する非鉄金属溶湯用複合焼結合金。
1. Composition formulas 1 and 2 consisting of molybdenum carbide, titanium carbide and/or carbon, and titanium: 16.0≦X≦26.0 (1) 19.9≦Y+0.29X+5Z ≦29.9 [2] [where X: amount ratio of molybdenum carbide in powder mixture (% by weight) Y: amount ratio of titanium carbide in powder mixture (% by weight) Z: amount of carbon in powder mixture Ratio (% by weight) ], which is a non-ferrous body having a composite structure in which titanium carbide particles are dispersed in a matrix made of a Ti-Mo alloy, which is produced by sintering a powder mixture. Composite sintered alloy for molten metal.
【請求項2】 炭化モリブデンと,炭化チタン及び/又
は炭素と,チタンとからなる、下記の組成式1および
2: 16.0≦X≦26.0 …〔1〕 19.9≦Y+0.29X+5Z≦29.9…〔2〕 〔但し、X: 粉末混合物中の炭化モリブデンの量比(重
量%) Y: 粉末混合物中の炭化チタンの量比(重量%) Z: 粉末混合物中の炭素の量比(重量%) 〕 を満たす粉末混合物を焼結原料とし、焼結処理におい
て、次式A,および炭素が混合されている場合における
次式B: Mo2 C+Ti→2Mo+TiC …〔A〕 C+Ti→TiC …〔B〕 で示される反応を行わせることにより、Ti-Mo 合金から
なるマトリックスに炭化チタン粒子が分散した複合組織
を有する焼結体を形成することを特徴とする非鉄金属溶
湯用複合焼結合金の製造方法。
2. The following composition formulas 1 and 2: consisting of molybdenum carbide, titanium carbide and/or carbon, and titanium: 16.0≦X≦26.0 (1) 19.9≦Y+0.29X+5Z ≦29.9 [2] [where X: amount ratio of molybdenum carbide in powder mixture (% by weight) Y: amount ratio of titanium carbide in powder mixture (% by weight) Z: amount of carbon in powder mixture Ratio (wt %)] as a sintering raw material, and in the sintering process, the following formula A and the following formula B when carbon is mixed: Mo 2 C+Ti→2Mo+TiC... [A] C+Ti→TiC By performing the reaction represented by [B], a sintered body having a composite structure in which titanium carbide particles are dispersed in a matrix composed of a Ti-Mo alloy is formed. Gold manufacturing method.
JP20368597A 1997-07-30 1997-07-30 Manufacturing method of composite sintered alloy for non-ferrous metal melt Expired - Lifetime JP3368178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20368597A JP3368178B2 (en) 1997-07-30 1997-07-30 Manufacturing method of composite sintered alloy for non-ferrous metal melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20368597A JP3368178B2 (en) 1997-07-30 1997-07-30 Manufacturing method of composite sintered alloy for non-ferrous metal melt

Publications (2)

Publication Number Publication Date
JPH1150183A true JPH1150183A (en) 1999-02-23
JP3368178B2 JP3368178B2 (en) 2003-01-20

Family

ID=16478155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20368597A Expired - Lifetime JP3368178B2 (en) 1997-07-30 1997-07-30 Manufacturing method of composite sintered alloy for non-ferrous metal melt

Country Status (1)

Country Link
JP (1) JP3368178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305830A (en) * 2013-06-18 2013-09-18 江苏和昊激光科技有限公司 Special cobalt-based cermet alloy powder for laser cladding of surface of drill rod
CN103334102A (en) * 2013-06-18 2013-10-02 江苏和昊激光科技有限公司 Special cobalt-base metal ceramic alloy powder for guillotine laser cladding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537662A (en) * 2013-06-18 2014-01-29 江苏和昊激光科技有限公司 Cobalt-based metal ceramic alloy powder special for laser cladding of milling cutter
CN103305832A (en) * 2013-06-18 2013-09-18 江苏和昊激光科技有限公司 Special cobalt-based cermet alloy powder for laser cladding of surface of worm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305830A (en) * 2013-06-18 2013-09-18 江苏和昊激光科技有限公司 Special cobalt-based cermet alloy powder for laser cladding of surface of drill rod
CN103334102A (en) * 2013-06-18 2013-10-02 江苏和昊激光科技有限公司 Special cobalt-base metal ceramic alloy powder for guillotine laser cladding

Also Published As

Publication number Publication date
JP3368178B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
Kumar et al. Synthesis and characterization of TiB 2 reinforced aluminium matrix composites: a review
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
US4029000A (en) Injection pump for injecting molten metal
US5778301A (en) Cemented carbide
JP4226656B2 (en) Powder metallurgy cobalt based article with high wear and corrosion resistance in semi-solid metal
JPH0120215B2 (en)
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JPH0649581A (en) Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JPH029099B2 (en)
JP3368181B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
CN1185067C (en) Casting with in-situ generated surface cermet layer and its productino process
JPH06145856A (en) Corrosion and wear resistant cobalt-based alloy
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JP4121694B2 (en) Sintered body Ni-based cermet and parts for plastic molding machine and die casting machine using the same
KR100448465B1 (en) Fabrication of diamond wheel for precision cutting using bronze powder-base metal bonder
JPH10121184A (en) Composite sintered alloy for member for molten nonferrous metal
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
JPH0718350A (en) Production of co-based sintered alloy
JPS62192557A (en) Metal-base composite material excellent in characteristic of wear by friction
JPH04247801A (en) Injecting parts for die casting machine
JP2000087156A (en) Metal-ceramic composite material for casting and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term