JPH1142714A - Light molding apparatus - Google Patents

Light molding apparatus

Info

Publication number
JPH1142714A
JPH1142714A JP9216974A JP21697497A JPH1142714A JP H1142714 A JPH1142714 A JP H1142714A JP 9216974 A JP9216974 A JP 9216974A JP 21697497 A JP21697497 A JP 21697497A JP H1142714 A JPH1142714 A JP H1142714A
Authority
JP
Japan
Prior art keywords
light
scanning
pitch
spot
spots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9216974A
Other languages
Japanese (ja)
Inventor
Yuji Matsumoto
有史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIPAA FUOTON SYST KK
Original Assignee
HAIPAA FUOTON SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIPAA FUOTON SYST KK filed Critical HAIPAA FUOTON SYST KK
Priority to JP9216974A priority Critical patent/JPH1142714A/en
Publication of JPH1142714A publication Critical patent/JPH1142714A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To render high accurate molding possible, and reduce cost through high speed molding by allowing luminous flux control means to control the size of spots of a luminous flux formed on the liquid level of a liquid substance in accordance with the position of a cured part figure. SOLUTION: The luminous flux L1 irradiated from a light source 1 irradiates the liquid level 7 of light molding resin 6 via light system 2 by way of a modulator 3, a luminous flux 4, a scanner 5 for molding cured matter 9. The modulator 3 control the luminous flux L1 in interrupting and passing relation by a modulation controller 18, the luminous flux modulator 4 controls the diameter of spots of pulse light by a luminous controller 19, and the scanner 5 controls the pitch of spots by a scanning controller 20. Then, the scanning means is so controlled that the size of spots is made small in the vicinity of the periphery in the figure of a cured part 13 of the liquid level 7, and the pitch thereof is also made small and, besides, in the inside part inward of the proximity of the periphery in the figure, the size of spots is made large, and the pitch thereof is also made large.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光造形装置に関し、なか
でもパルス光の照射により硬化する液状物質の液面を選
択的にパルス光で照射することにより硬化物を造形する
光造形装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical shaping apparatus, and more particularly to an optical shaping apparatus for forming a cured product by selectively irradiating a liquid surface of a liquid material which is cured by irradiation with pulsed light with pulsed light. It is.

【0002】[0002]

【従来の技術】近年、光、なかでも紫外線の照射により
硬化する液状物質である光造形用樹脂の液面を選択的に
紫外線のビームで走査して照射し、立体的な硬化物を造
形する光造形技術が高速立体成形技術として開発されて
いる。そして紫外線光源としてレーザが利用されてい
る。
2. Description of the Related Art In recent years, a liquid surface of an optical molding resin, which is a liquid substance which is cured by irradiation of light, especially ultraviolet rays, is selectively scanned and irradiated with an ultraviolet beam to form a three-dimensional cured product. Stereolithography technology has been developed as a high-speed three-dimensional molding technology. A laser is used as an ultraviolet light source.

【0003】従来の光造形装置は図5に示すようなもの
であった。光源1から放射した紫外線の光束L1はミラ
ー等で構成される光学系2により導かれ、変調器3、光
束調整器4、走査器5を経て光造形用樹脂6の液面7を
照射する。光源1にはアルゴンレーザが用いられてい
る。光造形用樹脂6は液槽8に収容され、造形中の硬化
物9は保持台10に保持されている。保持台10は昇降
器11により昇降可能となっている。硬化物9の上面9
aは昇降器11により液面7より下がった位置に設定さ
れ、硬化物9の上面9aと液面7との間に光造形用樹脂
6の薄層12が形成される。液面7に光束L1が照射さ
れると照射された部分の下の薄層12で固化が起こり、
硬化物9の上面9aに新しい硬化部13が形成される。
順次昇降器11の降下により形成される薄層に硬化部が
形成されることにより、三次元的な硬化物が完成する。
A conventional stereolithography apparatus is as shown in FIG. A light beam L1 of ultraviolet light emitted from the light source 1 is guided by an optical system 2 composed of a mirror or the like, and irradiates a liquid surface 7 of the optical molding resin 6 via a modulator 3, a light beam adjuster 4, and a scanner 5. The light source 1 uses an argon laser. The optical molding resin 6 is accommodated in a liquid tank 8, and the cured product 9 during molding is held on a holding table 10. The holding table 10 can be moved up and down by an elevator 11. Upper surface 9 of cured product 9
a is set at a position lower than the liquid level 7 by the elevator 11, and a thin layer 12 of the optical molding resin 6 is formed between the upper surface 9 a of the cured product 9 and the liquid level 7. When the light beam L1 is irradiated on the liquid surface 7, solidification occurs in the thin layer 12 below the irradiated portion,
A new cured portion 13 is formed on the upper surface 9a of the cured product 9.
The three-dimensional cured product is completed by forming the cured portion in the thin layer formed by the descending of the elevator 11 sequentially.

【0004】この際の光造形用樹脂の硬化の状況は図6
及び図7に示すようなものであった。図6は光造形用樹
脂6の液面7より下に形成された薄層12に光束L1が
照射され、光束L1が走査方向14に走査されるとき、
硬化部15が線状に形成されることを示す。図7は光束
L1が走査方向14に走査され、順次同一方向の走査線
が移動したとき、線状に形成された硬化部15が集合し
て面状の硬化部16が形成されることを示す。硬化部1
5、16は既に硬化した硬化物(不図示)の上面に形成
される。
FIG. 6 shows the state of curing of the optical molding resin at this time.
And as shown in FIG. FIG. 6 shows that when the light beam L1 is irradiated on the thin layer 12 formed below the liquid level 7 of the optical molding resin 6 and the light beam L1 is scanned in the scanning direction 14,
This shows that the hardened portion 15 is formed in a linear shape. FIG. 7 shows that when the light beam L1 is scanned in the scanning direction 14 and the scanning lines in the same direction are sequentially moved, the cured portions 15 formed in a linear shape are aggregated to form a planar cured portion 16. . Curing part 1
5 and 16 are formed on the upper surface of a cured product (not shown) which has already been cured.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
光造形装置では、高精度が要求される物体の光造形を高
速度で行うことができないという問題があった。即ち、
高精度が要求されるとスポットの大きさを小さくしなく
てはならず、それに対応して走査速度が遅くなり、造形
に要する時間が長くなるという問題があった。
However, the conventional stereolithography apparatus has a problem that stereolithography of an object requiring high precision cannot be performed at a high speed. That is,
When high precision is required, the size of the spot must be reduced, and accordingly, there is a problem that the scanning speed is correspondingly slow and the time required for modeling is long.

【0006】本発明は上記の課題に鑑み、高精度で光造
形が行われ、且つ高速度造形による減価低減が可能な光
造形装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a stereolithography apparatus capable of performing stereolithography with high precision and capable of reducing the price reduction by high-speed modeling.

【0007】[0007]

【課題を解決するための手段】本発明は、パルス光を連
続的に放射する光源と、前記パルス光の径及び焦点位置
を制御する光束制御手段と、前記パルス光を二次元に走
査する走査手段と、前記パルス光の走査を制御する走査
制御手段とを具備し、前記パルス光の照射により硬化す
る液状物質の液面を選択的に前記パルス光で照射するこ
とにより硬化物を造形する光造形装置において、前記光
束制御手段は前記パルス光が前記液状物質の液面に照射
されて形成する光のスポットの大きさを、前記液面の硬
化部の図形の周縁近傍部において小さく、前記液面の硬
化部の図形の周縁近傍部より内側の内側部において大き
くなるように制御し、前記走査制御手段は前記スポット
のピッチを、前記周縁近傍部において小さく、前記内側
部において大きくなるように走査手段を制御することを
特徴とする光造形装置構成した。
According to the present invention, there is provided a light source for continuously emitting pulsed light, a light flux controlling means for controlling a diameter and a focal position of the pulsed light, and a scanning for scanning the pulsed light two-dimensionally. A light for forming a cured product by selectively irradiating a liquid surface of a liquid material to be cured by irradiation of the pulsed light with the pulsed light, comprising: In the shaping apparatus, the light flux controlling means may reduce a size of a spot of light formed by irradiating the liquid surface of the liquid material with the pulsed light in a vicinity of a periphery of a figure of a hardened portion of the liquid surface, The scanning control unit controls the spot pitch to be small in the vicinity of the periphery and large in the inside of the periphery of the figure of the figure of the hardened portion of the surface than the vicinity of the periphery of the figure. It was stereolithography apparatus configured characterized for controlling the scanning means so that.

【0008】更に、前記光源の出力を制御する出力制御
手段を具備し、前記出力制御手段は前記光源の出力を、
前記周縁近傍部おいて小さく、前記内側部において大き
くなるように前記光源の出力を制御することを特徴とす
る請求項1に記載の光造形装置を望ましいものとして構
成した。
Further, the apparatus further comprises output control means for controlling the output of the light source, wherein the output control means controls the output of the light source.
The stereolithography apparatus according to claim 1, wherein the output of the light source is controlled so as to be small near the periphery and large at the inside.

【0010】[0010]

【作用】液面の硬化部の図形の周縁近傍部においては、
スポットの大きさは小さく、且つスポットのピッチは小
さくなる。液面の硬化部の図形の周縁近傍部より内側の
内側部においては、スポットの大きさは大きく、且つス
ポットのピッチは大きくなる。そして、請求項2に記載
の発明では、図形の周縁近傍部においては、光源の出力
は小さく、図形の内側部においては、光源の出力は大き
い。
[Function] In the vicinity of the periphery of the figure of the hardened portion of the liquid surface,
The spot size is small and the spot pitch is small. The spot size is large and the pitch of the spots is large in an inner portion inside the vicinity of the periphery of the figure of the hardened portion of the liquid surface. According to the second aspect of the present invention, the output of the light source is small near the periphery of the figure, and the output of the light source is large near the inside of the figure.

【0011】[0011]

【実施例】本発明の一実施例に係る光造形装置を図1〜
図4により説明する。図1は光造形装置の概念図、図2
はパルスの波形を示す図、図3及び図4はそれぞれ図形
とスポットの大きさとピッチとの関係を説明する説明図
である。光源1から放射した光束L1はミラー等で構成
される光学系2により導かれ、変調器3、光束調整器
4、走査器5を経て光造形用樹脂6の液面7を照射す
る。光源1はパルスレーザである。レーザ結晶にはN
d:YVO4 を使用している。Nd:YVO4 の放射す
るレーザ光の波長は1064nmであるので高調波変換
器を組み合わせて波長355nmの高調波を使用する。
レーザ結晶にはNd:YAG、Nd:YLFを使用して
もよい。図2において縦軸に出力、横軸に時間を取る
と、レーザ光の波形は、パルス周波数20kHzのと
き、パルス幅5〜10nsの山状のパルス16がパルス
間隔50μsで連続したものとなっている。
FIG. 1 is a perspective view of an optical shaping apparatus according to an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a conceptual diagram of an optical molding apparatus, and FIG.
Is a diagram showing a pulse waveform, and FIGS. 3 and 4 are explanatory diagrams for explaining the relationship between the figure, the spot size, and the pitch, respectively. A light beam L1 emitted from the light source 1 is guided by an optical system 2 composed of a mirror or the like, and irradiates a liquid surface 7 of the optical molding resin 6 via a modulator 3, a light beam adjuster 4, and a scanner 5. The light source 1 is a pulse laser. N for laser crystal
d: YVO 4 is used. Since the wavelength of the laser light emitted by Nd: YVO 4 is 1064 nm, a harmonic having a wavelength of 355 nm is used in combination with a harmonic converter.
Nd: YAG or Nd: YLF may be used for the laser crystal. In FIG. 2, when the output is plotted on the ordinate and the time is plotted on the abscissa, the waveform of the laser light is such that, at a pulse frequency of 20 kHz, a mountain-shaped pulse 16 having a pulse width of 5 to 10 ns is continuous at a pulse interval of 50 μs. I have.

【0012】変調器3は光束L1を断続する超音波変調
器であり、変調制御部18により光束L1の断続即ち遮
断及び通過が制御されている。光束調整器4は光束L1
の径及び焦点距離を調整するリニアトランスレータであ
り、光束制御部19によりパルス光のスポットの直径は
制御されている。走査器5は光束L1を二次元に走査す
るガルバノメータミラーであり、走査制御部20により
走査が制御されている。
The modulator 3 is an ultrasonic modulator for intermittently switching the light beam L1. The modulation controller 18 controls the intermittent, ie, interception and passage of the light beam L1. The light flux adjuster 4 is a light flux L1
Is a linear translator that adjusts the diameter and the focal length of the pulse light, and the light flux controller 19 controls the diameter of the spot of the pulse light. The scanner 5 is a galvanometer mirror that scans the light beam L1 two-dimensionally, and the scanning is controlled by the scanning control unit 20.

【0013】光造形用樹脂6にはウレタンアクリレート
系樹脂を使用している。光造形用樹脂6は液槽8に収容
され、造形中の硬化物9は保持台10に保持されてい
る。保持台10は昇降器11により昇降可能となってい
る。硬化物9の上面9aは昇降器11により液面7より
下がった位置に設定され、硬化物9の上面9aと液面7
との間に光造形用樹脂6の薄層12が形成される。液面
7に光束L1が照射されると照射された部分の下の薄層
12で固化が起こり、硬化物9の上面9aに新しい硬化
部13が形成される。個々の硬化部13の平面形状は光
束L1の液面7におけるスポット(不図示)の略円形に
近似し、深さは薄層12を通して硬化物9の上面9aに
到達する大きさである。硬化部13が集合し硬化物9の
上面9aに二次元的な硬化部が形成されると、照順次昇
降器11は降下し、順次薄層状の二次元的な硬化部が積
層して形成されることにより、三次元的な硬化物が完成
する。
As the stereolithography resin 6, a urethane acrylate resin is used. The optical molding resin 6 is accommodated in a liquid tank 8, and the cured product 9 during molding is held on a holding table 10. The holding table 10 can be moved up and down by an elevator 11. The upper surface 9a of the cured product 9 is set at a position lower than the liquid level 7 by the elevator 11, and the upper surface 9a of the cured product 9 and the liquid surface 7
A thin layer 12 of the optical molding resin 6 is formed between the two. When the liquid surface 7 is irradiated with the light beam L <b> 1, solidification occurs in the thin layer 12 below the irradiated portion, and a new cured portion 13 is formed on the upper surface 9 a of the cured product 9. The planar shape of each of the cured portions 13 approximates a substantially circular spot (not shown) on the liquid surface 7 of the light beam L <b> 1, and has a depth that reaches the upper surface 9 a of the cured product 9 through the thin layer 12. When the hardened portions 13 are gathered to form a two-dimensional hardened portion on the upper surface 9a of the hardened material 9, the elevator 11 descends and the thin two-dimensional hardened portions are sequentially stacked and formed. Thereby, a three-dimensional cured product is completed.

【0014】先ず、本実施例で光造形が予定される物体
の各薄層の形状について説明する。物体がCAD等によ
り設計されると、先ず光造形時に予定される水平方向に
物体を多数の所定厚の薄層に輪切りにした形状が得られ
る。この各薄層の形状を基本にして、光造形が容易に実
行できるように、例えば支持部を設置する等その他の改
変を行い、全体としての物体の光造形用プログラムが作
成される。照射作業が行われる薄層の形状を以下図形と
称して説明する。
First, a description will be given of the shape of each thin layer of an object to be optically molded in this embodiment. When an object is designed by CAD or the like, a shape in which the object is first sliced into a plurality of thin layers having a predetermined thickness in a horizontal direction expected at the time of stereolithography is obtained. On the basis of the shape of each thin layer, other modifications such as installation of a support portion are performed so that stereolithography can be easily performed, and a stereolithography program of the object as a whole is created. The shape of the thin layer on which the irradiation operation is performed will be described below with reference to a figure.

【0015】パルスレーザが液面7を照射するとき液面
7上に形成される光束L1のスポットは円で略近似する
ことができる。
When the pulse laser irradiates the liquid surface 7, the spot of the light beam L1 formed on the liquid surface 7 can be approximately approximated by a circle.

【0016】照射作業の動作は次ようである。先ず、第
1の走査線では、光束制御部19は光束調整器4を光束
L1のスポットの直径がD1になるように制御する。走
査制御部20は走査器5をスポットのピッチがP1、及
び走査線間隔がC1になるように制御する。走査器5の
指向する向きが図形21から外れている間は、変調器3
は光束L1を遮断し、光束L1は液面7上に到達しな
い。走査器5の指向する向きが図形21に入ると、変調
器3は光束L1を通過させ、光束L1は液面7上に到達
する。この時スポットの直径はD1、ピッチはP1であ
り、あらかじめ設定したスポット数1で照射が行われ
る。この1個のスポットでの照射が終了すると光束制御
部19によりスポットは直径がD2、走査制御部20に
よりピッチがP2にそれぞれ変更され、走査が進み照射
が行われる。本実施例ではD2及びP2はそれぞれ、D
2=D1×2、P2=P1×2となるように設定され
る。走査が進み、走査器5の指向する向きが図形21か
ら外れると、再びスポットは直径がD1、ピッチがP1
に変更され、あらかじめ設定したスポット数1で照射が
行われ、この1個のスポットでの照射が終了すると変調
器3は光束L1を遮断する。
The operation of the irradiation operation is as follows. First, in the first scanning line, the light beam controller 19 controls the light beam adjuster 4 so that the spot diameter of the light beam L1 becomes D1. The scanning control unit 20 controls the scanner 5 so that the spot pitch is P1 and the scanning line interval is C1. While the direction in which the scanner 5 is directed deviates from the graphic 21, the modulator 3
Blocks the light beam L1, and the light beam L1 does not reach the liquid surface 7. When the direction in which the scanner 5 is directed enters the figure 21, the modulator 3 allows the light beam L1 to pass, and the light beam L1 reaches the liquid surface 7. At this time, the spot diameter is D1 and the pitch is P1, and irradiation is performed with a preset number of spots of one. When the irradiation with one spot is completed, the diameter of the spot is changed to D2 by the light beam control unit 19, and the pitch is changed to P2 by the scanning control unit 20, and scanning proceeds and irradiation is performed. In this embodiment, D2 and P2 are D
It is set so that 2 = D1 × 2 and P2 = P1 × 2. When the scanning progresses and the direction of the scanner 5 deviates from the graphic 21, the spot has a diameter D1 and a pitch P1 again.
And the irradiation is performed with a preset number of spots, and when the irradiation with this one spot is completed, the modulator 3 blocks the light beam L1.

【0017】第1の走査線の走査が終了すると第2の走
査線の走査が開始する。走査線間隔C1はピッチP1に
等しく設定されている。隣接する第2の走査線における
照射作業の動作は次ようである。先ずスポットの直径が
D1、スポットのピッチがP1になるようにそれぞれ制
御され、走査器5の指向する向きが図形21から外れて
いる間は、変調器3は光束L1を遮断し、光束L1は液
面7上に到達しない。走査器5の指向する向きが図形2
1に入ると、変調器3は光束L1を通過させ、光束L1
は液面7上に到達する。スポットは直径がD1、ピッチ
がP1であり、あらかじめ設定したスポット数1で照射
が行われる。この1個のスポットでの照射が終了すると
変調器3は光束L1を遮断する。走査器5の指向する向
きが図形21から外れると、変調器3は光束L1を通過
させ、スポットは直径がD1、ピッチがP1で、あらか
じめ設定したスポット数1で照射が行われ、この1個の
スポットでの照射が終了すると変調器3は光束L1を遮
断する。
When the scanning of the first scanning line is completed, the scanning of the second scanning line starts. The scanning line interval C1 is set equal to the pitch P1. The operation of the irradiation operation on the adjacent second scanning line is as follows. First, the spot diameter is controlled to be D1, and the spot pitch is controlled to be P1. While the direction in which the scanner 5 is directed is out of the figure 21, the modulator 3 blocks the light beam L1, and the light beam L1 It does not reach the liquid level 7. The orientation of the scanner 5 is figure 2
1, the modulator 3 allows the light beam L1 to pass therethrough,
Reaches the liquid level 7. The spots have a diameter of D1 and a pitch of P1, and irradiation is performed with a preset number of spots of one. When the irradiation with this one spot is completed, the modulator 3 blocks the light beam L1. When the direction of the scanner 5 deviates from the figure 21, the modulator 3 allows the light beam L1 to pass, and the spots are radiated with the diameter D1, the pitch P1, and the preset number of spots 1. When the irradiation at the spot is completed, the modulator 3 blocks the light beam L1.

【0018】次に隣接する第3の走査線については最初
に述べた第1の走査線における動作と同様な動作が行わ
れる。このように同一方向の走査線の2本に1本の割合
で、直径がD2、ピッチがP2の走査が行われる。残り
の1本の走査線では直径がD2、ピッチがP2の照射は
行われない。
The operation similar to the operation in the first scanning line described above is performed on the next adjacent third scanning line. In this manner, scanning is performed with a diameter of D2 and a pitch of P2 at a rate of one out of two scanning lines in the same direction. In the remaining one scanning line, irradiation with a diameter of D2 and a pitch of P2 is not performed.

【0019】本実施例においては、スポットの直径D2
とD1の比率と、ピッチP2とP1の比率は2、又直径
がD2、ピッチがP2の走査が行われる走査線の割合は
2であるが他の比率とすることもできるのはいうまでも
ない。一般には、スポットの直径D2とD1の比率と、
ピッチP2とP1の比率は等しく、これは直径がD2、
ピッチがP2の走査が行われる走査線の割合に等しい
が、必ずしもそうでなくてもよい。又直径がD1、ピッ
チがP1のスポットの数は1以外の数を設定することが
できる。外面を強固に光造形したいときは2以上の数に
することができる。又図形21の周縁線が走査方向との
なす角が小さいときは、走査方向のみならず走査方向と
垂直方向にも所定の数のスポットによる照射が行えるよ
うにプログラムを組むようにする。走査線間隔C1はピ
ッチP1に等しく設定されているが、必ずしもピッチP
1に等しくなくてもよいし、等間隔でなくてもよい。
In this embodiment, the spot diameter D2
And the ratio of D1 and the ratio of the pitches P2 and P1 is 2, and the ratio of the scanning lines on which the scanning with the diameter D2 and the pitch P2 is performed is 2, but it is needless to say that other ratios can be used. Absent. Generally, the ratio of the spot diameters D2 and D1;
The ratio of pitches P2 and P1 is equal, which means that the diameter is D2,
Although the pitch is equal to the ratio of the scanning lines on which the scanning of P2 is performed, it is not always necessary. The number of spots having a diameter of D1 and a pitch of P1 can be set to a number other than one. If the outer surface is to be solidly shaped, the number can be two or more. When the angle between the peripheral line of the figure 21 and the scanning direction is small, a program is designed so that irradiation with a predetermined number of spots can be performed not only in the scanning direction but also in the scanning direction and the vertical direction. The scanning line interval C1 is set to be equal to the pitch P1.
It does not need to be equal to 1 and may not be at equal intervals.

【0020】第2の実施例は、直径がD2、ピッチがP
2の走査が行われる際、パルス光の強度が変更される点
が前述した一実施例と異なる他は同一であるから説明の
詳述は省略する。第1の走査線における照射作業の動作
は次ようである。先ず、光束制御部19は光束調整器4
を光束L1のスポットの直径がD1になるように制御す
る。走査制御部20は走査器5をスポットのピッチがP
1、及び走査線間隔がC1になるように制御する。出力
制御部17は光源1を出力F1になるように制御する。
走査器5の指向する向きが図形21から外れている間
は、変調器3は光束L1を遮断し、光束L1は液面7上
に到達しない。走査器5の指向する向きが図形21に入
ると、変調器3は光束L1を通過させ、光束L1は液面
7上に到達する。この時光源1の出力F1でスポットの
直径はD1、ピッチはP1であり、あらかじめ設定した
スポット数1で照射が行われる。この1個のスポットで
の照射が終了すると光束制御部19によりスポットは直
径がD2、走査制御部20によりピッチがP2、出力制
御部17により光源1の出力は出力F2にそれぞれ変更
され、走査が進み照射が行われる。本実施例ではD2、
P2及びF2はそれぞれ、D2=D1×2、P2=P1
×2及びF2=F1×2に設定されている。走査が進
み、走査器5の指向する向きが図形21から外れると、
再びスポットは直径がD1、ピッチがP1、出力はF1
に変更され、あらかじめ設定したスポット数1で照射が
行われ、この1個のスポットでの照射が終了すると変調
器3は光束L1を遮断する。第1の走査線の走査が終了
すると、第2の走査線の走査が開始する。走査線間隔は
C1に設定されている。
In the second embodiment, the diameter is D2 and the pitch is P
When the second scan is performed, the point is that the intensity of the pulse light is changed, except that it is different from the above-described embodiment. The operation of the irradiation operation on the first scanning line is as follows. First, the luminous flux controller 19 controls the luminous flux adjuster 4.
Is controlled such that the diameter of the spot of the light beam L1 becomes D1. The scanning control unit 20 controls the scanner 5 so that the spot pitch is P
1 and the scanning line interval is controlled to be C1. The output control unit 17 controls the light source 1 so as to have the output F1.
While the direction in which the scanner 5 is directed is out of the figure 21, the modulator 3 blocks the light beam L1, and the light beam L1 does not reach the liquid surface 7. When the direction in which the scanner 5 is directed enters the figure 21, the modulator 3 allows the light beam L1 to pass, and the light beam L1 reaches the liquid surface 7. At this time, at the output F1 of the light source 1, the diameter of the spot is D1, the pitch is P1, and irradiation is performed with a preset number of spots. When the irradiation with this one spot is completed, the diameter of the spot is changed to D2 by the light flux control unit 19, the pitch is changed to P2 by the scanning control unit 20, and the output of the light source 1 is changed to the output F2 by the output control unit 17. Advance irradiation is performed. In this embodiment, D2,
P2 and F2 are respectively D2 = D1 × 2, P2 = P1
× 2 and F2 = F1 × 2. When the scanning proceeds and the direction of the scanner 5 deviates from the graphic 21,
Again, the spot has a diameter of D1, a pitch of P1, and an output of F1
And the irradiation is performed with a preset number of spots, and when the irradiation with this one spot is completed, the modulator 3 blocks the light beam L1. When the scanning of the first scanning line ends, the scanning of the second scanning line starts. The scanning line interval is set to C1.

【0021】次に隣接する第2の走査線における照射作
業の動作は次ようである。先ずスポットの直径がD1、
スポットのピッチがP1、光源1の出力がF1になるよ
になるようにそれぞれ制御され、走査器5の指向する向
きが図形21から外れている間は、変調器3は光束L1
を遮断し、光束L1は液面7上に到達しない。走査器5
の指向する向きが図形21に入ると、変調器3は光束L
1を通過させ、光束L1は液面7上に到達する。スポッ
トは直径がD1、ピッチがP1、出力がF1であり、あ
らかじめ設定したスポット数1で照射が行われる。この
1個のスポットでの照射が終了すると変調器3は光束L
1を遮断する。走査器5の指向する向きが図形21から
外れると、変調器3は光束L1を通過させ、スポットは
直径がD1、ピッチがP1、出力がF1で、あらかじめ
設定したスポット数1で照射が行われ、この1個のスポ
ットでの照射が終了すると変調器3は光束L1を遮断す
る。
The operation of the irradiation operation on the next adjacent second scanning line is as follows. First, the spot diameter is D1,
The modulator is controlled so that the pitch of the spot is P1 and the output of the light source 1 is F1.
And the light beam L1 does not reach the liquid surface 7. Scanner 5
When the direction in which the light is directed enters FIG.
1 and the light beam L 1 reaches the liquid surface 7. The spot has a diameter of D1, a pitch of P1, and an output of F1, and is irradiated with a preset number of spots of one. When the irradiation with this one spot is completed, the modulator 3 outputs the light flux L
Block 1 When the direction of the scanner 5 deviates from the figure 21, the modulator 3 allows the light beam L1 to pass, and the spots are radiated with the diameter D1, the pitch P1, the output F1, and the number of spots 1 set in advance. When the irradiation with this one spot is completed, the modulator 3 blocks the light beam L1.

【0022】次に隣接する第3の走査線においては第1
の走査線における動作と同一の動作が行われる。このよ
うに同一方向の走査線の2本に1本の割合で、直径がD
2、ピッチがP2、出力がF2での走査が進み照射が行
われる。残りの1本の走査線では直径がD2、ピッチが
P2、出力がF2での照射は行われない。
In the next adjacent third scanning line, the first
The same operation as the operation in the scanning line is performed. As described above, the ratio of the scanning line in the same direction to the ratio of one to two is
2. The scanning with the pitch P2 and the output F2 proceeds, and irradiation is performed. Irradiation with a diameter of D2, a pitch of P2, and an output of F2 is not performed in the remaining one scanning line.

【0023】本実施例においては、スポットの直径、ピ
ッチ、スポットの数に関しては前述の一実施例と同様で
あり説明を省略する。光源1の出力については、第1の
走査線において直径D2のスポットの面積は直径D1の
スポットの面積の4倍あり、単位面積当たりに照射され
る光エネルギーの大きさは直径D2のスポットでは直径
D1のスポットの4分の1となるが、光エネルギーの大
きさと光造形用樹脂の硬化の度合いとは直線的な関係に
はなく、経験的に最適の割合が求められる。又歪みの発
生の回避、造形時間の短縮等との関連し、本実施例では
F2はF1の2倍の大きさが適当である。
In this embodiment, the spot diameter, pitch, and number of spots are the same as those in the above-described embodiment, and a description thereof will be omitted. Regarding the output of the light source 1, the area of the spot having the diameter D2 in the first scanning line is four times the area of the spot having the diameter D1, and the magnitude of light energy irradiated per unit area is the diameter of the spot having the diameter D2. Although it is a quarter of the spot of D1, the magnitude of the light energy and the degree of curing of the stereolithography resin do not have a linear relationship, and an optimum ratio is empirically obtained. In the present embodiment, F2 is suitably twice as large as F1 in relation to avoiding generation of distortion, shortening of molding time, and the like.

【0024】なお各実施例においては、パルス光源とし
てパルスレーザを使用したが、硬化作用を有する断続光
を放射する光源であれば他の光源であっても良いことは
言うまでもなく、例えばアルゴンレーザの連続ビームを
断続して使用することを妨げるものではない。
In each of the embodiments, a pulse laser is used as a pulse light source. However, it is needless to say that another light source may be used as long as it emits intermittent light having a curing effect. It does not prevent intermittent use of continuous beams.

【0025】[0025]

【発明の効果】液面の硬化部の図形の周縁近傍部におい
ては、スポットの大きさは小さく、且つピッチは小さく
することができるから、且つ、図形の周縁近傍部より内
側の内側部においては、スポットの大きさは大きく、且
つピッチは大きくすることができるから、物体は高精度
で光造形が行われ、且つ高速度造形による減価低減が可
能となる。そして、図形の周縁近傍部においては光源の
出力は小さく、図形の内側部においては光源の出力は大
きくできるから、高精度、高速度で且つ強度の大きい物
体の光造形が可能となる。
The spot size and the pitch can be reduced in the vicinity of the periphery of the figure in the hardened portion of the liquid surface, and in the inner part inside the vicinity of the periphery of the figure. Since the size of the spot and the pitch can be increased, the object can be optically molded with high precision, and the depreciation can be reduced by high-speed molding. Since the output of the light source can be small near the periphery of the graphic and the output of the light source can be large inside the graphic, it is possible to perform stereolithography of a high-precision, high-speed and high-intensity object.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る光造形装置の概念図で
ある。
FIG. 1 is a conceptual diagram of an optical shaping apparatus according to one embodiment of the present invention.

【図2】本発明の一実施例に係る光造形装置の光源のパ
ルスの波形を示す図である。
FIG. 2 is a diagram showing a pulse waveform of a light source of the optical shaping apparatus according to one embodiment of the present invention.

【図3】本発明の一実施例に係る図形とスポットの大き
さとピッチとの関係を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a relationship between a figure, a spot size, and a pitch according to an embodiment of the present invention.

【図4】本発明の一実施例に係る図形とスポットの大き
さとピッチとの関係を説明する説明図である。
FIG. 4 is an explanatory diagram illustrating a relationship between a figure, a spot size, and a pitch according to an embodiment of the present invention.

【図5】従来の光造形装置の概略図である。FIG. 5 is a schematic view of a conventional stereolithography apparatus.

【図6】従来の光造形装置における光造形用樹脂の硬化
の状況を説明する図である。
FIG. 6 is a view for explaining a state of curing of an optical molding resin in a conventional optical molding apparatus.

【図7】従来の光造形装置における光造形用樹脂の硬化
の状況を説明する図である。
FIG. 7 is a view for explaining the state of curing of an optical molding resin in a conventional optical molding apparatus.

【符号の説明】[Explanation of symbols]

1・・・光源、L1・・・光束、5・・・走査器、6・
・・光造形用樹脂、7・・・液面、9・・・硬化物、1
0・・・保持台、13・・・硬化部、17・・・出力制
御部、18・・・変調制御部、19・・・光束制御部、
20・・・走査制御部、S1、S2・・・スポット
1 ... light source, L1 ... light flux, 5 ... scanner, 6 ...
..Stereolithography resin, 7 ... liquid level, 9 ... cured product, 1
0: holding table, 13: curing unit, 17: output control unit, 18: modulation control unit, 19: light flux control unit,
20: scanning control unit, S1, S2: spot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】パルス光を連続的に放射する光源と、前記
パルス光の径及び焦点位置を制御する光束制御手段と、
前記パルス光を二次元に走査する走査手段と、前記パル
ス光の走査を制御する走査制御手段とを具備し、前記パ
ルス光の照射により硬化する液状物質の液面を選択的に
前記パルス光で照射することにより硬化物を造形する光
造形装置において、前記光束制御手段は前記パルス光が
前記液状物質の液面に照射されて形成する光のスポット
の大きさを、前記液面の硬化部の図形の周縁近傍部にお
いて小さく、前記液面の硬化部の図形の周縁近傍部より
内側の内側部において大きくなるように制御し、前記走
査制御手段は前記スポットのピッチを、前記周縁近傍部
において小さく、前記内側部において大きくなるように
走査手段を制御することを特徴とする光造形装置。
A light source for continuously emitting pulsed light; a light flux controlling means for controlling a diameter and a focal position of the pulsed light;
Scanning means for scanning the pulsed light two-dimensionally, and scanning control means for controlling the scanning of the pulsed light, the liquid surface of the liquid material that is cured by the irradiation of the pulsed light is selectively applied with the pulsed light. In an optical shaping apparatus for shaping a cured product by irradiating, the light flux controlling means adjusts the size of a spot of light formed by irradiating the liquid surface of the liquid material with the pulsed light, It is small in the vicinity of the periphery of the figure, and is controlled so as to be larger in the inner part than the vicinity of the periphery of the figure of the hardened portion of the liquid surface, and the scanning control means reduces the pitch of the spot in the vicinity of the periphery. A stereolithography apparatus for controlling a scanning means so as to increase the size of the inside portion.
【請求項2】前記光源の出力を制御する出力制御手段を
具備し、前記出力制御手段は前記光源の出力を、前記周
縁近傍部おいて小さく、前記内側部において大きくなる
ように前記光源の出力を制御することを特徴とする請求
項1に記載の光造形装置。
2. An output control means for controlling an output of the light source, wherein the output control means reduces an output of the light source such that the output of the light source is small near the periphery and large at the inside. The stereolithography apparatus according to claim 1, wherein:
JP9216974A 1997-07-29 1997-07-29 Light molding apparatus Pending JPH1142714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9216974A JPH1142714A (en) 1997-07-29 1997-07-29 Light molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9216974A JPH1142714A (en) 1997-07-29 1997-07-29 Light molding apparatus

Publications (1)

Publication Number Publication Date
JPH1142714A true JPH1142714A (en) 1999-02-16

Family

ID=16696845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9216974A Pending JPH1142714A (en) 1997-07-29 1997-07-29 Light molding apparatus

Country Status (1)

Country Link
JP (1) JPH1142714A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016031A1 (en) * 2001-08-16 2003-02-27 Riken Rapid prototyping method and device using v-cad data
JP2004506097A (en) * 2000-06-07 2004-02-26 [ベーウー:エステー] ゲーエムベーハー ベラートゥングスウンターネーメン フルア ジステーメ ウント テヒノロギーエン Method and apparatus for manufacturing precision shaped workpieces
JP2009132124A (en) * 2007-12-03 2009-06-18 Sony Corp Optical shaping apparatus and optical shaping method
CN109532005A (en) * 2018-11-20 2019-03-29 广州捷和电子科技有限公司 A kind of adaptive hot spot Method of printing of 3D photocuring dynamic focusing
KR20190041133A (en) * 2017-10-12 2019-04-22 한국기계연구원 Method for manufacturing three dimensional shapes using laser and powder
CN109878075A (en) * 2019-03-15 2019-06-14 华中科技大学 Using the method for continuous variable beam spot scans processing in a kind of 3D printing
US10596800B2 (en) 2016-03-07 2020-03-24 Seiko Epson Corporation Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article
US10611137B2 (en) 2016-03-07 2020-04-07 Seiko Epson Corporation Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article
WO2021025307A1 (en) * 2019-08-02 2021-02-11 한국과학기술원 3d printer having microhole processing function, and method for processing microhole by using same
US10926526B2 (en) 2015-11-12 2021-02-23 Seiko Epson Corporation Method of manufacturing three-dimensionally formed object

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506097A (en) * 2000-06-07 2004-02-26 [ベーウー:エステー] ゲーエムベーハー ベラートゥングスウンターネーメン フルア ジステーメ ウント テヒノロギーエン Method and apparatus for manufacturing precision shaped workpieces
WO2003016031A1 (en) * 2001-08-16 2003-02-27 Riken Rapid prototyping method and device using v-cad data
JP2009132124A (en) * 2007-12-03 2009-06-18 Sony Corp Optical shaping apparatus and optical shaping method
US10926526B2 (en) 2015-11-12 2021-02-23 Seiko Epson Corporation Method of manufacturing three-dimensionally formed object
US10596800B2 (en) 2016-03-07 2020-03-24 Seiko Epson Corporation Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article
US10611137B2 (en) 2016-03-07 2020-04-07 Seiko Epson Corporation Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article
KR20190041133A (en) * 2017-10-12 2019-04-22 한국기계연구원 Method for manufacturing three dimensional shapes using laser and powder
CN109532005A (en) * 2018-11-20 2019-03-29 广州捷和电子科技有限公司 A kind of adaptive hot spot Method of printing of 3D photocuring dynamic focusing
CN109532005B (en) * 2018-11-20 2021-08-10 广州捷和电子科技有限公司 3D photocuring dynamic focusing self-adaptive light spot printing method
CN109878075A (en) * 2019-03-15 2019-06-14 华中科技大学 Using the method for continuous variable beam spot scans processing in a kind of 3D printing
WO2021025307A1 (en) * 2019-08-02 2021-02-11 한국과학기술원 3d printer having microhole processing function, and method for processing microhole by using same

Similar Documents

Publication Publication Date Title
JP3980655B2 (en) Apparatus and method for controlling the exposure of a curable medium using a pulsed radiation source in the construction of a three-dimensional object using stereolithography
US5536467A (en) Method and apparatus for producing a three-dimensional object
JP3556204B2 (en) Method and apparatus for manufacturing printing blocks
JPH02239921A (en) Formation of three-dimensional shape
JPH1142714A (en) Light molding apparatus
JPS61114818A (en) Apparatus for forming solid configuration
JP4156805B2 (en) Method and apparatus for removing material from the surface of a workpiece
KR101026356B1 (en) Laser scanning device
JPS61114817A (en) Apparatus for forming solid configuration
JPH1142713A (en) Light molding apparatus
JPS61116320A (en) Three-dimensional shape forming device
JP4467390B2 (en) Laser processing method and laser irradiation apparatus
JP3186706B2 (en) Method and apparatus for laser marking of semiconductor wafer
JP4395110B2 (en) Marking method for transparent material and apparatus using the same
JP7420967B2 (en) Method and apparatus for lithographically generating and manufacturing three-dimensional parts
JPS61217219A (en) Three-dimensional configuration forming device
JP3166130B2 (en) Optical shaping apparatus and shaping method
JP3170832B2 (en) Optical molding method
JP2003010987A (en) Beam machining method, device therefor, and manufacturing method for touch panel
JPS61116321A (en) Three-dimensional shape forming device
JPH08238678A (en) Optically molding machine
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JP2623355B2 (en) Laser processing method and laser processing apparatus
JPH1142715A (en) Light molding apparatus
TWI796963B (en) Laser processing method of printed circuit board and laser processing device of printed circuit board