JPH1149570A - Silicon carbide fiber reinforced silicon carbide composite material - Google Patents

Silicon carbide fiber reinforced silicon carbide composite material

Info

Publication number
JPH1149570A
JPH1149570A JP9218313A JP21831397A JPH1149570A JP H1149570 A JPH1149570 A JP H1149570A JP 9218313 A JP9218313 A JP 9218313A JP 21831397 A JP21831397 A JP 21831397A JP H1149570 A JPH1149570 A JP H1149570A
Authority
JP
Japan
Prior art keywords
sic
composite material
fiber
silicon carbide
polycarbosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9218313A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
宏 市川
Shiro Kono
光野司朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP9218313A priority Critical patent/JPH1149570A/en
Publication of JPH1149570A publication Critical patent/JPH1149570A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an SiC/SiC composite material having heat and oxidation resistances even at a high temp. of >1,500 deg.C and having superior strength and damage allowability. SOLUTION: The surfaces of SiC fibers having a chemical compsn. consisting of 50-65 wt.% Si, 25-40 wt.% C and 0.01-13 wt.% O and having 8-20 μm fiber diameter are coated with BN by chemical vapor deposition in 0.01-2 μm thickness. A compsn. prepd. by blending a polycarbosilane with an org. solvent is applied and impregnated into an assembly of the coated SiC fibers such as tow, felt or fabric to form a prepreg and such prepregs are laminated, press- formed, cured at 200-300 deg.C and fired at 1,000-1,400 deg.C in Ar, in an oxygen-free atmosphere or in vacuum. The resultant sintered body is densified by impregnating a compsn. prepd. by blending a polycarbosilane with an org. solvent, carrying out firing and repeating the processes to obtain the objective SiC fiber reinforced SiC composite material having <=20% porosity of the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化ケイ素繊維強化炭
化ケイ素複合材料(以下SiC/SiC複合材料とい
う)とその製造方法に関し、特に1500℃以上の高温
において、すぐれた耐熱性、耐酸化性、損傷許容性等に
すぐれたSiC/SiC複合材料とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide fiber reinforced silicon carbide composite material (hereinafter referred to as "SiC / SiC composite material") and a method for producing the same. The present invention relates to a SiC / SiC composite material having excellent damage tolerance and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックス.コンポジットは、耐熱
性、耐酸化性、損傷許容性等を有するため、エネルギー
産業、宇宙航空、非鉄.金属分野等の使用環境のきびし
い分野に用途が期待されている。
2. Description of the Related Art Ceramics. Since the composite has heat resistance, oxidation resistance, damage tolerance, etc., it can be used in the energy industry, aerospace, non-ferrous metals. Applications are expected in fields where the use environment is severe, such as the metal field.

【0003】中でも強化繊維として炭化ケイ素繊維(以
下SiC繊維という)を用い、マトリックスとして炭化
ケイ素を用いた炭化ケイ素繊維強化炭化ケイ素複合材料
(以下SiC/SiC複合材料)がすぐれた特性を有す
るものとして期待が高まつている。
Among them, a silicon carbide fiber reinforced silicon carbide composite material (hereinafter, SiC / SiC composite material) using silicon carbide fiber (hereinafter referred to as SiC fiber) as a reinforcing fiber and silicon carbide as a matrix is considered to have excellent characteristics. Expectations are rising.

【0004】従来のSiC/SiC複合材料は、通常以
下のような方法で製造される。まず、強化繊維としてS
iC繊維を用いるが、この炭化ケイ素繊維は単味で用い
るか、またはC38 ガス等の雰囲気において、繊維表
面にカーボンコートを化学蒸着させる。
[0004] Conventional SiC / SiC composite materials are usually manufactured by the following method. First, S as a reinforcing fiber
An iC fiber is used. The silicon carbide fiber is used alone, or a carbon coat is chemically vapor-deposited on the fiber surface in an atmosphere such as C 3 H 8 gas.

【0005】このSiC繊維のクロス等の織布体にポリ
カルボシランに有機溶剤を配合した組成物を塗布含浸
し、プリプレグを作製する。
[0005] A prepreg is prepared by coating and impregnating a woven fabric such as a cloth of SiC fibers with an organic solvent blended with polycarbosilane.

【0006】上記のプリプレグを積層して、プレス成型
等により成形し、200〜300℃で硬化した後、10
00〜1400℃で焼成して焼結体を得る。
The above prepregs are laminated, molded by press molding or the like, and cured at 200 to 300 ° C.
It is fired at 00 to 1400 ° C. to obtain a sintered body.

【0007】さらに上記の焼結体にポリカルボシランに
有機溶剤を配合した組成物の含浸と焼成を繰り返すこと
により緻密化処理工程を経てSiC/SiC複合材料を
得る。
[0007] The SiC / SiC composite material is obtained through a densification treatment step by repeating impregnation and firing of the above-mentioned sintered body with a composition in which polycarbosilane is mixed with an organic solvent.

【0008】上記のような方法で製造されたSiC/S
iC複合材料は、500℃以上の高温で使用可能で、約
1000℃まで、耐熱性、耐酸化性を有し、すぐれた耐
衝撃性、強度を呈する。
[0008] SiC / S manufactured by the above method
The iC composite material can be used at a high temperature of 500 ° C. or higher, has heat resistance and oxidation resistance up to about 1000 ° C., and exhibits excellent impact resistance and strength.

【0009】しかしながら、上記のようなエネルギー産
業や宇宙航空等の産業分野における使用環境は益々厳し
さを増し、1000℃を越え1500℃以上でも使用可
能な材料が要求されており、今後もかかる傾向が強まっ
ていくことは、明らかである。
However, the use environment in the industrial fields such as the energy industry and aerospace as described above is becoming increasingly severe, and materials that can be used at temperatures exceeding 1000 ° C. and at 1500 ° C. or more are required. It is clear that is growing.

【0010】従来のSiC/SiC複合材料は1000
℃を越える高温では耐熱性、耐酸化性に欠け、損傷許容
性、強度の低下をきたし、上記のような厳しいニーズを
満足させるには不十分である。
The conventional SiC / SiC composite material is 1000
At a high temperature exceeding ℃, the heat resistance and oxidation resistance are poor, the damage tolerance and the strength are lowered, and it is not sufficient to satisfy the above severe needs.

【0011】またSiC/SiC複合材料のSiC繊維
にはカーボンに替えて窒化ホウ素(BN)を被覆するこ
とも試みられている。
Attempts have also been made to coat the SiC fibers of the SiC / SiC composite material with boron nitride (BN) instead of carbon.

【0012】例えば、特開平3−115140号には、
繊維とマトリックスの間の化学反応を減少させ、かつ破
壊靭性を向上させるべくBNで繊維を被覆すること、ま
たかかる繊維を用いた複合材料が記載されている。
For example, JP-A-3-115140 discloses that
Coating fibers with BN to reduce chemical reactions between the fibers and the matrix and improve fracture toughness, and composites using such fibers are described.

【0013】また特開平8−217554号には、50
0℃以上の温度になっても、界面コーティングの酸化を
防ぐことができて材料の強度の低下を軽減させた繊維強
化セラミックス複合材料が記載されている。
Japanese Patent Application Laid-Open No. Hei 8-217554 discloses 50
It describes a fiber-reinforced ceramic composite material that can prevent oxidation of the interfacial coating even at a temperature of 0 ° C. or higher, thereby reducing the decrease in material strength.

【0014】しかし、これらには次のような欠点があ
る。特開平3−115140号には、長時間高温耐久試
験(例えば1400℃−200時間大気中)においてB
N皮膜は酸化し、ネクステル繊維と反応し低強度で壊滅
的な破壊を起こすなどの問題がある。特開平8−217
554号には、長時間高温耐久試験(例えば1400℃
−200時間、大気中)において、界面が酸化し、繊維
が劣化することにより低強度で壊滅的な破壊を起こすな
どの欠点がある。
However, these have the following disadvantages. Japanese Patent Application Laid-Open No. 3-115140 discloses that in a long-term high-temperature endurance test (for example, at 1400 ° C. for 200 hours in air),
There is a problem that the N film oxidizes and reacts with the nextel fiber to cause catastrophic destruction with low strength. JP-A-8-217
No. 554 describes a long-term high-temperature durability test (for example, 1400 ° C.)
(−200 hours in air), the interface is oxidized, and the fibers are deteriorated, resulting in low strength and catastrophic failure.

【0015】[0015]

【発明の課題】上記のような要請に鑑み本発明は、15
00℃以上の高温の使用環境においても、耐熱性、耐酸
化性を有し、損傷許容性、強度等にすぐれたSiC/S
iC複合材料を提供する。
SUMMARY OF THE INVENTION In view of the above demands, the present invention provides
SiC / S that has heat resistance and oxidation resistance even in a use environment at a high temperature of 00 ° C. or more, and has excellent damage tolerance and strength.
An iC composite material is provided.

【0016】[0016]

【問題解決の手段】上記の課題を解決するため、本発明
者が提案するのは、化学組成がSi:50〜65wt
%,C:25〜40wt%,O:0.01〜13wt%
からなり、繊維径が8〜20μmの炭化ケイ素繊維の表
面に化学蒸着によりBNを厚さ0.01〜2μm被覆
し、該炭化ケイ素繊維のトウ、フェルト、織物等の集合
体に、ポリカルボシランに有機溶剤を配合した組成物を
塗布含浸し、プリプレグを作製して、該プリプレグを積
層、加圧成形して、200〜300℃で硬化した後、ア
ルゴン,無酸素雰囲気又は真空中で1000〜1400
℃で焼成し、焼結体を得、さらに緻密化処理工程とし
て、ポリカルボシランに有機溶剤を配合した組成物を含
浸し1000〜1400℃で焼成する工程を繰り返すこ
とにより得られるマトリックスの気孔率が20%以下の
SiC繊維強化SiC複合材料である。
To solve the above problems, the present inventors propose that the chemical composition is Si: 50 to 65 wt.
%, C: 25 to 40 wt%, O: 0.01 to 13 wt%
The surface of a silicon carbide fiber having a fiber diameter of 8 to 20 μm is coated with BN to a thickness of 0.01 to 2 μm by chemical vapor deposition, and an aggregate of the silicon carbide fiber such as tow, felt, woven fabric, etc. A composition containing an organic solvent is applied and impregnated to prepare a prepreg, and the prepreg is laminated, pressed and cured at 200 to 300 ° C., and then cured at 1000 to 1000 in an argon, oxygen-free atmosphere or vacuum. 1400
C. to obtain a sintered body, and further, as a densification treatment step, a porosity of a matrix obtained by repeating a step of impregnating a composition in which an organic solvent is mixed with polycarbosilane and firing at 1000 to 1400 ° C. Is 20% or less of a SiC fiber reinforced SiC composite material.

【0017】以下に本発明を詳細に説明する。まず、強
化繊維として、SiC繊維を用いるが、特に化学組成が
Si:50〜65wt%,C:25〜40wt%,O:
0.01〜13wt%とからなることが重要である。
Hereinafter, the present invention will be described in detail. First, SiC fibers are used as the reinforcing fibers. In particular, the chemical composition is Si: 50 to 65 wt%, C: 25 to 40 wt%, and O:
It is important that the content is 0.01 to 13 wt%.

【0018】1200℃以上でSiC/SiC複合材料
の耐熱性、耐酸化性、強度低下の大きな原因は、強化繊
維であるSiC繊維が強度の低下をきたすためである。
The major causes of the decrease in heat resistance, oxidation resistance, and strength of the SiC / SiC composite material at 1200 ° C. or higher are that the strength of the SiC fiber, which is a reinforcing fiber, decreases.

【0019】このSiC繊維の強度低下の主な原因は、
繊維中に含有される酸素に起因するもので、高温におい
て自己分解しSiOが生成するためである。
The main causes of the decrease in the strength of the SiC fiber are as follows.
This is attributable to oxygen contained in the fiber, and is self-decomposing at a high temperature to generate SiO.

【0020】また余剰の炭素が繊維中に存在すること
も、繊維の劣化の原因となる。
The presence of excess carbon in the fiber also causes the fiber to deteriorate.

【0021】そこで、本発明においては、繊維中の酸素
の含有量を少量とし、また繊維中のSi,C,Oの割合
を特定の範囲に調整することにより、高温においても繊
維が劣化するのを防止する。
Therefore, in the present invention, the fiber is deteriorated even at a high temperature by reducing the oxygen content in the fiber and adjusting the ratio of Si, C and O in the fiber to a specific range. To prevent

【0022】繊維の径は8〜20μmであることが適当
である。本発明のSiC繊維は一般に下記のような方法
で製造される。即ちポリカルボシランを溶融紡糸し、電
子線不融化し、不活性ガス中で、高温で焼成する。
The fiber diameter is suitably from 8 to 20 μm. The SiC fiber of the present invention is generally produced by the following method. That is, polycarbosilane is melt-spun, made infusible with an electron beam, and fired at a high temperature in an inert gas.

【0023】上記のようなSiC繊維の表面に、界面の
耐酸化性および破壊靭性を高めるためにBNを被覆す
る。
The surface of the above SiC fiber is coated with BN in order to increase the oxidation resistance and fracture toughness of the interface.

【0024】かかるBNコートは、Bcl3 ,NH3
ス等の雰囲気で化学蒸着によって形成される。コートの
厚さとしては、0.01〜2μmが適当である。
Such a BN coat is formed by chemical vapor deposition in an atmosphere such as Bcl 3 or NH 3 gas. An appropriate thickness of the coat is 0.01 to 2 μm.

【0025】BNをコートすることにより長時間高温暴
露試験(例えば1400℃−1000時間 大気中)で
の耐久性の作用があり、その結果、機械強度や損傷許容
性が同試験にて変化せず、材料の信頼性が認められる効
果がある。
Coating with BN has a durability effect in a long-time high-temperature exposure test (for example, at 1400 ° C. for 1000 hours in the air), and as a result, the mechanical strength and damage tolerance do not change in the test. The effect is that the reliability of the material is recognized.

【0026】上記のようにBNコートを被覆したSiC
繊維を強化繊維として、トウ、フェルト、織物等の集合
体として、これにマトリックス物質であるポリカルボシ
ランに有機溶剤を配合した組成物を塗布、含浸しプリプ
レグを作製する。
SiC coated with a BN coat as described above
A prepreg is prepared by applying and impregnating a composite of polycarbosilane, which is a matrix substance, with an organic solvent, as an aggregate of tow, felt, woven fabric, or the like, using the fiber as a reinforcing fiber.

【0027】ポリカルボシランの分子量は、500〜2
500であることが好ましく、3000以上では、緻密
化過程で未含浸となる問題があり、500以下では、緻
密化時のSiC残渣率が低く緻密化されにくい不都合が
生じる。
The molecular weight of the polycarbosilane is 500 to 2
It is preferably 500, and if it is 3000 or more, there is a problem that it is not impregnated in the densification process, and if it is 500 or less, there is a disadvantage that the SiC residue ratio at the time of densification is low and the densification is difficult.

【0028】またポリカルボシランの酸素含有量は、1
3wt%以下であることが好ましく、13wt%以上に
なると、高温でのマトリックスの耐熱性が低下する。
The oxygen content of the polycarbosilane is 1
The content is preferably 3 wt% or less, and if it is 13 wt% or more, the heat resistance of the matrix at a high temperature decreases.

【0029】上記のように作製したプリプレグを複数枚
積層し、プレス成形等で成形し、200〜300℃で硬
化してマトリックスを不融化した後、無酸素雰囲気又は
真空中で1000〜1400℃で焼成して焼結体を得
る。無酸素雰囲気としてはアルゴン等の不活性ガスまた
は窒素雰囲気が好ましい。
A plurality of the prepregs produced as described above are laminated, molded by press molding or the like, cured at 200 to 300 ° C. to make the matrix infusible, and then at 1000 to 1400 ° C. in an oxygen-free atmosphere or vacuum. It is fired to obtain a sintered body. As the oxygen-free atmosphere, an inert gas such as argon or a nitrogen atmosphere is preferable.

【0030】その後、緻密化処理工程として、ポリカル
ボシランの組成物の含浸、焼成を6回以上繰り返すこと
により、気孔率5%〜20%の緻密な複合材料を得る。
Thereafter, as a densification step, the impregnation and firing of the polycarbosilane composition is repeated at least six times to obtain a dense composite material having a porosity of 5% to 20%.

【0031】上記のようにして得られたSiC/SiC
複合材料は、高温でも強度の劣化の少ない化学組成を有
するSiC繊維、BNコートによる高温での界面での耐
酸化性の向上、破壊靭性の向上、気孔率5%〜20%の
緻密化したマトリックスの相乗作用により、1500℃
以上の高温でも耐熱性、耐酸化性を有し、すぐれた強度
特性、損傷許容性を呈する。
The SiC / SiC obtained as described above
The composite material is made of a SiC fiber having a chemical composition with little deterioration in strength even at a high temperature, improvement of oxidation resistance at an interface at a high temperature by BN coating, improvement of fracture toughness, and a dense matrix having a porosity of 5% to 20%. 1500 ° C due to the synergistic effect of
It has heat resistance and oxidation resistance even at the above high temperatures, and exhibits excellent strength characteristics and damage tolerance.

【0032】本発明のSiC/SiC複合材料は、10
00〜1800℃での曲げ強度は、300〜500Mp
aである。
The SiC / SiC composite material of the present invention has
The bending strength at 00 to 1800 ° C is 300 to 500 Mp
a.

【0033】[0033]

【発明の効果】本発明によると、1500℃を越え、1
800℃までの高温において、耐熱性、耐酸化性を有
し、緻密で、すぐれた強度特性、損傷許容性を有するS
iC/SiC複合材料が得られる。本発明は、エネルギ
ー産業、宇宙航空、非鉄.金属分野等の用途分野におい
て、今後益々使用環境が厳しくなる材料のニーズに対応
でき、工業上有用である。
According to the present invention, the temperature exceeding 1500 ° C.
S which has heat resistance and oxidation resistance at high temperatures up to 800 ° C., is dense, has excellent strength properties and damage tolerance.
An iC / SiC composite is obtained. The present invention relates to the energy industry, aerospace, non-ferrous. In the application fields such as the metal field, it is possible to meet the needs of materials whose use environment becomes increasingly severe in the future, and it is industrially useful.

【0034】[0034]

【実施例】Si:68.9%,C:30.9%,O:
0.2%の化学組成よりなるSiC繊維にBcl3 ,N
3 ガス雰囲気中でBNコートを約0.4μm化学蒸着
させた。マトリックスとして融点241℃,数平均分子
量2410のポリカルボシランとキシレン溶液を配合し
た。上記のSiC繊維にマトリツクスを塗布、含浸しプ
リプレグを作製した。該プリプリレグを積層し、プレス
成型して、約300℃で熱処理硬化した後、アルゴン雰
囲気中で1400℃で焼成して、焼結体とした。さらに
緻密化処理として、マトリックスを含浸し1400℃で
焼成する工程を6回繰り返すことにより気孔率15%の
SiC/SiC複合材料を得た。このSiC複合材料の
1500℃までの曲げ強度を表1に示す。
Example: Si: 68.9%, C: 30.9%, O:
Bcl 3 , N is applied to SiC fiber having a chemical composition of 0.2%.
A BN coat was chemically vapor deposited in a H 3 gas atmosphere at about 0.4 μm. As a matrix, a polycarbosilane having a melting point of 241 ° C. and a number average molecular weight of 2410 and a xylene solution were blended. Matrix was applied to the SiC fiber and impregnated to prepare a prepreg. The prepreg was laminated, press-molded, heat-treated and cured at about 300 ° C., and then fired at 1400 ° C. in an argon atmosphere to obtain a sintered body. Further, as a densification treatment, a process of impregnating the matrix and firing at 1400 ° C. was repeated six times to obtain a SiC / SiC composite material having a porosity of 15%. Table 1 shows the flexural strength of the SiC composite material up to 1500 ° C.

【表1】 [Table 1]

【0035】[0035]

【比較例】Si:56.6%,C:31.7%,O:1
1.7%の化学組成よりなるSiC繊維にC38 ガス
雰囲気中でCコートを約0.4μm化学蒸着させた。マ
トリツクスとして実施例と同一のポリカルボシランにキ
シレン溶液を配合した。上記のSiC繊維にマトリック
スを塗布、含浸し、プリプレグを作製した。以下、実施
例と同様の方法により、SiC/SiC複合材料を得
た。このSiC/SiC複合材料の1500℃までの曲
げ強度を表1に示す。
[Comparative Example] Si: 56.6%, C: 31.7%, O: 1
In a C 3 H 8 gas atmosphere, a C coat was chemically vapor-deposited to about 0.4 μm on a SiC fiber having a chemical composition of 1.7%. As a matrix, a xylene solution was blended with the same polycarbosilane as in the example. A matrix was applied to the above-mentioned SiC fiber and impregnated to prepare a prepreg. Hereinafter, a SiC / SiC composite material was obtained in the same manner as in the example. Table 1 shows the flexural strength of the SiC / SiC composite material up to 1500 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学組成がSi:50〜65wt%,
C:25〜40wt%,O:0.01〜13wt%から
なり、繊維径が8〜20μmの炭化ケイ素繊維の表面に
化学蒸着によりBNを厚さ0.01〜2μm被覆し、該
炭化ケイ素繊維のトウ、フェルト、織物等の集合体に、
ポリカルボシランに有機溶剤を配合した組成物を塗布含
浸し、プリプレグを作製して、該プリプレグを積層、加
圧成形して、200〜300℃で硬化した後、アルゴ
ン,無酸素雰囲気又は真空中で1000〜1400℃で
焼成し、焼結体を得、さらに緻密化処理工程として、ポ
リカルボシランに有機溶剤を配合した組成物を含浸し1
000〜1400℃で焼成する工程を繰り返すことによ
り得られるマトリックスの気孔率が20%以下のSiC
繊維強化SiC複合材料。
The chemical composition is as follows: Si: 50 to 65 wt%;
C: 25 to 40 wt%, O: 0.01 to 13 wt%, and the surface of a silicon carbide fiber having a fiber diameter of 8 to 20 μm is coated with BN to a thickness of 0.01 to 2 μm by chemical vapor deposition. Of tows, felts, fabrics, etc.
A composition in which an organic solvent is blended with polycarbosilane is applied and impregnated to prepare a prepreg, and the prepreg is laminated, pressed and cured at 200 to 300 ° C., and then cured in an argon, oxygen-free atmosphere or vacuum. At 1000 to 1400 ° C. to obtain a sintered body, and as a densification step, impregnated with a composition in which polycarbosilane is mixed with an organic solvent,
SiC having a porosity of 20% or less in a matrix obtained by repeating a process of firing at 000 to 1400 ° C.
Fiber reinforced SiC composite.
JP9218313A 1997-07-30 1997-07-30 Silicon carbide fiber reinforced silicon carbide composite material Withdrawn JPH1149570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218313A JPH1149570A (en) 1997-07-30 1997-07-30 Silicon carbide fiber reinforced silicon carbide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218313A JPH1149570A (en) 1997-07-30 1997-07-30 Silicon carbide fiber reinforced silicon carbide composite material

Publications (1)

Publication Number Publication Date
JPH1149570A true JPH1149570A (en) 1999-02-23

Family

ID=16717898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218313A Withdrawn JPH1149570A (en) 1997-07-30 1997-07-30 Silicon carbide fiber reinforced silicon carbide composite material

Country Status (1)

Country Link
JP (1) JPH1149570A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176182A (en) * 2001-12-07 2003-06-24 Ishikawajima Harima Heavy Ind Co Ltd Ceramic composite material and turbine member obtained by using the same
JP2008081379A (en) * 2006-09-28 2008-04-10 Ihi Corp Ceramic-based composite material and its production method
CN102126859A (en) * 2011-03-03 2011-07-20 西北工业大学 Method for preparing bamboo-shaped SiC nanowire-toughened HfC ceramic
WO2012077787A1 (en) 2010-12-10 2012-06-14 独立行政法人物質・材料研究機構 Oxide-based composite material
KR101162568B1 (en) 2009-11-09 2012-07-04 한국세라믹기술원 Method of fabricating multi-layered silicon carbide mats and multi-layered silicon carbide mats of thereof
KR101162567B1 (en) 2009-12-04 2012-07-05 한국세라믹기술원 Silicon carbide and method of fabricating thereof
CN105272262A (en) * 2015-09-29 2016-01-27 中国科学院上海硅酸盐研究所 Method for enhancing density of SiC/SiC ceramic matrix composite
JP2017088418A (en) * 2015-11-02 2017-05-25 イビデン株式会社 Method for producing SiC fiber-reinforced SiC composite material
JP2017222520A (en) * 2016-06-13 2017-12-21 株式会社東芝 Method for producing SiC sintered body
CN108640698A (en) * 2018-05-02 2018-10-12 中国航发北京航空材料研究院 A kind of ceramic base composite material member co-curing moulding process
JP2020100559A (en) * 2014-12-12 2020-07-02 国立大学法人京都大学 Silicon carbide fiber-reinforced silicon carbide composite
WO2020203484A1 (en) 2019-03-29 2020-10-08 東ソー株式会社 Coating layer-attached continuous ceramic fiber and method for producing same, and ceramic matrix composite material and method for producing same
CN112626519A (en) * 2020-12-16 2021-04-09 蚌埠飞宇轴承有限公司 Processing technology for bearing element for prolonging fatigue life of rolling bearing
WO2021193817A1 (en) * 2020-03-27 2021-09-30 東ソ-株式会社 Ceramic matrix composite material and production method therefor
US11220465B2 (en) 2017-05-25 2022-01-11 Ibiden Co., Ltd. Method for producing SiC/SiC composite material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176182A (en) * 2001-12-07 2003-06-24 Ishikawajima Harima Heavy Ind Co Ltd Ceramic composite material and turbine member obtained by using the same
JP2008081379A (en) * 2006-09-28 2008-04-10 Ihi Corp Ceramic-based composite material and its production method
US8728383B2 (en) 2006-09-28 2014-05-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Ceramic composite material
KR101162568B1 (en) 2009-11-09 2012-07-04 한국세라믹기술원 Method of fabricating multi-layered silicon carbide mats and multi-layered silicon carbide mats of thereof
KR101162567B1 (en) 2009-12-04 2012-07-05 한국세라믹기술원 Silicon carbide and method of fabricating thereof
WO2012077787A1 (en) 2010-12-10 2012-06-14 独立行政法人物質・材料研究機構 Oxide-based composite material
CN102126859A (en) * 2011-03-03 2011-07-20 西北工业大学 Method for preparing bamboo-shaped SiC nanowire-toughened HfC ceramic
JP2020100559A (en) * 2014-12-12 2020-07-02 国立大学法人京都大学 Silicon carbide fiber-reinforced silicon carbide composite
US11142483B2 (en) 2014-12-12 2021-10-12 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
CN105272262A (en) * 2015-09-29 2016-01-27 中国科学院上海硅酸盐研究所 Method for enhancing density of SiC/SiC ceramic matrix composite
JP2017088418A (en) * 2015-11-02 2017-05-25 イビデン株式会社 Method for producing SiC fiber-reinforced SiC composite material
JP2017222520A (en) * 2016-06-13 2017-12-21 株式会社東芝 Method for producing SiC sintered body
US11220465B2 (en) 2017-05-25 2022-01-11 Ibiden Co., Ltd. Method for producing SiC/SiC composite material
CN108640698A (en) * 2018-05-02 2018-10-12 中国航发北京航空材料研究院 A kind of ceramic base composite material member co-curing moulding process
WO2020203484A1 (en) 2019-03-29 2020-10-08 東ソー株式会社 Coating layer-attached continuous ceramic fiber and method for producing same, and ceramic matrix composite material and method for producing same
WO2021193817A1 (en) * 2020-03-27 2021-09-30 東ソ-株式会社 Ceramic matrix composite material and production method therefor
JPWO2021193817A1 (en) * 2020-03-27 2021-09-30
CN112626519A (en) * 2020-12-16 2021-04-09 蚌埠飞宇轴承有限公司 Processing technology for bearing element for prolonging fatigue life of rolling bearing

Similar Documents

Publication Publication Date Title
US5643514A (en) Process for manufacturing a silicon carbide composition
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
EP1004559B1 (en) Ceramic matrix composites
JPH1149570A (en) Silicon carbide fiber reinforced silicon carbide composite material
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
US5725828A (en) Ceramic matrix composites using modified hydrogen silsesquioxane resin
EP2210868A2 (en) Composite material
JP4458192B2 (en) SiC fiber-bonded ceramics and method for producing the same
EP0678083B1 (en) Thermostructural composite articles and method for making same
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
Gottlieb et al. Continuous fiber-reinforced ceramic matrix composites
JP4014765B2 (en) Silicon carbide long fiber reinforced ceramic matrix composite
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
Foltz SiC fibers for advanced ceramic composites
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
EP1004558A2 (en) Coated ceramic fibers
JP2002293673A (en) Metal-ceramic composite material
JPH10167832A (en) Production of filament reinforced silicon carbide composition material
JPH0881276A (en) Production of filament-reinforced ceramic composite material
JP3673011B2 (en) Ceramic-based fiber composite material and manufacturing method thereof
JPH08253371A (en) Carbon fiber-reinforced carbonaceous composite material and its production
JPH06272167A (en) Fiber for composite material
JPH11171658A (en) Crystalline silicon carbide-based fiber-reinforced ceramic composite material
Suyama et al. Fabrication and Properties of Dense Silicon Carbide Matrix Composites

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005