JPH1146013A - Led lamp - Google Patents

Led lamp

Info

Publication number
JPH1146013A
JPH1146013A JP19983297A JP19983297A JPH1146013A JP H1146013 A JPH1146013 A JP H1146013A JP 19983297 A JP19983297 A JP 19983297A JP 19983297 A JP19983297 A JP 19983297A JP H1146013 A JPH1146013 A JP H1146013A
Authority
JP
Japan
Prior art keywords
axis
lens
led lamp
emitting diode
lens surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19983297A
Other languages
Japanese (ja)
Inventor
Shoichi Kamoshita
昌一 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19983297A priority Critical patent/JPH1146013A/en
Publication of JPH1146013A publication Critical patent/JPH1146013A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED lamp with which high luminance and uniform luminous intensity distribution can be realized. SOLUTION: A lens surface 6a of an LED lamp is composed of the outer circumference surface of a molded transparent resin 15. When the light axis Y of an LED device 11 is defined as a y-axis and an axis perpendicular to the y-axis is defined as an x-axis, the lens surface 6a is an elliptically curved surface which satisfies an equation (x<2> /2.42 +y<2> /3.0<2> =1<2> ) and, further. more, a distance Z between the LED device 11 and the apex of the lens surface 6a on the y-axis is get to 4.0 mm <=Z<=4.8 mm. By regulating the shape of the lens and the positional relation between the LED device and the lens in this way, the concentration of rays emitted from the lens 6a can be suppressed, and a sudden luminous intensity change caused by the change of a viewing angle can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、4元混晶系発光ダ
イオード素子を用いたLEDランプに関する。
The present invention relates to an LED lamp using a quaternary mixed crystal light emitting diode element.

【0002】[0002]

【従来の技術】従来、LEDランプとしては、図6に示
すものがある。このLEDランプは、発光ダイオード
(LED)素子として、GaP系やGaAsP系、Ga
AlAs系等のLED素子101を用いている。このL
ED素子101は、金属製のリードフレーム102a上
に導電性ペースト103でダイボンドされている。
2. Description of the Related Art Conventionally, there is an LED lamp as shown in FIG. This LED lamp includes a GaP-based, GaAsP-based, or GaP-based light-emitting diode (LED) element.
An LED element 101 of AlAs or the like is used. This L
The ED element 101 is die-bonded with a conductive paste 103 on a metal lead frame 102a.

【0003】また、LED素子101は金線104を用
いてワイヤーボンドでリードフレーム102bに接続さ
れている。そして、このLED素子101,リードフレ
ーム102a,102bは、光が透過する熱硬化性樹脂
105で封止されている。この熱硬化性樹脂105は、
上記LED素子101からの光を出射するレンズ面10
5aを有する。
The LED element 101 is connected to the lead frame 102b by wire bonding using a gold wire 104. The LED element 101 and the lead frames 102a and 102b are sealed with a thermosetting resin 105 through which light passes. This thermosetting resin 105 is
Lens surface 10 for emitting light from the LED element 101
5a.

【0004】図8(B)に、LED素子101から出射
した光線群がレンズ部105bの内の先端側のレンズ面
105aで光軸に近づく方向に均等に屈折し、センサ面
16に達していることを示す。一方、上記レンズ部10
5bの内の円柱形状の胴体に隣接した部分Aでの屈折に
よって光線が集中して、光軸上以外に光度ピークが発生
する。この光度ピークではLED素子101の拡大率が
急激に大きくなる。そして、この従来のLED素子10
1の場合、図7(A)に示すように、光軸(0°)から
90°の角度でも約50%の発光があるから、図6に示
すパラボラ状の反射カップを用いることによって、正面
光度をあげて、正面での光度の落ち込みを無くせる。な
お、図8(A)に図8(B)のレンズ面105a付近の
拡大図を示す。
FIG. 8B shows that a group of light rays emitted from the LED element 101 are uniformly refracted in a direction approaching the optical axis on the lens surface 105a on the distal end side of the lens portion 105b, and reach the sensor surface 16. Indicates that On the other hand, the lens unit 10
5b, light rays are concentrated by refraction at a portion A adjacent to the cylindrical body, and a luminous intensity peak occurs on a portion other than on the optical axis. At this luminous intensity peak, the magnification of the LED element 101 sharply increases. Then, this conventional LED element 10
In the case of No. 1, as shown in FIG. 7 (A), about 50% of the light is emitted even at an angle of 90 ° from the optical axis (0 °). Therefore, by using the parabolic reflection cup shown in FIG. Increase the luminosity and eliminate the drop in luminosity in front. FIG. 8A is an enlarged view of the vicinity of the lens surface 105a in FIG. 8B.

【0005】[0005]

【発明が解決しようとする課題】ところで、LEDを用
いた情報表示板の市場では、屋内使用タイプの情報表示
板と屋外使用タイプの情報表示板とがある。屋内使用タ
イプの情報表示板は駅構内や車両等に取り付けられる。
一方、屋外使用タイプの情報表示板は、広告宣伝用とし
てビル壁面等に取り付けられたり、交通情報用として道
路上に設置される。
In the market for information display boards using LEDs, there are information display boards for indoor use and information display boards for outdoor use. The information display board of the indoor use type is attached to a station yard, a vehicle, or the like.
On the other hand, an information display board of the outdoor use type is attached to a wall surface of a building or the like for advertising, or installed on a road for traffic information.

【0006】近年、特に設置が増加してきている道路上
の交通案内表示板に用いられるLEDランプの光学特性
については、次の,が要求される。
[0006] In recent years, the following characteristics are required for the optical characteristics of LED lamps used for traffic guidance display boards especially on roads, which are increasingly installed.

【0007】 様々な方角に設置されるので、高輝度
化が必要不可欠である。
[0007] Since it is installed in various directions, it is indispensable to increase the brightness.

【0008】 道路上から見るものだから、視認範囲
がそれほど必要ない。
Since the object is viewed from above the road, a visible range is not so required.

【0009】したがって、2θ1/2(光度半値角)を、
15°〜30°程度にすることの要望が多い。
Therefore, 2θ 1/2 (luminance half-value angle) is
There are many demands for the angle to be about 15 ° to 30 °.

【0010】一方、最近になって、高輝度なLEDラン
プを開発するために、LED素子材料としてAlGaI
nP等の4元混晶系材料を使用して、LED素子自体を
高輝度化する傾向が進んでいる。
On the other hand, recently, in order to develop a high-brightness LED lamp, AlGaI has been used as an LED element material.
There is a tendency to increase the luminance of the LED element itself by using a quaternary mixed crystal material such as nP.

【0011】しかしながら、4元LED素子は、GaP
系およびGaAsP系の素子と比べて、光学特性、特に
配光特性が異なっている。図7(A)にGaPおよびG
aAsP系等のLED素子の指向特性を示し、図7
(B)に4元LED素子の指向特性を示す。
However, the quaternary LED element is GaP
The optical characteristics, especially the light distribution characteristics, are different from those of the GaAsP-based and GaAsP-based devices. FIG. 7A shows GaP and G
FIG. 7 shows the directional characteristics of LED elements such as a
(B) shows the directional characteristics of the quaternary LED element.

【0012】したがって、GaP系およびGaAsP系
の素子で使用していたLEDランプのレンズ面形状のま
まで、LED素子だけを4元LED素子に変更した場
合、LEDランプの光学特性において、次の(i),
(ii)のような問題が起こる。 (i) 図7(C)に示すように、光軸(0°)上付近
で光度が落ち込み、光軸からずれた角度に光度のピーク
ができる。
Therefore, when only the LED element is changed to a quaternary LED element with the lens surface shape of the LED lamp used for the GaP-based and GaAsP-based elements, the following (-) i),
Problems such as (ii) occur. (I) As shown in FIG. 7C, the luminous intensity decreases near the optical axis (0 °), and a luminous intensity peak occurs at an angle shifted from the optical axis.

【0013】(ii) 図7(C)に示すように、光軸
(0°)上から視認角度を変化させると特定の角度で光
度が急激に下がる。
(Ii) As shown in FIG. 7 (C), when the viewing angle is changed from above the optical axis (0 °), the luminous intensity drops sharply at a specific angle.

【0014】そこで、この発明の目的は、高輝度と光度
分布の均一化を図れるLEDランプを提供することにあ
る。
An object of the present invention is to provide an LED lamp capable of achieving high luminance and uniform light intensity distribution.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、発光ダイオード素子が透明樹脂
で封止されたLEDランプにおいて、上記透明樹脂の外
周面で構成されるレンズ面の形状を、上記発光ダイオー
ド素子の光軸を長軸とする楕円曲面状として、上記発光
ダイオード素子からの光が上記レンズ面の周辺で外側に
出射するようにしたことを特徴としている。
In order to achieve the above-mentioned object, according to the present invention, there is provided an LED lamp in which a light emitting diode element is sealed with a transparent resin. The shape of the surface is an elliptical curved surface whose major axis is the optical axis of the light emitting diode element, and light from the light emitting diode element is emitted outward around the lens surface.

【0016】この請求項1の発明によれば、楕円曲面状
のレンズ面の周辺で発光ダイオード素子からの光が内側
に反射せずに外側に出射するから、レンズ面で屈折した
光線がある特定の角度に集中することがなく、光度分布
の均一化を図れる。
According to the first aspect of the present invention, since the light from the light emitting diode element is emitted outward without being reflected inward at the periphery of the elliptical curved lens surface, a light beam refracted by the lens surface is identified. And the luminous intensity distribution can be made uniform.

【0017】また、請求項2の発明は、請求項1に記載
のLEDランプにおいて、上記発光ダイオード素子を4
元混晶系発光ダイオード素子とし、上記発光ダイオード
素子の光軸をy軸とし、y軸に垂直な軸をx軸としたと
きに、上記透明樹脂の外周面で構成されるレンズ面の形
状を、次の(1)式を満たす楕円曲面状とし、 x2/2.42+y2/3.02=12 …(1) かつ、上記発光ダイオード素子と上記y軸上のレンズ面
の先端との距離Zを、4.0mm≦Z≦4.8mmにし
たことを特徴としている。
According to a second aspect of the present invention, there is provided the LED lamp according to the first aspect, wherein the light-emitting diode element comprises four light-emitting diodes.
When the original mixed crystal light emitting diode element, the optical axis of the light emitting diode element is the y axis, and the axis perpendicular to the y axis is the x axis, the shape of the lens surface formed by the outer peripheral surface of the transparent resin is X 2 /2.4 2 + y 2 /3.0 2 = 1 2 ... (1) and the light emitting diode element and the lens surface on the y axis are defined by the following formula (1). It is characterized in that the distance Z from the tip is 4.0 mm ≦ Z ≦ 4.8 mm.

【0018】このように、レンズ形状、およびLED素
子とレンズとの位置関係を規定することによって、LE
D素子から出射される光線が、レンズ部での屈折後の光
線集中を起さない。すなわち、LED素子から出射し
て、封止樹脂が形成するレンズ面で屈折した光線がある
特定の角度に集中しない。
By defining the lens shape and the positional relationship between the LED element and the lens as described above, the LE
Light rays emitted from the D element do not cause light concentration after refraction at the lens unit. That is, light rays emitted from the LED element and refracted by the lens surface formed by the sealing resin do not concentrate at a specific angle.

【0019】より詳しくは、1) 光度半値角が2θ1/2
=12°〜30°であり、 2) 配光特性が光軸方向をピークとしてなだらかな減
衰曲線を描くことになる。これにより、目的の配光特性
を得ることができ、高輝度と光度分布の均一化を図れ
る。
More specifically, 1) the half-luminance angle is 2θ 1/2
= 12 ° to 30 °, and 2) the light distribution characteristic draws a gentle attenuation curve with the peak in the optical axis direction. As a result, desired light distribution characteristics can be obtained, and high luminance and uniform luminous intensity distribution can be achieved.

【0020】[0020]

【発明の実施の形態】以下、この発明のLEDランプを
図示の実施の形態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an LED lamp according to the present invention will be described in detail with reference to the illustrated embodiments.

【0021】図1に、本発明のLEDランプの実施の形
態を示す。このLEDランプの4元混晶(AlGaIn
P)系発光ダイオード素子11(以下、4元LED素子
11という)は、金属製のリードフレーム10a上に導
電性ペースト13を用いてダイボンドされている。この
4元LED素子11はAu線12でリードフレーム10
bにワイヤーボンドされている。そして、上記4元LE
D素子11,Au線12,リードフレーム10a,10
bは、透明樹脂15で封止されている。この透明樹脂1
5は、先端が丸まった略弾丸形状であり、先端のレンズ
面6aを含むレンズ部6を有している。
FIG. 1 shows an embodiment of an LED lamp according to the present invention. A quaternary mixed crystal (AlGaIn) of this LED lamp
A P) -based light emitting diode element 11 (hereinafter, referred to as a quaternary LED element 11) is die-bonded on a metal lead frame 10a using a conductive paste 13. The quaternary LED element 11 is connected to the lead frame 10 by the Au wire 12.
b is wire-bonded. And the above-mentioned quaternary LE
D element 11, Au wire 12, lead frame 10a, 10
b is sealed with the transparent resin 15. This transparent resin 1
Reference numeral 5 denotes a substantially bullet shape with a rounded tip, and has a lens portion 6 including a lens surface 6a at the tip.

【0022】このレンズ部6の形状は、図1の寸法7,
寸法8,寸法9で特徴づけられる。寸法7は、LED素
子11の光軸Yと、この光軸Yに直交するX軸との交点
(原点0)からレンズ面6aの先端までの距離である。
また、寸法8は、上記原点0から上記レンズ面6aのX
軸方向の端までの距離である。また、寸法9は、上記L
ED素子11から上記レンズ面6aの先端までの距離で
ある。
The shape of the lens part 6 is the same as the dimension 7, FIG.
It is characterized by dimensions 8 and 9. The dimension 7 is the distance from the intersection (origin 0) of the optical axis Y of the LED element 11 and the X axis orthogonal to the optical axis Y from the tip of the lens surface 6a.
Also, the dimension 8 is defined by the distance X from the origin 0 to the lens surface 6a.
This is the distance to the end in the axial direction. Dimension 9 is the same as L
This is the distance from the ED element 11 to the tip of the lens surface 6a.

【0023】上記レンズ面6aは、図2に示す曲線14
を光軸Yを回転軸として1回転して形成できる曲面で構
成されている。上記曲線14は、上記光軸Y,X軸をそ
れぞれ、y軸,x軸としたときに、次の(1)式で、表
わされる楕円状曲線である。 x2/2.42+y2/3.02=12 (x>0,y>0) … (1) また、上記Z寸法9を、4.0mm≦Z≦4.8mmに
設定した。つまり、4.4mmを基準値にして、この基
準値±0.4mmの範囲内の値に設定した。
The lens surface 6a has a curve 14 shown in FIG.
Is formed by a curved surface that can be formed by making one rotation about the optical axis Y as a rotation axis. The curve 14 is an elliptic curve represented by the following equation (1), where the optical axes Y and X are the y axis and the x axis, respectively. x 2 /2.4 2 + y 2 /3.0 2 = 1 2 (x> 0, y> 0) (1) Further, the Z dimension 9 is set to 4.0 mm ≦ Z ≦ 4.8 mm. . That is, the value was set to a value within a range of ± 0.4 mm with reference to 4.4 mm.

【0024】この形状で作られたLEDランプの3次元
光線追跡計算における配向特性図を図3に示す。図3に
示すように、この実施形態のLEDランプの配光特性
は、正面光度(0°での光度)がピークになり、かつ、
図7(C)に示す従来例の配向特性に比べて、なだらか
な減衰特性曲線を示す。なお、2θ1/2(光度半値角)
は15°になる。
FIG. 3 shows an orientation characteristic diagram in the three-dimensional ray tracing calculation of the LED lamp made in this shape. As shown in FIG. 3, the light distribution characteristic of the LED lamp of this embodiment has a peak front luminous intensity (luminance at 0 °), and
7 shows a gentle attenuation characteristic curve as compared with the orientation characteristic of the conventional example shown in FIG. In addition, 2θ 1/2 (luminous intensity half value angle)
Becomes 15 °.

【0025】このことを、図4(B)を参照してより詳
細に説明する。図4(B)は、光路計算結果を示してお
り、図4(A)は図4(B)のレンズ面6a付近の拡大
図である。この実施形態での光路を示す図4(B)と従
来例の光路を示す図8(A)とを比較すれば分かるよう
に、この実施形態によれば、従来例のようにレンズ部か
ら出射する光線群が局所集中することがなく、レンズ部
6aから出射する光線群分布を均一化できる。
This will be described in more detail with reference to FIG. FIG. 4B shows an optical path calculation result, and FIG. 4A is an enlarged view near the lens surface 6a in FIG. 4B. As can be seen by comparing FIG. 4B showing the optical path in this embodiment with FIG. 8A showing the optical path of the conventional example, according to this embodiment, the light is emitted from the lens unit as in the conventional example. A group of light rays emitted from the lens unit 6a can be made uniform without local concentration of the light ray group.

【0026】尚、上記実施の形態では、Z寸法の基準値
を4.4mmに設定したが、式(1)とは数値の異なる
方程式において、Z寸法の基準値を4.0mmにした場
合の3次元光線追跡計算結果を図5に示す。図5を参照
すれば分かるように、この場合には、2θ1/2(光度半
値角)=30°の配光特性を持つLEDランプを実現で
きる。
In the above embodiment, the reference value of the Z dimension is set to 4.4 mm. However, when the reference value of the Z dimension is set to 4.0 mm in an equation having a numerical value different from the equation (1). FIG. 5 shows the results of the three-dimensional ray tracing calculation. As can be seen from FIG. 5, in this case, it is possible to realize an LED lamp having a light distribution characteristic of 2θ 1/2 (half-luminance angle) = 30 °.

【0027】なお、上記したような光線群の集中が起こ
らないようにするためのレンズ面6aの形状とZ寸法と
の組み合わせは、必要な光度半値角2θ1/2によって規
定できる。したがって、上記実施形態で示したように、
式(1)の様に屈折光線の集中が起こらない数値の式を
求め、これを基に、レンズ面6aの形状を作製した上
で、所望の光度半値角が得られるように上記Z寸法を設
定すればよい。
The combination of the shape of the lens surface 6a and the Z dimension for preventing the above-described concentration of the light beam group can be defined by the required half-luminance angle 2θ1 / 2. Therefore, as shown in the above embodiment,
An expression of a numerical value that does not cause the concentration of refracted light rays as in the expression (1) is obtained, and based on this, the shape of the lens surface 6a is formed, and the Z dimension is set so that a desired half-luminance angle is obtained. Just set it.

【0028】[0028]

【発明の効果】以上より明かなように、請求項1の発明
によれば、透明樹脂の外周面で構成されるレンズ面の形
状を、上記発光ダイオード素子の光軸を長軸とする楕円
曲面状として、楕円曲面状のレンズ面の周辺で発光ダイ
オード素子からの光が内側に反射せずに外側に出射する
ようにしたから、レンズ面で屈折した光線がある特定の
角度に集中することがなく、光度分布の均一化を図れ
る。
As is clear from the above, according to the first aspect of the present invention, the shape of the lens surface formed by the outer peripheral surface of the transparent resin is changed to the elliptical curved surface whose major axis is the optical axis of the light emitting diode element. As the shape, the light from the light emitting diode element is emitted outward without reflecting inward around the elliptical curved lens surface, so that the light refracted by the lens surface can be concentrated at a specific angle In addition, the luminous intensity distribution can be made uniform.

【0029】また、請求項2の発明によれば、発光ダイ
オード素子の光軸をy軸とし、y軸に垂直な軸をx軸と
したときに、透明樹脂の外周面で構成されるレンズ面の
形状を、次の(1)式を満たす楕円曲面状とし、 x2
2.42+y2/3.02=12…(1) かつ、上記発光ダ
イオード素子と上記y軸上のレンズ面の先端との距離Z
を、4.0mm≦Z≦4.8mmにした。
According to the second aspect of the present invention, when the optical axis of the light emitting diode element is set to the y-axis and the axis perpendicular to the y-axis is set to the x-axis, the lens surface formed by the outer peripheral surface of the transparent resin Is defined as an elliptical curved surface satisfying the following equation (1), and x 2 /
2.4 2 + y 2 /3.0 2 = 1 2 (1) and the distance Z between the light emitting diode element and the tip of the lens surface on the y axis
Was set to 4.0 mm ≦ Z ≦ 4.8 mm.

【0030】このように、レンズ形状、およびLED素
子とレンズとの位置関係を規定することによって、LE
D素子から出射される光線が、レンズ部での屈折後の光
線集中を起さない。したがって、視認角度の変化に対す
る急激な光度変化をなくすことができる。
By defining the lens shape and the positional relationship between the LED element and the lens as described above, the LE
Light rays emitted from the D element do not cause light concentration after refraction at the lens unit. Therefore, it is possible to eliminate a sudden change in luminous intensity due to a change in the viewing angle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のLEDランプの実施の形態の構造を
示す構造図である。
FIG. 1 is a structural diagram showing a structure of an embodiment of an LED lamp of the present invention.

【図2】 上記実施の形態のレンズ部の形状を示す図で
ある。
FIG. 2 is a diagram illustrating a shape of a lens unit according to the embodiment.

【図3】 上記実施の形態のLEDランプのレンズ形状
での配光特性図である。
FIG. 3 is a light distribution characteristic diagram in a lens shape of the LED lamp of the embodiment.

【図4】 図4(B)は上記実施の形態のLEDランプ
の光路計算結果の一例を示す図であり、図4(A)は上
記LEDランプの光路計算結果の一例を示すレンズ面付
近の拡大図である。
FIG. 4B is a diagram illustrating an example of an optical path calculation result of the LED lamp according to the embodiment, and FIG. 4A is a diagram illustrating an example of an optical path calculation result of the LED lamp near a lens surface. It is an enlarged view.

【図5】 本発明の他の実施の形態での配光特性図であ
る。
FIG. 5 is a light distribution characteristic diagram according to another embodiment of the present invention.

【図6】 従来のLEDランプの構造を示す構造図であ
る。
FIG. 6 is a structural view showing the structure of a conventional LED lamp.

【図7】 図7(A)は従来のLED素子の指向特性図
であり、図7(B)は4元混晶系LED素子の指向特性
図であり、図7(C)は従来のLEDランプのレンズ形
状での配光特性図である。
7A is a directional characteristic diagram of a conventional LED element, FIG. 7B is a directional characteristic diagram of a quaternary mixed-crystal LED element, and FIG. 7C is a conventional LED element; It is a light distribution characteristic figure in the lens shape of a lamp.

【図8】 図8(B)は従来のLEDランプのレンズ形
状での光路計算結果の一例を示す図であり、図8(A)
は従来のLEDランプの光路計算結果のレンズ面付近拡
大図である。
FIG. 8B is a diagram showing an example of an optical path calculation result in a lens shape of a conventional LED lamp, and FIG.
FIG. 4 is an enlarged view near a lens surface of a light path calculation result of a conventional LED lamp.

【符号の説明】[Explanation of symbols]

6…レンズ部、6a…レンズ面、10a,10b…リー
ドフレーム、11…4元LED素子、12…金線、13
…導電性ペースト、15…透明樹脂、16…センサ面。
Reference numeral 6: lens portion, 6a: lens surface, 10a, 10b: lead frame, 11: quaternary LED element, 12: gold wire, 13
... conductive paste, 15 ... transparent resin, 16 ... sensor surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光ダイオード素子が透明樹脂で封止さ
れたLEDランプにおいて、 上記透明樹脂の外周面で構成されるレンズ面の形状を、
上記発光ダイオード素子の光軸を長軸とする楕円曲面状
として、 上記発光ダイオード素子からの光が上記レンズ面の周辺
で外側に出射するようにしたことを特徴とするLEDラ
ンプ。
1. An LED lamp in which a light emitting diode element is sealed with a transparent resin, wherein the shape of a lens surface formed by the outer peripheral surface of the transparent resin is
An LED lamp, wherein the light from the light emitting diode element is emitted to the outside around the lens surface in the form of an elliptical curved surface having the optical axis of the light emitting diode element as a major axis.
【請求項2】 請求項1に記載のLEDランプにおい
て、 上記発光ダイオード素子を4元混晶系発光ダイオード素
子とし、 上記発光ダイオード素子の光軸をy軸とし、y軸に垂直
な軸をx軸としたときに、上記透明樹脂の外周面で構成
されるレンズ面の形状を、次の(1)式を満たす楕円曲
面状とし、 x2/2.42+y2/3.02=12 …(1) かつ、上記発光ダイオード素子と上記y軸上のレンズ面
の先端との距離Zを、4.0mm≦Z≦4.8mmにし
たことを特徴とするLEDランプ。
2. The LED lamp according to claim 1, wherein the light emitting diode element is a quaternary mixed crystal light emitting diode element, an optical axis of the light emitting diode element is a y axis, and an axis perpendicular to the y axis is x. When the axis is the axis, the shape of the lens surface formed by the outer peripheral surface of the transparent resin is an elliptical curved surface satisfying the following equation (1), and x 2 /2.4 2 + y 2 /3.0 2 = 1 2 ... (1) An LED lamp, wherein the distance Z between the light emitting diode element and the tip of the lens surface on the y axis is 4.0 mm ≦ Z ≦ 4.8 mm.
JP19983297A 1997-07-25 1997-07-25 Led lamp Pending JPH1146013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19983297A JPH1146013A (en) 1997-07-25 1997-07-25 Led lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19983297A JPH1146013A (en) 1997-07-25 1997-07-25 Led lamp

Publications (1)

Publication Number Publication Date
JPH1146013A true JPH1146013A (en) 1999-02-16

Family

ID=16414392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19983297A Pending JPH1146013A (en) 1997-07-25 1997-07-25 Led lamp

Country Status (1)

Country Link
JP (1) JPH1146013A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204083A (en) * 2001-12-28 2003-07-18 Toshiba Corp Condensing lens, light emitting element incorporating lens, and lighting unit
JP2006295211A (en) * 2006-07-03 2006-10-26 Toshiba Corp Optical semiconductor device for af auxiliary optical source
WO2008144974A1 (en) * 2007-05-30 2008-12-04 He Shan Lide Electronic Enterprise Company Ltd. Tip led
JP2010278246A (en) * 2009-05-28 2010-12-09 Toshiba Lighting & Technology Corp Light emitting module and method of manufacturing the same
CN101950789A (en) * 2010-08-06 2011-01-19 李晓锋 Concentration light-emitting diode and concentration structure thereof
JP2012231036A (en) * 2011-04-27 2012-11-22 Panasonic Corp Light-emitting device and luminaire using the same
WO2013042401A1 (en) * 2011-09-20 2013-03-28 沖電気工業株式会社 Lens optical element and display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204083A (en) * 2001-12-28 2003-07-18 Toshiba Corp Condensing lens, light emitting element incorporating lens, and lighting unit
JP2006295211A (en) * 2006-07-03 2006-10-26 Toshiba Corp Optical semiconductor device for af auxiliary optical source
WO2008144974A1 (en) * 2007-05-30 2008-12-04 He Shan Lide Electronic Enterprise Company Ltd. Tip led
JP2010278246A (en) * 2009-05-28 2010-12-09 Toshiba Lighting & Technology Corp Light emitting module and method of manufacturing the same
CN101950789A (en) * 2010-08-06 2011-01-19 李晓锋 Concentration light-emitting diode and concentration structure thereof
JP2012231036A (en) * 2011-04-27 2012-11-22 Panasonic Corp Light-emitting device and luminaire using the same
WO2013042401A1 (en) * 2011-09-20 2013-03-28 沖電気工業株式会社 Lens optical element and display device
JP2013064941A (en) * 2011-09-20 2013-04-11 Oki Electric Ind Co Ltd Lens optical element and display device
US9465143B2 (en) 2011-09-20 2016-10-11 Oki Data Corporation Lens optical element and display apparatus

Similar Documents

Publication Publication Date Title
US7339200B2 (en) Light-emitting diode and vehicular lamp
US6095666A (en) Light source
KR100616598B1 (en) Light emitting diode lens and backlight module having the same
KR950003955B1 (en) Led lamp
US7473014B2 (en) Light emitting diode lamp and light emitting diode display unit
JPH0983018A (en) Light emitting diode unit
JP2002314137A (en) Reflection type light emitting diode
JP2003124522A (en) Light emitting diode
JP2001237463A (en) Led module
JP2003158302A (en) Light emitting diode
JP2003037294A (en) Light-emitting diode
JP4143074B2 (en) Light emitting diode
JPH1146013A (en) Led lamp
JPH1154802A (en) Light-emitting diode and display unit manufactured using the same
JP6263583B2 (en) Primary optical emission source with rectangular light pattern
JP2004193451A (en) Light emitting diode
JP2004087630A (en) Light emitting diode and led light
CN210142657U (en) Lens and LED light source device adopting same
JP2927202B2 (en) LED lamp
JP2002270902A (en) Light emitting diode
JPH02306289A (en) Light-emitting diode
JP2004288866A (en) Led lamp
JPS61147586A (en) Light-emitting diode
JPH0447977Y2 (en)
JP2007157911A (en) Light-emitting diode lump, and light-emitting diode lamp device