JPH1144638A - Method for measuring fruit sugar level and fruit sugar level meter - Google Patents

Method for measuring fruit sugar level and fruit sugar level meter

Info

Publication number
JPH1144638A
JPH1144638A JP19993297A JP19993297A JPH1144638A JP H1144638 A JPH1144638 A JP H1144638A JP 19993297 A JP19993297 A JP 19993297A JP 19993297 A JP19993297 A JP 19993297A JP H1144638 A JPH1144638 A JP H1144638A
Authority
JP
Japan
Prior art keywords
fruit
light
wavelength
transmitted
sugar level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19993297A
Other languages
Japanese (ja)
Inventor
Takayuki Nakayama
隆幸 中山
Shinobu Imon
忍 井門
Toshiaki Ogawa
俊昭 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19993297A priority Critical patent/JPH1144638A/en
Publication of JPH1144638A publication Critical patent/JPH1144638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the fruit sugar level measuring method and fruit sugar level meter which eliminate the need to set a large measurement range for a photodetector and can measure the sugar level of a fruit having a thick skin with simple constitution. SOLUTION: This sugar level meter measures the sugar level from the transmitted light obtained by irradiating the fruit having the thick skin such as a melon with light. In this case, the light which is hardly transmitted through the fruit 2 and has wavelength needed for measurement is compensated with the light from a laser light source 7, so the intensity of the light having the wavelength to be measured becomes nearly equal and the sugar level can precisely be measured by the simple constitution even with any wavelength without setting the measurement range of the photodetector 12 large. When white light sources 5 and laser light sources 7 are arranged radially around the fruit 2, the fruit 2 is irradiated with the light of the illumination system 3 from all directions, so a measurement error resulting from the size and position of the fruit 2 is reduced to improve the measurement precision.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メロン等の厚皮の
果実に光を照射して得られた透過光より糖度を測定する
果実糖度測定方法及び果実糖度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a sugar content of a fruit based on transmitted light obtained by irradiating light to a thick-skinned fruit such as melon and a fruit refractometer.

【0002】[0002]

【従来の技術】一般に、収穫された野菜や果物(菜果)
は外観検査、重量検査等種々の検査工程を経た後で出荷
される。果物、特に、モモ、ナシ、リンゴなどの検査工
程の中には、果実糖度計を用いて光学的に糖度の成分を
非破壊検査する工程がある。この果実糖度計は、果物に
ハロゲンランプ等の白色光を照射し、その透過した光の
強度の波長に対する分布を測定し、これを分析すること
によって糖度を測定するものであり、近赤外光の吸収分
光手法が用いられている。
2. Description of the Related Art Generally, harvested vegetables and fruits (rapeseed fruits)
Is shipped after various inspection processes such as appearance inspection and weight inspection. In the inspection process of fruits, particularly peaches, pears, apples, and the like, there is a process of optically nondestructively inspecting a sugar content component using a fruit refractometer. This fruit refractometer irradiates a fruit with white light such as a halogen lamp, measures the distribution of the intensity of the transmitted light with respect to the wavelength, and measures the sugar content by analyzing the distribution. Absorption spectroscopy technique is used.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の果実
糖度計による透過光強度と波長との関係は、図5に示す
ように700〜1000nmの波長域の中で透過光強度
が大きく変化する。すなわち、波長700〜800nm
の範囲では透過光強度が測定に必要な大きさであるが、
900〜1000nmの範囲では透過光強度が減少し測
定に影響する。このため、どの波長でも測定精度を下げ
ずに測定するには、受光器の測定レンジを大きくとって
おく必要があった。
By the way, as for the relationship between the transmitted light intensity and the wavelength by the conventional fruit refractometer, the transmitted light intensity greatly changes in a wavelength range of 700 to 1000 nm as shown in FIG. That is, a wavelength of 700 to 800 nm
In the range, the transmitted light intensity is the size required for measurement,
In the range of 900 to 1000 nm, the transmitted light intensity decreases and affects the measurement. Therefore, in order to perform measurement at any wavelength without lowering the measurement accuracy, it is necessary to increase the measurement range of the light receiver.

【0004】しかし受光器の測定レンジを大きくとって
も、白色光の透過光強度の小さい波長領域では糖度に関
する情報を十分に得ることができない。このため、白色
光の透過光強度の小さい波長領域で糖度に関する情報を
充分に得るためには、果実糖度計に新たな回路(例えば
ロックインアンプ)を付加しなければならず装置が複雑
になるという問題があった。尚、図5は従来の果実糖度
計による透過光強度と波長との関係を示す図であり、横
軸が波長を示し、縦軸が透過光強度を示す。
[0004] However, even if the measuring range of the photodetector is large, it is not possible to obtain sufficient information on the sugar content in a wavelength region where the transmitted light intensity of white light is small. For this reason, in order to sufficiently obtain information on the sugar content in a wavelength region where the transmitted light intensity of white light is small, a new circuit (for example, a lock-in amplifier) must be added to the fruit sugar content meter, and the device becomes complicated. There was a problem. FIG. 5 is a diagram showing the relationship between the transmitted light intensity and the wavelength by a conventional fruit refractometer, with the horizontal axis representing the wavelength and the vertical axis representing the transmitted light intensity.

【0005】そこで、本発明の目的は、上記課題を解決
し、受光器の測定レンジを大きくとる必要がなく、簡単
な構成で厚皮の果実の糖度を測定することができる果実
糖度計を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems, and to provide a fruit refractometer capable of measuring the sugar content of thick-skinned fruits with a simple configuration without having to increase the measuring range of a light receiver. Is to do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、メロン等の厚皮の果実に光を照射して得ら
れた透過光より糖度を測定する果実糖度方法において、
果実に白色光を照射すると共に果実を透過しにくく、か
つ、測定に必要な波長のレーザ光を照射し、果実内で散
乱して透過した透過光を分光し、分光されたスペクトル
を波長毎に電気信号に変換し、得られた電気信号に基づ
いて果実の糖度を演算処理するものである。
Means for Solving the Problems In order to achieve the above object, the present invention relates to a method for measuring the sugar content from transmitted light obtained by irradiating light to a thick-skinned fruit such as melon.
The fruits are illuminated with white light and hard to penetrate the fruits.They are irradiated with laser light of the wavelength required for measurement, and the transmitted light scattered and transmitted in the fruits is spectrally separated. It is converted into an electric signal and the sugar content of the fruit is calculated based on the obtained electric signal.

【0007】上記目的を達成するために本発明は、メロ
ン等の厚皮の果実に光を照射して得られた透過光より糖
度を測定する果実糖度計において、果実に白色光を照射
する白色光源と、果実を透過しにくく、かつ測定に必要
な波長の光を果実に照射するレーザ光源と、果実内で散
乱して透過した透過光を分光する分光器と、分光器で分
光されたスペクトルを受光して波長毎に電気信号に変換
する受光器と、受光器からの電気信号に基づいて果実の
糖度を演算処理する信号処理演算手段とを備えたもので
ある。
[0007] In order to achieve the above object, the present invention provides a fruit refractometer for measuring sugar content from transmitted light obtained by irradiating light to a thick-skinned fruit such as melon. A light source, a laser light source that irradiates the fruit with light of a wavelength required for measurement that is difficult to transmit through the fruit, a spectroscope that disperses the transmitted light scattered and transmitted in the fruit, and a spectrum that is separated by the spectrometer And a signal processing means for calculating and processing the sugar content of the fruit based on the electric signal from the light receiver.

【0008】上記構成に加え本発明は、複数の白色光源
と複数のレーザ光源とを果実の周囲に放射状に配置して
もよい。
In the present invention, in addition to the above configuration, a plurality of white light sources and a plurality of laser light sources may be radially arranged around the fruit.

【0009】上記構成に加え本発明は、レーザ光源の発
振波長が異なるようにしてもよい。
In the present invention, in addition to the above configuration, the oscillation wavelength of the laser light source may be different.

【0010】上記構成によって、果実を透過しにくく、
かつ測定に必要な波長の光がレーザ光源からの光で補わ
れるので、測定すべき波長の透過光強度が略同レベルと
なる。このため、簡単な構成で、受光器の測定レンジを
大きくとることなくどの波長でも糖度の測定を精度よく
行うことができる。
[0010] With the above structure, it is difficult to permeate the fruit,
In addition, since the light having the wavelength necessary for the measurement is supplemented by the light from the laser light source, the intensity of the transmitted light at the wavelength to be measured is substantially the same. Therefore, the sugar content can be accurately measured at any wavelength with a simple configuration without increasing the measurement range of the light receiver.

【0011】複数の白色光源と複数のレーザ光源とを果
実の周囲に放射状に配置した場合には、照明系の光が果
実に八方から照射されるので、果実の大きさや位置によ
る測定誤差が減少し、より測定精度が向上する。複数の
レーザ光源の発振波長が異なる場合には、果実の透過光
強度の情報量が増加するのでより正確に果実の糖度測定
を行うことができる。
When a plurality of white light sources and a plurality of laser light sources are arranged radially around a fruit, the illumination system light irradiates the fruit from all directions, thereby reducing measurement errors due to the size and position of the fruit. Measurement accuracy is further improved. When the oscillation wavelengths of the plurality of laser light sources are different, the information amount of the transmitted light intensity of the fruit increases, so that the sugar content of the fruit can be measured more accurately.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】図1は本発明の果実糖度測定方法を適用し
た果実糖度計の一実施の形態を示す概念図である。
FIG. 1 is a conceptual diagram showing an embodiment of a fruit sugar content meter to which the method for measuring fruit sugar content of the present invention is applied.

【0014】果実糖度計1は、果実に光を照射する照明
系3と、果実内で散乱して透過した光より果実の糖度を
計測する果実糖度計本体4とで構成されている。
The fruit refractometer 1 comprises an illumination system 3 for irradiating the fruit with light, and a fruit refractometer main body 4 for measuring the sugar content of the fruit from light scattered and transmitted in the fruit.

【0015】果実としてのメロン2は、図示しない保持
部材で保持されるようになっている。5はメロン2に白
色光を照射するハロゲンランプ(例えば出力100W)
である。7はメロン2を透過しにくく、かつ測定に必要
な波長(例えばショ糖の吸収波長λ1)の光を発振する
レーザ光源としての半導体レーザ(例えば出力5W)で
ある。これらハロゲンランプ5と半導体レーザ7とで照
明系3が構成されている。
The melon 2 as a fruit is held by a holding member (not shown). 5 is a halogen lamp for irradiating the melon 2 with white light (for example, output 100 W)
It is. Reference numeral 7 denotes a semiconductor laser (for example, an output of 5 W) as a laser light source that hardly transmits the melon 2 and oscillates light having a wavelength required for measurement (for example, sucrose absorption wavelength λ1). The illumination system 3 is composed of the halogen lamp 5 and the semiconductor laser 7.

【0016】メロン2の下に配置されている果実糖度計
本体4は、メロン2内で散乱して透過した透過光が一端
(図では上端)に入射されるように配置された光ファイ
バ8と、光ファイバ8の他端(下端)に設けられたスリ
ット板9と、スリット板9の出射側(下側)に設けられ
スリット板9からの光を平行にする凸レンズ10と、凸
レンズ10の出射側に斜め(約45度)に配置され凸レ
ンズ10からの出射光を分光する回折格子11と、回折
格子11の出射側に配置され回折格子11で分光された
スペクトルを受光して波長毎に電気信号に変換する受光
器としてのアレー状ディテクタ12と、これら光ファイ
バ8、スリット板9、凸レンズ10、回折格子11及び
アレー状ディテクタ12とを収容保持する筐体13と、
アレー状ディテクタ12からの電気信号に基づいてメロ
ン2の糖度を演算処理する信号処理演算手段としてのマ
イクロコンピュータ14とで構成されている。尚、アレ
ー状ディテクタ12は、例えば多数のフォトダイオード
(或いはフォトトランジスタ)を上下一列に配置したも
のであり、受光した光をそれぞれ電気信号に変換する。
光ファイバ8は上端に集光レンズ15を有しており、入
射光が集光された後コア16内を伝搬するようになって
いる。
The fruit refractometer main body 4 disposed below the melon 2 has an optical fiber 8 disposed so that the transmitted light scattered and transmitted in the melon 2 is incident on one end (the upper end in the figure). A slit plate 9 provided at the other end (lower end) of the optical fiber 8, a convex lens 10 provided on the emission side (lower side) of the slit plate 9 to make the light from the slit plate 9 parallel, and an emission of the convex lens 10. A diffraction grating 11 arranged obliquely (approximately 45 degrees) on the side and splitting the light emitted from the convex lens 10, and a spectrum arranged on the output side of the diffraction grating 11 and receiving the spectrum split by the diffraction grating 11 and receiving electricity for each wavelength. An array detector 12 serving as a light receiver for converting into a signal, a housing 13 for housing and holding these optical fiber 8, slit plate 9, convex lens 10, diffraction grating 11, and array detector 12;
It comprises a microcomputer 14 serving as a signal processing means for calculating the sugar content of the melon 2 based on the electric signal from the array detector 12. The array detector 12 is, for example, one in which a large number of photodiodes (or phototransistors) are arranged in an upper and lower row, and converts received light into electric signals.
The optical fiber 8 has a condensing lens 15 at the upper end, so that the incident light propagates through the core 16 after being condensed.

【0017】図1に示した果実糖度計の作用について述
べる。
The operation of the fruit refractometer shown in FIG. 1 will be described.

【0018】ハロゲンランプ5と半導体レーザ7が発光
すると、白色光とレーザ光とがメロン2に照射され、白
色光とレーザ光とがメロン2内で散乱してメロン2を透
過し、光ファイバ8及び凸レンズ10を介して回折格子
11に入射する。回折格子11に入射した透過光は、分
光されてアレー状ディテクタ12の受光面に下から上に
紫、青、緑、茶、黄、橙、赤のように入射する。アレー
状ディテクタ12に入射されたこれらのスペクトルは波
長毎に電気信号に変換され、変換された電気信号はマイ
クロコンピュータ14に入力される。マイクロコンピュ
ータ14で信号を演算処理することにより図2に示した
特性曲線が得られる。
When the halogen lamp 5 and the semiconductor laser 7 emit light, the white light and the laser light are irradiated on the melon 2, and the white light and the laser light are scattered in the melon 2 and transmitted through the melon 2, and the optical fiber 8 Then, the light enters the diffraction grating 11 via the convex lens 10. The transmitted light incident on the diffraction grating 11 is split and incident on the light receiving surface of the array detector 12 from bottom to top in the order of violet, blue, green, brown, yellow, orange, and red. These spectra incident on the array detector 12 are converted into electric signals for each wavelength, and the converted electric signals are input to the microcomputer 14. The characteristic curve shown in FIG. 2 is obtained by arithmetically processing the signals by the microcomputer 14.

【0019】図2は、図1に示した果実糖度計による透
過光強度と波長との関係を示す図であり、横軸が波長を
示し、縦軸が透過光強度を示す。
FIG. 2 is a diagram showing the relationship between the transmitted light intensity and the wavelength by the fruit refractometer shown in FIG. 1, wherein the horizontal axis indicates the wavelength and the vertical axis indicates the transmitted light intensity.

【0020】図2に示すように、波長700〜800n
mの短波長側ではハロゲンランプ5からの白色光による
透過光が観測され、波長900〜1000nmの長波長
側ではハロゲンランプ5からの白色光と共に半導体レー
ザ7からのレーザ光による透過光(ピークP1)が観測
されているのが分かる。すなわち、メロン2を透過しに
くく、かつショ糖の吸収波長に等しい波長の光が半導体
レーザ7からの光で補われるので、測定すべき波長λ1
の光の強度が略同レベルとなる。このためアレー状ディ
テクタ12の測定レンジを大きくとっておく必要がなく
なり、簡単な構成で糖度の測定を精度よく行うことがで
きる。
As shown in FIG. 2, the wavelength is 700 to 800 n.
On the short wavelength side of m, the transmitted light by the white light from the halogen lamp 5 is observed, and on the long wavelength side of 900 to 1000 nm, the transmitted light by the laser light from the semiconductor laser 7 together with the white light from the halogen lamp 5 (peak P1). ) Is observed. That is, the light from the semiconductor laser 7 which is hardly transmitted through the melon 2 and has a wavelength equal to the absorption wavelength of sucrose is supplemented by the light from the semiconductor laser 7, so that the wavelength λ1
Are substantially at the same level. Therefore, it is not necessary to increase the measurement range of the array detector 12, and the sugar content can be accurately measured with a simple configuration.

【0021】すなわち、果実に白色光を照射すると共に
果実を透過しにくく、かつ、測定に必要な波長のレーザ
光を照射し、果実内で散乱して透過した透過光を分光
し、分光されたスペクトルを波長毎に電気信号に変換
し、得られた電気信号に基づいて果実の糖度を演算処理
することにより、受光器の測定レンジを大きくとる必要
がなく、簡単な構成で厚皮の果実の糖度を測定すること
ができる。
That is, the fruit is irradiated with white light and hardly penetrates the fruit, and is irradiated with a laser beam having a wavelength required for measurement, and the transmitted light scattered and transmitted in the fruit is spectrally separated. By converting the spectrum to an electric signal for each wavelength and calculating the sugar content of the fruit based on the obtained electric signal, it is not necessary to increase the measurement range of the photodetector, and the simple configuration of Sugar content can be measured.

【0022】図3は本発明の果実糖度計の照明系の変形
例を示す配置図である。
FIG. 3 is a layout diagram showing a modification of the illumination system of the fruit refractometer of the present invention.

【0023】図1に示した実施の形態との相違点は、4
個のハロゲンランプと12個の半導体レーザとを、メロ
ンの周囲に複数配置した点である。
The difference from the embodiment shown in FIG.
The point is that a plurality of halogen lamps and twelve semiconductor lasers are arranged around the melon.

【0024】同図に示すように4個のハロゲンランプ5
a〜5dがメロン2を囲むと共に、メロン2に向って矢
印H1〜H4方向に白色光を照射するように配置されて
いる。ハロゲンランプ5a、5bの間には発振波長の異
なる3個の半導体レーザ(波長λ1,λ2,λ3)7a
〜7cがメロン2に向って矢印L1〜L3方向にレーザ
光を照射するように配置されている。ハロゲンランプ5
b,5cの間には発振波長λ1,λ2,λ3の3個の半
導体レーザ7d,7e,7fが配置されている。同様に
してハロゲンランプ5c,5dの間及びハロゲンランプ
5d,5aにも発振波長λ1,λ2,λ3の3個の半導
体レーザ7g〜7lがそれぞれ配置されている。すなわ
ち、メロン2の周囲にハロゲンランプ5a〜5dと半導
体レーザ7a〜7lとが放射状に配置されている。
As shown in FIG.
a to 5d surround the melon 2 and are arranged so as to emit white light toward the melon 2 in directions indicated by arrows H1 to H4. Three semiconductor lasers (wavelengths λ1, λ2, λ3) 7a having different oscillation wavelengths are provided between the halogen lamps 5a and 5b.
7c are arranged so as to irradiate the laser beam in the directions of arrows L1 to L3 toward the melon 2. Halogen lamp 5
Three semiconductor lasers 7d, 7e and 7f having oscillation wavelengths λ1, λ2 and λ3 are arranged between b and 5c. Similarly, three semiconductor lasers 7g to 7l having oscillation wavelengths λ1, λ2 and λ3 are arranged between the halogen lamps 5c and 5d and between the halogen lamps 5d and 5a, respectively. That is, the halogen lamps 5a to 5d and the semiconductor lasers 7a to 7l are radially arranged around the melon 2.

【0025】ここで、半導体レーザ7a,7d,7g,
7jの発振波長λ1は、メロン2を透過しにくく、かつ
ショ糖の吸収波長に対応し、半導体レーザ7b,7e,
7h,7kの発振波長λ2は、メロン2を透過しにく
く、かつ果糖の吸収波長に対応し、半導体レーザ7c,
7f,7i,7lの発振波長λ3は、メロン2を透過し
にくく、かつブドウ糖の吸収波長に対応しているが、限
定されるものではない。
Here, the semiconductor lasers 7a, 7d, 7g,
The oscillation wavelength λ1 of 7j is hard to pass through the melon 2 and corresponds to the absorption wavelength of sucrose, and the semiconductor lasers 7b, 7e,
The oscillation wavelengths λ2 of 7h and 7k are hardly transmitted through the melon 2 and correspond to the absorption wavelength of fructose.
The oscillation wavelengths λ3 of 7f, 7i, and 7l are not easily transmitted through the melon 2 and correspond to the absorption wavelength of glucose, but are not limited thereto.

【0026】このように複数のハロゲンランプ5a〜5
dと複数の半導体レーザ7a〜7lとをメロン2の周囲
に放射状に配置した場合には、図4に示す特性曲線にお
いて長波長側に3つのピークP1〜P3が観測され、短
波長側から長波長側にわたり必要な波長の透過光強度が
得られる。しかも照明系の光が果実に八方から照射され
るので、メロンの大きさや位置による測定誤差が減少
し、より測定精度が向上する。尚、図4は図1に示した
果実糖度計の照明系を変更した場合の透過光強度と波長
との関係を示す図である。
As described above, the plurality of halogen lamps 5a-5
When d and the plurality of semiconductor lasers 7a to 7l are radially arranged around the melon 2, three peaks P1 to P3 are observed on the long wavelength side in the characteristic curve shown in FIG. The transmitted light intensity of the required wavelength can be obtained over the wavelength side. In addition, since the light of the illumination system is applied to the fruit from all directions, measurement errors due to the size and position of the melon are reduced, and the measurement accuracy is further improved. FIG. 4 is a diagram showing the relationship between transmitted light intensity and wavelength when the illumination system of the fruit refractometer shown in FIG. 1 is changed.

【0027】以上において、メロンを透過しにくく、か
つ測定に必要な波長の光がレーザ光源からの光で補われ
るので、測定すべき波長の透過光強度が略同レベルとな
る。このため、受光器の測定レンジを大きくとっておく
必要がなくなる。
In the above, since the light having a wavelength necessary for measurement is hardly transmitted through the melon and the light from the laser light source is supplemented by the light from the laser light source, the transmitted light intensity of the wavelength to be measured is substantially the same level. Therefore, it is not necessary to increase the measurement range of the light receiver.

【0028】複数の白色光源と複数のレーザ光源とを果
実の周囲に放射状になるように配置した場合には、果実
に照射される光が集中することなく増加するので、測定
精度が向上する。複数のレーザ光源の発振波長が異なる
場合には、果実の吸収波長毎の透過光強度が把握できる
のでより正確に果実の糖度測定を行うことができる。
When a plurality of white light sources and a plurality of laser light sources are arranged radially around the fruit, the light applied to the fruit increases without being concentrated, so that the measurement accuracy is improved. When the oscillation wavelengths of the plurality of laser light sources are different, the transmitted light intensity for each absorption wavelength of the fruit can be grasped, so that the sugar content of the fruit can be measured more accurately.

【0029】尚、本実施の形態では白色光源にハロゲン
ランプを用いたがこれに限定されず、タングステンラン
プやキセノンランプ等のランプを用いてもよく、出力も
100Wに限定されず、入射光がメロン内で散乱して透
過すると共に、メロンが加熱されない程度であればよ
い。又、本実施の形態ではレーザ光源に半導体レーザを
用いたが、これに限定されず、他の種類のレーザ光源を
用いてもよく、出力も入射光がメロン内で散乱して透過
すると共に、メロンに孔が開いたり焦げたりしない程度
であればよい。さらに分光器として回折格子を用いたが
プリズム等の光部品を用いてもよい。
In this embodiment, a halogen lamp is used as a white light source. However, the present invention is not limited to this, and a lamp such as a tungsten lamp or a xenon lamp may be used. It is sufficient that the melon is not heated while being scattered and transmitted in the melon. In the present embodiment, a semiconductor laser is used as a laser light source. However, the present invention is not limited to this, and other types of laser light sources may be used. It suffices if the melon does not pierce or burn. Further, although a diffraction grating is used as a spectroscope, an optical component such as a prism may be used.

【0030】[0030]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0031】メロン等の厚皮の果実に光を照射して得ら
れた透過光より糖度を測定する果実糖度方法において、
果実を透過しにくく、かつ測定に必要な波長の光がレー
ザ光源からの光で補われるので、測定すべき波長の光の
強度が略同レベルとなる。このため簡単な構成で、測定
レンジを大きくとっておく必要がなくなる。
In a fruit sugar content method for measuring sugar content from transmitted light obtained by irradiating light to a thick-skinned fruit such as melon,
Since the light having a wavelength necessary for measurement is hardly transmitted through the fruit and the light from the laser light source is supplemented by the light from the laser light source, the intensity of the light having the wavelength to be measured is substantially the same. For this reason, it is not necessary to set a large measurement range with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の果実糖度測定方法を適用した果実糖度
計の一実施の形態を示す概念図である。
FIG. 1 is a conceptual diagram showing an embodiment of a fruit sugar content meter to which a method for measuring fruit sugar content of the present invention is applied.

【図2】図1に示した果実糖度計による透過光強度と波
長との関係を示す図である。
FIG. 2 is a diagram showing a relationship between transmitted light intensity and wavelength by the fruit refractometer shown in FIG.

【図3】本発明の果実糖度計の照明系の変形例を示す配
置図である。
FIG. 3 is a layout diagram showing a modification of the illumination system of the fruit refractometer of the present invention.

【図4】図1に示した果実糖度計の照明系を変更した場
合の透過光強度と波長との関係を示す図である。
FIG. 4 is a diagram showing the relationship between transmitted light intensity and wavelength when the illumination system of the fruit refractometer shown in FIG. 1 is changed.

【図5】従来の果実糖度計による透過光強度と波長との
関係を示す図である。
FIG. 5 is a diagram showing the relationship between the transmitted light intensity and the wavelength by a conventional fruit refractometer.

【符号の説明】[Explanation of symbols]

2 果実(メロン) 3 照明系 5 白色光源(ハロゲンランプ) 7 レーザ光源(半導体レーザ) 11 分光器(回折格子) 12 受光器(アレー状ディテクタ) 2 Fruit (melon) 3 Illumination system 5 White light source (halogen lamp) 7 Laser light source (semiconductor laser) 11 Spectroscope (diffraction grating) 12 Photodetector (array detector)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 俊昭 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshiaki Ogawa 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メロン等の厚皮の果実に光を照射して得
られた透過光より糖度を測定する果実糖度方法におい
て、上記果実に白色光を照射すると共に上記果実を透過
しにくく、かつ、測定に必要な波長のレーザ光を照射
し、上記果実内で散乱して透過した透過光を分光し、分
光されたスペクトルを波長毎に電気信号に変換し、得ら
れた電気信号に基づいて果実の糖度を演算処理すること
を特徴とする果実糖度測定方法。
1. A fruit sugar content method for measuring sugar content from transmitted light obtained by irradiating light to a thick-skinned fruit such as melon, wherein the fruit is irradiated with white light and hardly penetrates the fruit. Irradiating a laser beam of a wavelength necessary for the measurement, disperses the transmitted light scattered and transmitted in the fruit, converts the dispersed spectrum into an electric signal for each wavelength, and based on the obtained electric signal, A method for measuring the sugar content of a fruit, comprising calculating the sugar content of the fruit.
【請求項2】 メロン等の厚皮の果実に光を照射して得
られた透過光より糖度を測定する果実糖度計において、
果実に白色光を照射する白色光源と、果実を透過しにく
く、かつ、測定に必要な波長の光を果実に照射するレー
ザ光源と、該果実内で散乱して透過した透過光を分光す
る分光器と、該分光器で分光されたスペクトルを受光し
て波長毎に電気信号に変換する受光器と、該受光器から
の電気信号に基づいて果実の糖度を演算処理する信号処
理演算手段とを備えたことを特徴とする果実糖度計。
2. A fruit refractometer for measuring sugar content from transmitted light obtained by irradiating light to a thick-skinned fruit such as melon,
A white light source that irradiates fruits with white light, a laser light source that irradiates fruits with light that is difficult to transmit through fruits and has a wavelength necessary for measurement, and a spectroscope that disperses transmitted light that is scattered and transmitted within the fruits A light receiving device that receives the spectrum separated by the spectroscope and converts the spectrum into an electric signal for each wavelength; and a signal processing operation unit that performs an arithmetic process on the sugar content of the fruit based on the electric signal from the light receiving device. A fruit refractometer provided with:
【請求項3】 複数の白色光源と複数のレーザ光源とを
果実の周囲に放射状に配置した請求項2に記載の果実糖
度計。
3. The fruit refractometer according to claim 2, wherein a plurality of white light sources and a plurality of laser light sources are radially arranged around the fruit.
【請求項4】 上記レーザ光源の発振波長が異なる請求
項3に記載の果実糖度計。
4. The fruit refractometer according to claim 3, wherein the laser light sources have different oscillation wavelengths.
JP19993297A 1997-07-25 1997-07-25 Method for measuring fruit sugar level and fruit sugar level meter Pending JPH1144638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19993297A JPH1144638A (en) 1997-07-25 1997-07-25 Method for measuring fruit sugar level and fruit sugar level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19993297A JPH1144638A (en) 1997-07-25 1997-07-25 Method for measuring fruit sugar level and fruit sugar level meter

Publications (1)

Publication Number Publication Date
JPH1144638A true JPH1144638A (en) 1999-02-16

Family

ID=16415999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19993297A Pending JPH1144638A (en) 1997-07-25 1997-07-25 Method for measuring fruit sugar level and fruit sugar level meter

Country Status (1)

Country Link
JP (1) JPH1144638A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079814A1 (en) * 2000-04-13 2001-10-25 Mitsui Mining & Smelting Co.,Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
JP2001356091A (en) * 2000-04-13 2001-12-26 Mitsui Mining & Smelting Co Ltd Apparatus for evaluating internal quality of vegetables and fruits
JP2002107297A (en) * 2000-10-03 2002-04-10 Mitsui Mining & Smelting Co Ltd Produce internal quality evaluation device
EP1666870A2 (en) 2000-10-17 2006-06-07 Japan as Represented by Director of National Food Research Institute Ministry of Agriculture, Forestry and Fisheries Analytical method and apparatus for liquid sample using near infrared spectroscopy
WO2007141730A1 (en) * 2006-06-07 2007-12-13 Koninklijke Philips Electronics N.V. Dedicated spectral illumination spectroscopy
CN108827910A (en) * 2018-06-13 2018-11-16 深圳市华慧品牌管理有限公司 The method for building up of fruit processed safely time prediction model

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079814A1 (en) * 2000-04-13 2001-10-25 Mitsui Mining & Smelting Co.,Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
JP2001356091A (en) * 2000-04-13 2001-12-26 Mitsui Mining & Smelting Co Ltd Apparatus for evaluating internal quality of vegetables and fruits
JP2002107297A (en) * 2000-10-03 2002-04-10 Mitsui Mining & Smelting Co Ltd Produce internal quality evaluation device
EP1666870A2 (en) 2000-10-17 2006-06-07 Japan as Represented by Director of National Food Research Institute Ministry of Agriculture, Forestry and Fisheries Analytical method and apparatus for liquid sample using near infrared spectroscopy
WO2007141730A1 (en) * 2006-06-07 2007-12-13 Koninklijke Philips Electronics N.V. Dedicated spectral illumination spectroscopy
CN108827910A (en) * 2018-06-13 2018-11-16 深圳市华慧品牌管理有限公司 The method for building up of fruit processed safely time prediction model

Similar Documents

Publication Publication Date Title
EP3123128B1 (en) A system for a stimulated raman scattering (srs) spectrophotometer and a method of use thereof
US20080309930A1 (en) Calibration for Spectroscopic Analysis
CN110044837B (en) Differential absorption spectrum gas detection device based on optical fiber amplifier
US8049885B1 (en) Method and apparatus for large spectral coverage measurement of volume holographic gratings
JPH11326198A (en) Optical device for inspecting object
EP0121404B1 (en) A photometric light absorption measuring apparatus
JP2016095258A (en) Optical device and measuring apparatus
JP6791214B2 (en) Spectral analyzer
JPH1144638A (en) Method for measuring fruit sugar level and fruit sugar level meter
EP1447651B1 (en) Optical measuring device with wavelength-selective light source
WO2016000001A1 (en) Device and method for measuring circular dichroism
EP1376099B1 (en) Infrared circular dichroism measuring apparatus and method
CN105572058B (en) Sample analyzer and absorbance measuring device thereof
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
JPH10115583A (en) Spectrochemical analyzer
JP7463926B2 (en) Tablet spectrometry method, tablet spectrometry device, tablet inspection method and tablet inspection device
CN114755194A (en) Glycosylated hemoglobin detector and signal generating and processing method thereof
JP7170367B2 (en) Infrared circular dichroism measuring device
JP2014142299A (en) Gas concentration measurement device
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
JP3857191B2 (en) Method and apparatus for internal quality inspection of fruits and vegetables
JPH04254744A (en) Apparatus for nondestructive inspection of taste of citrus fruit
JP4143513B2 (en) Spectrophotometer and spectroscopic analysis method
CN213658568U (en) Rotatory cup detects diffuse reflection type spectrum appearance based on AOTF
JPH10160666A (en) Spectral analyzer