JPH11350181A - Production of stamper - Google Patents

Production of stamper

Info

Publication number
JPH11350181A
JPH11350181A JP16196498A JP16196498A JPH11350181A JP H11350181 A JPH11350181 A JP H11350181A JP 16196498 A JP16196498 A JP 16196498A JP 16196498 A JP16196498 A JP 16196498A JP H11350181 A JPH11350181 A JP H11350181A
Authority
JP
Japan
Prior art keywords
stamper
photoresist layer
organic thin
thin film
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16196498A
Other languages
Japanese (ja)
Inventor
Kenji Nakatani
健司 中谷
Akihiro Horiie
彬宏 堀家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16196498A priority Critical patent/JPH11350181A/en
Publication of JPH11350181A publication Critical patent/JPH11350181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for producing a stamper which is capable of exactly forming the convex parts of the stamper for shaping the concave parts such as finer grooves, pits of the substrate to be formed. SOLUTION: The method relates to the production of the stamper which has convex parts in a prescribed pattern shape on its one side and is used for forming resins. The stamper is produced by coating an organic thin film with a prescribed thickness on the flat surface of a base plate, then coating a photoresist layer on the organic thin layer, exposing the photoresist layer to laser beams according to the pattern of the convex parts on which the photoresist layer is formed, removing the exposed parts of the photoresist layer by the developing treatment, removing parts of the organic thin film, which are formed by removing the exposed parts of the photoresist, by etching, further removing the residual parts of the photoresist layer, depositing an electroconductive film on all surface comprising the disclosed parts of the substrate and the residual organic film parts, depositing a metal film in a prescribed thickness by electrical plating method, and releasing the metal film from the base disk.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD、DVD、光
磁気ディスク等の光ディスクのトラック案内溝、あるい
はプリフォーマット信号を記録するピット等の情報凹部
がより高密度に形成された基板の如く所定パターン形状
の凹部を表面に形成した基板の成形に用いるスタンパの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate such as a track, on which a track guide groove of an optical disk such as a CD, a DVD, a magneto-optical disk, or a pit for recording a preformat signal is formed at a higher density. The present invention relates to a method of manufacturing a stamper used for forming a substrate having a pattern-shaped concave portion formed on the surface.

【0002】[0002]

【従来の技術】光ディスクは、基板上に記録再生用のレ
ーザビームを案内する為のトラック案内溝、あるいは予
め位置情報やその他の必要な情報を記録したピット、あ
るいは信号を同期させるための基準信号を出すウオッブ
ル溝などのプリフォーマットと呼ばれる所定パターン形
状の凹部を形成している。
2. Description of the Related Art An optical disk has a track guide groove for guiding a laser beam for recording and reproduction on a substrate, a pit in which positional information and other necessary information are recorded in advance, or a reference signal for synchronizing a signal. A concave portion having a predetermined pattern shape called a preformat such as a wobble groove for forming a groove is formed.

【0003】このプリフォーマットは基板を射出成形す
る時に成形機の金型にプリフォーマットに対応する凸部
を片面に形成したスタンパを取り付け、このスタンパの
表面形状を転写して作製される。その為スタンパの表面
形状を如何に良好に仕上げるかが重要である。スタンパ
は一般にマスタリングと呼ばれる工程で作製される。
[0003] This preformat is manufactured by mounting a stamper having a convex portion corresponding to the preformat on one side to a mold of a molding machine at the time of injection molding a substrate, and transferring the surface shape of the stamper. Therefore, it is important how to finish the surface shape of the stamper. The stamper is generally manufactured by a process called mastering.

【0004】従来のマスタリングは ガラス原盤上にホ
トレジストを塗布する工程、レーザカッテイングマシン
と呼ばれる装置で該ホトレジスト上にプレフォーマット
状に露光する工程、該露光部を現像してプレフォーマッ
トをガラス原盤上に形成する工程、 該ガラス原盤上に
スパッタ法、あるいは無電解メッキ法で導電化膜を形成
する工程、該導電化されたガラス原盤に電鋳で金属膜を
作製し、該金属板をはがしてスタンパを取り出す工程か
らなる。
Conventional mastering includes a process of applying a photoresist on a glass master, a process of exposing the photoresist in a preformatted form by using a device called a laser cutting machine, and developing the exposed portion to apply a preformat to the glass master. Forming a conductive film on the glass master by sputtering or electroless plating, forming a metal film on the conductive glass master by electroforming, removing the metal plate, and removing a stamper. Out of the process.

【0005】光ディスクはCD,DVDと近年高記録密
度の媒体が実用化され、さらに超高密度の媒体が提案さ
れている。この様な超高密度の記録媒体を実用化する為
にはスタンパ表面のプリフォーマットの形状もサブミク
ロンオーダーの形状が必要であり、精度はさらにナノメ
ーターオーダーが必要である。
In recent years, optical discs such as CDs and DVDs with high recording density have been put to practical use, and ultra-high density media have been proposed. In order to put such ultra-high-density recording medium to practical use, the preformat shape on the surface of the stamper needs to be on the order of submicrons, and the accuracy needs to be on the order of nanometers.

【0006】[0006]

【発明が解決しようとする課題】超高密度の光ディスク
の作製の為には、前記従来のマスタリング法を用いては
その加工精度がレーザカッテイングマシンのレーザ波長
に依存する問題があり、このレーザー波長をブルー(例
えばKrレーザの413nm)から紫外光(357nm)へと短波長
化しようとしている。しかしながらレーザ光の強度分布
はガウス型をしており、その為に溝、ピット等の凸部形
状を微細化する事に限界がある。
In order to manufacture an ultra-high-density optical disk, there is a problem that the processing accuracy depends on the laser wavelength of a laser cutting machine using the conventional mastering method. From blue (for example, 413 nm of Kr laser) to ultraviolet light (357 nm). However, the intensity distribution of the laser beam has a Gaussian shape, and therefore, there is a limit in miniaturizing the shape of a convex portion such as a groove or a pit.

【0007】そこで本発明は、上記従来技術の欠点を改
善する為になされたものであり、成形する基板のより微
細な溝、ピット等の所定パターン形状の凹部を形成する
ためのスタンパの凸部を正確に形成できるスタンパの製
造方法を提供する事を目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned disadvantages of the prior art, and has been made in consideration of the above-mentioned problems. It is an object of the present invention to provide a method of manufacturing a stamper that can accurately form a stamper.

【0008】[0008]

【課題を解決する為の手段】前記目的は、以下の本発明
により達成される。すなわち、本発明は、樹脂の成形に
用いる片面に所定パターン形状の凸部が形成されたスタ
ンパの製造方法において、平坦な表面の原盤上に有機薄
膜を所定の厚みに塗膜後、有機薄膜上にホトレジスト層
を塗膜し、このホトレジスト層を形成する凸部のパター
ン形状に従ってレーザビームによって露光し、露光され
たホトレジスト層を現像処理して露光部分を除去し、フ
ォトレジスト層の露光部分の除去によって露出された前
記有機薄膜の部分をエッチングして除去し、さらに前記
ホトレジスト層の残留部分を除去し、次いで基板の露出
部分と有機薄膜の残留部分の全面上に導電膜を堆積した
後、電気メッキ法を用いて金属膜を所定の厚みに堆積
し、金属膜を原盤から剥離してスタンパとすることを特
徴とするスタンパの製造方法である。
The above object is achieved by the present invention described below. That is, the present invention relates to a method of manufacturing a stamper in which a convex portion having a predetermined pattern is formed on one surface used for molding a resin, wherein an organic thin film is coated to a predetermined thickness on a flat surface master, and then the organic thin film is formed on the master. A photoresist layer is applied to the photoresist layer, and the photoresist layer is exposed to a laser beam in accordance with the pattern shape of the protrusions forming the photoresist layer. The exposed photoresist layer is developed to remove the exposed portion, and the exposed portion of the photoresist layer is removed. The portion of the organic thin film exposed by the etching is removed by etching, the remaining portion of the photoresist layer is further removed, and then a conductive film is deposited on the entire exposed portion of the substrate and the remaining portion of the organic thin film. This is a method for manufacturing a stamper, wherein a metal film is deposited to a predetermined thickness using a plating method, and the metal film is peeled from a master to form a stamper.

【0009】本発明では、フォトレジスト層をレーザビ
ームで露光する際に、ビームの光強度分布がガウス型を
し、ビームの中心部分が強度大で、周辺部分が強度が弱
い為に発生するフォトレジスト層現像時のフォトレジス
ト層の断面形状でその凹部の側壁面がだれる現象が発生
しても、その後の工程で行なう有機薄膜をエッチングす
る工程によって、有機薄膜の凹部の断面形状でその側壁
面を急峻な形状に保つ、これによりスタンパの凸部を形
成することしているので、レーザビームの影響を受ける
ことなく、正確な凸部が形成できる特長を有している。
以下、本発明の詳細を実施例を用いて説明する。
According to the present invention, when the photoresist layer is exposed to a laser beam, the light intensity distribution of the beam has a Gaussian shape, the intensity is high at the center of the beam, and the intensity is low at the peripheral portion. Even if a phenomenon occurs in which the sidewall surface of the concave portion sags in the cross-sectional shape of the photoresist layer at the time of development of the resist layer, the organic thin film is etched in the subsequent step by etching the organic thin film in the cross-sectional shape of the organic thin film. Since the wall surface is maintained in a steep shape, thereby forming the protrusion of the stamper, it has a feature that an accurate protrusion can be formed without being affected by the laser beam.
Hereinafter, the details of the present invention will be described using examples.

【0010】[0010]

【発明の実施の形態】図1は本発明によるスタンパの製
造方法を示す工程図で、工程は(a)から(h)の順に
行なわれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process chart showing a method for manufacturing a stamper according to the present invention, and the steps are performed in the order of (a) to (h).

【0011】図で、1は硬質な平坦表面を有する原盤で
あり、対エッチイング耐性があり、平坦であればなんで
も良いが、通常はガラス板が用いられる。
In the figure, reference numeral 1 denotes a master having a hard flat surface, which is resistant to etching and may be anything as long as it is flat, but a glass plate is usually used.

【0012】まず工程(a)で ガラス原盤1の平坦な
表面の全面に所定厚みの有機薄膜2が塗布される。有機
薄膜2としてはガラス原盤1との接着力があり、エッチ
ングによって除去できる特性を有する材料が選択され
る。その一例としては有機シリコン樹脂が好ましく採用
される。該有機シリコン膜はスピナー法を用いて塗布で
きるので、無機薄膜を真空を用いて堆積するより低コス
トで容易に作製できる利点がある。
First, in a step (a), an organic thin film 2 having a predetermined thickness is applied to the entire flat surface of a glass master 1. As the organic thin film 2, a material having an adhesive force to the glass master 1 and having characteristics that can be removed by etching is selected. As one example, an organic silicon resin is preferably employed. Since the organic silicon film can be applied by using a spinner method, there is an advantage that the organic thin film can be easily manufactured at low cost as compared with the case where an inorganic thin film is deposited using vacuum.

【0013】次に工程(b)で、該有機薄膜2の全表面
上にフォトレジスト層3が塗布される。 該ホトレジス
ト層3もスピナー法で塗布される。
Next, in a step (b), a photoresist layer 3 is applied on the entire surface of the organic thin film 2. The photoresist layer 3 is also applied by a spinner method.

【0014】工程(c)では、周知の通りレーザカッテ
イングマシンを用いて形成する凸部のパターン形状に応
じてフォトレジスト層3の露光を行なう。次いで該ガラ
ス原盤1はアルカリ洗浄等の現像処理を行なう事でフォ
トレジスト層3の凹部4となる露光部3aが除去され、
プリフォーマット等の目的の形状に応じた所定の凹部4
がガラス原盤1の有機薄膜2上のフォトレジスト層3に
形成される。図に示すようにこの凹部4(具体的には図
の露光部3a)の側壁は、レーザ光の特性等から表面の
法線方向から凹部の開口部が広がる方向に大きく傾斜し
たものとなる。従って隣接する凹部の間隔が狭くなると
区別が困難となる、換言すれば光ディスクでの高密度化
が困難となる。
In the step (c), the photoresist layer 3 is exposed according to the pattern shape of the projections formed using a laser cutting machine as is well known. Next, the exposed portion 3a which becomes the concave portion 4 of the photoresist layer 3 is removed by subjecting the glass master 1 to a developing process such as alkali washing.
Predetermined recess 4 according to the target shape such as preformat
Is formed on the photoresist layer 3 on the organic thin film 2 of the glass master 1. As shown in the figure, the side wall of the concave portion 4 (specifically, the exposed portion 3a in the figure) is greatly inclined from the normal direction of the surface to the direction in which the opening of the concave portion is widened due to the characteristics of the laser beam. Therefore, when the interval between adjacent concave portions is small, it is difficult to distinguish the concave portions. In other words, it is difficult to increase the density of the optical disk.

【0015】次に工程(d)では、フォトレジスト層3
の露光部3aが除去されて露出した有機薄膜2の露出部
分をエッチングして有機薄膜2に所定の凹部5を作製す
る。この有機薄膜の露出部分をエッチングする方法とし
ては反応性ガスを用いたプラズマエッチング、非反応性
ガスを用いたプラズマエッチング、溶剤を用いたケミカ
ルエッチング等の方法が採用できる。このエッチングの
際にマスクの役割をするフォトレジスト層3の残留部3
bをエッチングすること無く、有機薄膜2だけをエッチ
ングする事が好ましいが、フォトレジスト層3が同時に
エッチングされても有機薄膜のエッチングが優先して終
了すれば初期の目的を達成できる。
Next, in step (d), the photoresist layer 3
The exposed portion of the organic thin film 2 exposed by removing the exposed portion 3a is etched to form a predetermined concave portion 5 in the organic thin film 2. As a method of etching the exposed portion of the organic thin film, a method such as plasma etching using a reactive gas, plasma etching using a non-reactive gas, and chemical etching using a solvent can be adopted. Residual portion 3 of photoresist layer 3 serving as a mask during this etching
It is preferable to etch only the organic thin film 2 without etching b, but even if the photoresist layer 3 is simultaneously etched, the initial purpose can be achieved if the etching of the organic thin film is finished with priority.

【0016】有機薄膜2をエッチングしてその凹部5の
側面具体的にはその側面の傾斜角θを法線に近い急峻に
形成する為にはプラズマエッチングが好ましく、更に異
方性を出す為に ECR(エレクトロンサイクロン共鳴)
プラズマを使用したり、バイアス印加プラズマを使用す
る事が好ましい。形成された凹部5の側面の傾斜角は、
側面とガラス基盤1の表面との角度で60度以上が好まし
い。該角度以上では、傾斜した側面の該表面への投影面
積が減少できて、凹部の分離が良くなり、光ディスクの
基板に適用した場合記録を書き込むべきランド、グルー
ブ(溝底)の幅を広く取れる為に側面の斜面からのノイ
ズが小さくなり、信号強度(C/N)を大きく取れる。又、
隣接する溝とランド間でのクロストークとクロスイレー
ズと呼ばれる信号の漏れが減少できる。
Plasma etching is preferable for etching the organic thin film 2 to form the side surface of the concave portion 5, specifically, the inclination angle θ of the side surface steeply close to the normal line. ECR (Electron Cyclone Resonance)
It is preferable to use plasma or to use bias-applied plasma. The inclination angle of the side surface of the formed concave portion 5 is:
The angle between the side surface and the surface of the glass substrate 1 is preferably 60 degrees or more. Above the angle, the projected area of the inclined side surface onto the surface can be reduced, the separation of the concave portion can be improved, and when applied to the substrate of an optical disk, the width of the land or groove (groove bottom) to be used for recording can be widened. Therefore, noise from the side slope is reduced, and the signal strength (C / N) can be increased. or,
Crosstalk between adjacent grooves and lands and signal leakage called cross-erase can be reduced.

【0017】一方この傾斜角θが90度を越えると、凹部
は開口部より底部が広い形状となり、後記する工程
(g)でのスタンパとなる金属膜をガラス原盤1から剥
がす際に不都合が生じる。なお、例えスタンパが作製可
能でも射出成形で基板作成が出来ない問題点が生じる。
On the other hand, if the inclination angle θ exceeds 90 degrees, the concave portion has a shape that is wider at the bottom than the opening, which causes inconvenience when the metal film serving as a stamper is peeled off from the glass master 1 in step (g) described later. . In addition, even if a stamper can be produced, there is a problem that a substrate cannot be produced by injection molding.

【0018】エッチイングの終了したガラス原盤1は次
の工程(e)でマスクの役割をしたフォトレジスト層3
の残留部3bを洗浄、除去して、図に示すように有機薄
膜2残留部2aを全面で露出させる。
In the next step (e), the glass master 1 after the etching is applied to a photoresist layer 3 serving as a mask.
The remaining portion 3b of the organic thin film 2 is washed and removed to expose the entire remaining portion 2a of the organic thin film 2 as shown in FIG.

【0019】次いで工程(f)で該ガラス原盤1にスパ
ッタ法、あるいは蒸着法、あるいは無電解メッキ法で電
極となる導電化膜6を薄く凹部内面表面を含む全表面に
堆積させる。導電化膜6の材料は導電性の良好な金属か
ら選択され、金、銀、銅、パラジューム、Ni、等が好ま
しく用いられる。
Next, in step (f), a thin conductive film 6 serving as an electrode is deposited on the whole glass master 1 by sputtering, vapor deposition, or electroless plating on the entire surface including the inner surface of the concave portion. The material of the conductive film 6 is selected from metals having good conductivity, and gold, silver, copper, palladium, Ni, or the like is preferably used.

【0020】次に工程(g)で該導電化膜を一方の電極
として電鋳を行ない、スタンパとなる金属膜7を300μ
m程度に堆積する。この厚みはスタンパの使用条件に応
じて選択される。電鋳される金属膜7すなわちスタンパ
の材料は、Niなどのメッキしやすい金属が選択される。
Next, in step (g), electroforming is performed using the conductive film as one electrode, and the metal film 7 serving as a stamper is
m. This thickness is selected according to the use conditions of the stamper. As a material of the metal film 7 to be electroformed, that is, a material of the stamper, a metal such as Ni that is easily plated is selected.

【0021】次いで工程(h)で電鋳された金属膜7を
原盤1から剥がし、表面、裏面を洗浄してスタンパ7が
作成される。
Next, the metal film 7 electroformed in the step (h) is peeled off from the master 1, and the front and back surfaces are washed to form the stamper 7.

【0022】以上の工程を経て作製されるスタンパ7の
プリフォーマットの溝、ピット等に対応する凸部7aは
レーザ光のビーム径より小さく、且つ 該凸部7aの側
面が従来法による場合より急峻であり、その角度θが60
度以上で90度以下の範囲の形成される。以下に、実施例
を示す。
The protrusions 7a corresponding to the preformat grooves, pits and the like of the stamper 7 manufactured through the above steps are smaller than the beam diameter of the laser beam, and the side surfaces of the protrusions 7a are steeper than in the conventional method. And the angle θ is 60
A range of not less than 90 ° and not more than 90 ° is formed. An example is described below.

【0023】[0023]

【実施例1】厚さ6mmの良く研かれた直径200mmのガラス
原盤1に、有機薄膜2として有機シリコン薄膜を70nmの
厚みに成膜した。有機シリコン膜はスピナーのサンプル
台上にガラス原盤1をセットして3000rpmで回転させ、
そのアルコール溶液5ccを滴下して塗工した。有機シリ
コン膜を硬化させる為に120℃で5分間熱処理した。この
膜厚はアルコール濃度、回転数を調整して設定した。
Example 1 An organic silicon thin film having a thickness of 70 nm was formed as an organic thin film 2 on a well-ground glass master 1 having a thickness of 6 mm and a diameter of 200 mm. For the organic silicon film, set the glass master 1 on the sample table of the spinner and rotate it at 3000 rpm.
5 cc of the alcohol solution was dropped and applied. Heat treatment was performed at 120 ° C. for 5 minutes to cure the organic silicon film. This film thickness was set by adjusting the alcohol concentration and the number of rotations.

【0024】次にフォトレジスト層3を有機シリコン膜
の膜厚より厚めの150nmにスピナー法を用いて成膜し、
ベーキングして固定した。
Next, a photoresist layer 3 is formed using a spinner method to a thickness of 150 nm, which is larger than the thickness of the organic silicon film.
Baking and fixed.

【0025】有機シリコン膜/フォトレジスト層を積層
したガラス原盤1をレーザカッテイングマシンにセット
して、Krの417nmのレーザ光を開口数0.9の対物レン
ズで絞り、光ディスクのグルーブ形成のため0.6μmピ
ッチで螺旋状に露光を行なった。
The glass master 1 on which the organic silicon film / photoresist layer is laminated is set in a laser cutting machine, and a laser beam of 417 nm of Kr is squeezed by an objective lens having a numerical aperture of 0.9. Exposure was performed spirally at a pitch of μm.

【0026】次にこのガラス原盤1をアルカリ溶液で洗
浄してフォトレジスト層3の露光部3aを除去して、凹
部5となる有機薄膜2の部分を露出させた。
Next, the glass master 1 was washed with an alkaline solution to remove the exposed portions 3a of the photoresist layer 3, thereby exposing the portions of the organic thin film 2 to be the concave portions 5.

【0027】このガラス原盤1をECRプラズマの発生装
置内にセットし、反応性ガスとして酸素とCCl2F2ガスの
混合ガス雰囲気中でプラズマを発生させた。異方性と均
一性を得る為に原盤1のホルダーには正バイアス電圧を
印加し、且つ原盤1を回転させながら、反応性プラズマ
を照射して、露出部分の有機薄膜2を除去して凹部5を
形成した。
The glass master 1 was set in an ECR plasma generator, and plasma was generated in a mixed gas atmosphere of oxygen and CCl2F2 gas as a reactive gas. In order to obtain anisotropy and uniformity, a positive bias voltage is applied to the holder of the master 1, and while the master 1 is rotated, reactive plasma is irradiated to remove the organic thin film 2 in the exposed portion, thereby forming a concave portion. 5 was formed.

【0028】次にフォトレジスト層3の残留部3bをア
ルカリ洗浄して除去した。この時マスクに使用したフォ
トレジスト層3は厚みが約50nmにやせており、フォトレ
ジスト層3も有機薄膜2の露出部と同時にエッチングさ
れている事がわかった。次いで、パラジュームを無電解
メッキ法で堆積し、電極用の導電化膜6を形成した。こ
のパラジュームからなる導電化膜6を電極として、電鋳
によりニッケルを約300μm厚みに堆積して、スタンパ
の金属膜7を形成した。この金属膜7をガラス原盤1か
ら剥がして表面を洗浄して製品のスタンパ7を得た。
Next, the remaining portion 3b of the photoresist layer 3 was removed by alkali washing. At this time, it was found that the photoresist layer 3 used as the mask was thinned to a thickness of about 50 nm, and that the photoresist layer 3 was also etched simultaneously with the exposed portion of the organic thin film 2. Next, palladium was deposited by an electroless plating method to form a conductive film 6 for an electrode. Using the conductive film 6 of palladium as an electrode, nickel was deposited to a thickness of about 300 μm by electroforming to form a metal film 7 of a stamper. The metal film 7 was peeled off from the glass master 1 and the surface was washed to obtain a product stamper 7.

【0029】以上で得られたスタンパを射出成形機の金
型にセットし、公知のようにポリカーボネート樹脂を用
い、光ディスク用樹脂基板を成形した。成形した光ディ
スク用樹脂基板の表面形状をAFM(原始間力顕微鏡)、S
EM(走査電子顕微鏡)で測定した結果、溝の開口幅と底
幅、溝深さ、溝斜面角度は表1の結果となった。
The stamper obtained above was set in a mold of an injection molding machine, and a resin substrate for an optical disk was molded using a polycarbonate resin in a known manner. AFM (primitive force microscope), S
As a result of measurement by EM (scanning electron microscope), the results shown in Table 1 were obtained for the opening width and bottom width of the groove, the groove depth, and the groove slope angle.

【0030】比較例として、従来法(従来技術に記載し
た方法で)具体的には実施例1で有機薄膜2を設けない
以外は実施例1と同じにしてスタンパを作製し、このス
タンパを用い、実施例1と同様にして光ディスク用樹脂
基板を作製して評価した。その測定結果を合わせて表1
に示した。
As a comparative example, a stamper was produced in the same manner as in Example 1 except that the organic thin film 2 was not provided in the conventional method (by the method described in the prior art), and this stamper was used. A resin substrate for an optical disk was prepared and evaluated in the same manner as in Example 1. Table 1 shows the measurement results.
It was shown to.

【0031】[0031]

【表1】 【table 1】

【0032】[0032]

【実施例2】実施例1で作製したと同じ方法でエッチン
グ条件を選択する事で凸部7aの側面の傾斜角θ即ち斜
面角度を50度、60度、70度、80度になる様に制御して作
製したスタンパを用い、実施例1と同様に射出成形を行
ない、各種溝形状の光ディスク用の樹脂基板を作製し
た。
Embodiment 2 By selecting the etching conditions in the same manner as in Example 1, the inclination angle θ of the side surface of the convex portion 7a, that is, the slope angle is set to 50 degrees, 60 degrees, 70 degrees, and 80 degrees. Injection molding was carried out in the same manner as in Example 1 using a stamper produced by controlling, and resin substrates for optical disks having various groove shapes were produced.

【0033】そして、650nm波長のレーザを読み書きに
使用する事を想定して該樹脂基板上に相変化による書換
え可能な記録膜をスパッタ法で堆積した。具体的には第
1、第2の誘電体膜としてZnS-SiO2を、記録膜としては
GeSbTeを、金属膜としてはAlCr合金膜を使用して、第1
誘電体95nm/記録層19nm/第2誘電体15nm/金属膜150nm
の順に各厚みを堆積した。この金属膜表面上に最後に保
護膜を設けて光ディスクを作製した。
Then, a rewritable recording film by a phase change was deposited on the resin substrate by a sputtering method, assuming that a laser having a wavelength of 650 nm was used for reading and writing. Specifically, ZnS—SiO 2 is used as the first and second dielectric films, and the recording film is used as the first and second dielectric films.
GeSbTe was used as the metal film, and an AlCr alloy film was used.
Dielectric 95nm / Recording layer 19nm / Second dielectric 15nm / Metal film 150nm
Were deposited in this order. An optical disk was manufactured by finally providing a protective film on the surface of the metal film.

【0034】この光ディスクのランド部にレコーダーで
0.6ミクロンのマークを記録して、その時のC/N(dB)
と溝部側面の斜面角度の関係を測定した。その結果を図
2に示す。C/Nは斜面角度が従来品より大きくなれば改
善する方向にシフトするが斜面角度が60度を超えるころ
から改善の度合いが向上している事が分かる。
The land portion of this optical disk is recorded with a recorder.
C / N (dB) at the time of recording a 0.6 micron mark
And the relationship between the slope angle of the groove side surface was measured. The result is shown in FIG. The C / N shifts in the direction of improvement when the slope angle is larger than that of the conventional product, but it can be seen that the degree of improvement is improved from the time when the slope angle exceeds 60 degrees.

【0035】C/Nの向上はC(キャリヤ)信号強度よりN
(ノイズ)信号強度の低下によっており、斜面の投影面
積が大きいほどノイズ信号が大きく発生していると推測
される。
The improvement of C / N is achieved by N (C)
(Noise) It is presumed that the noise intensity is caused by a decrease in the signal intensity, and that the larger the projected area of the slope is, the larger the noise signal is generated.

【0036】[0036]

【発明の効果】本発明は、従来のフォトレジスト層に加
えて有機薄膜を積層し、この有機薄膜によりスタンパの
凸部を形成するようにしており、実施例に示したように
従来のマスタリング法では得られない微細なパターンを
持ったスタンパの作製が可能とするものである。
According to the present invention, an organic thin film is laminated in addition to a conventional photoresist layer, and a convex portion of a stamper is formed by the organic thin film. Thus, it is possible to manufacture a stamper having a fine pattern that cannot be obtained.

【0037】従って、本発明を光ディスク用基板の成形
に用いる光ディスク用のスタンパに適用した場合、溝形
状において開口幅と溝底幅の比率が高く、記録時には不
要な溝斜面部分の割合が小さく出来る事が明らかになっ
た。この結果、斜面部分からのノイズが減少しC/Nが向
上する事が判った。今後トラックピッチがより狭くなる
時には斜面部分が少なくてすむ本発明のスタンパがより
優位になる事が判る。
Therefore, when the present invention is applied to a stamper for an optical disk used for molding an optical disk substrate, the ratio between the opening width and the groove bottom width in the groove shape is high, and the ratio of unnecessary groove slope portions during recording can be reduced. The thing became clear. As a result, it was found that noise from the slope portion was reduced and C / N was improved. It will be understood that the stamper of the present invention, which requires less slope portion when the track pitch becomes narrower in the future, becomes more advantageous.

【0038】以上、本発明はスタンパのパターンの微細
化を実現するものであり、特に光ディスクの高密度化に
大きな寄与をなすものである。
As described above, the present invention realizes the miniaturization of the pattern of the stamper, and makes a great contribution to increasing the density of the optical disk.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明のスタンパの製造工程を説明する
ための説明図である。
FIG. 1 is an explanatory diagram for explaining a stamper manufacturing process of the present invention.

【図2】図2は実施例2における光ディスク基板の溝部
の斜面角度とC/Nの関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a slope angle of a groove portion of an optical disc substrate and C / N in a second embodiment.

【符号の説明】[Explanation of symbols]

1 ガラス基盤 2 有機薄膜 3 ホトレジスト層 4、5 凹部 6 導電化膜 7 金属膜(スタンパ) REFERENCE SIGNS LIST 1 glass substrate 2 organic thin film 3 photoresist layer 4, 5 recess 6 conductive film 7 metal film (stamper)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 樹脂の成形に用いる片面に所定パターン
形状の凸部が形成されたスタンパの製造方法において、
平坦な表面の原盤上に有機薄膜を所定の厚みに塗膜後、
有機薄膜上にホトレジスト層を塗膜し、このホトレジス
ト層を形成する凸部の形状パターンに従ってレーザビー
ムによって露光し、露光されたホトレジスト層を現像処
理して露光部分を除去し、フォトレジスト層の露光部分
の除去によって露出された前記有機薄膜の部分をエッチ
ングして除去し、さらに前記ホトレジスト層の残留部分
を除去し、次いで基板の露出部分と有機薄膜の残留部分
の全面上に導電膜を堆積した後、電気メッキ法を用いて
金属膜を所定の厚みに堆積し、金属膜を原盤から剥離し
てスタンパとすることを特徴とするスタンパの製造方
法。
1. A method for manufacturing a stamper having a convex portion having a predetermined pattern formed on one surface used for molding a resin,
After coating the organic thin film to the predetermined thickness on the master with a flat surface,
A photoresist layer is coated on the organic thin film, exposed by a laser beam in accordance with the pattern of the projections forming the photoresist layer, the exposed photoresist layer is developed to remove the exposed portions, and the photoresist layer is exposed. The portion of the organic thin film exposed by the removal of the portion was removed by etching, the remaining portion of the photoresist layer was further removed, and then a conductive film was deposited on the entire exposed portion of the substrate and the remaining portion of the organic thin film. Thereafter, a metal film is deposited to a predetermined thickness by using an electroplating method, and the metal film is separated from the master to form a stamper.
【請求項2】 前記エッチング方法としてハロゲン化ガ
スと酸素の混合雰囲気で行われるプラズマを用いたドラ
イエッチング方式を用いる請求項1のスタンパの製造方
法。
2. The method of manufacturing a stamper according to claim 1, wherein a dry etching method using plasma performed in a mixed atmosphere of a halogenated gas and oxygen is used as the etching method.
【請求項3】 前記ホトレジスト層の厚みが有機薄膜の
厚みよりも厚い請求項1又は2のスタンパの製造方法。
3. The method according to claim 1, wherein the thickness of the photoresist layer is larger than the thickness of the organic thin film.
【請求項4】 スタンパに形成された凸部の側面のスタ
ンパ表面に対する傾斜角度が情報凸部の先端部が狭くな
る方向で60度以上、90度以下である請求項1、2又は3
のスタンパの製造方法。
4. The angle of inclination of the side surface of the projection formed on the stamper with respect to the surface of the stamper is 60 degrees or more and 90 degrees or less in the direction in which the tip of the information projection becomes narrower.
Manufacturing method of stamper.
【請求項5】 スタンパがプリフォーマットされた光デ
ィスク用基板の成形に用いる光ディスク用スタンパであ
る請求項1〜4のいずれかのスタンパの製造方法。
5. The method for manufacturing a stamper according to claim 1, wherein the stamper is an optical disk stamper used for molding a preformatted optical disk substrate.
JP16196498A 1998-06-10 1998-06-10 Production of stamper Pending JPH11350181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16196498A JPH11350181A (en) 1998-06-10 1998-06-10 Production of stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16196498A JPH11350181A (en) 1998-06-10 1998-06-10 Production of stamper

Publications (1)

Publication Number Publication Date
JPH11350181A true JPH11350181A (en) 1999-12-21

Family

ID=15745428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16196498A Pending JPH11350181A (en) 1998-06-10 1998-06-10 Production of stamper

Country Status (1)

Country Link
JP (1) JPH11350181A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040250A1 (en) * 2000-11-20 2002-05-23 Amcor Packaging (Australia) Pty Ltd Method for treating films
NL1012035C2 (en) * 1998-05-14 2003-01-07 Matsushita Electric Ind Co Ltd Method for forming a metal stamp, metal stamp and production method for optical disc substrates using the stamp and optical discs made by the production method.
EP1291859A2 (en) * 2001-09-06 2003-03-12 TDK Corporation Manufacturing method of stamper for optical information medium, photoresist master therefor, stamper for optical information medium and optical information medium
US8833216B2 (en) 2009-08-10 2014-09-16 Amcor Limited Method and an apparatus for perforating polymeric film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012035C2 (en) * 1998-05-14 2003-01-07 Matsushita Electric Ind Co Ltd Method for forming a metal stamp, metal stamp and production method for optical disc substrates using the stamp and optical discs made by the production method.
WO2002040250A1 (en) * 2000-11-20 2002-05-23 Amcor Packaging (Australia) Pty Ltd Method for treating films
US7799254B2 (en) 2000-11-20 2010-09-21 AMCOR Packaging (Australia) Pty Method for the treating films
EP1291859A2 (en) * 2001-09-06 2003-03-12 TDK Corporation Manufacturing method of stamper for optical information medium, photoresist master therefor, stamper for optical information medium and optical information medium
EP1291859A3 (en) * 2001-09-06 2007-11-07 TDK Corporation Manufacturing method of stamper for optical information medium, photoresist master therefor, stamper for optical information medium and optical information medium
US8833216B2 (en) 2009-08-10 2014-09-16 Amcor Limited Method and an apparatus for perforating polymeric film

Similar Documents

Publication Publication Date Title
US6207247B1 (en) Method for manufacturing a molding tool used for sustrate molding
US6814897B2 (en) Method for manufacturing a molding tool used for substrate molding
US20030224084A1 (en) Method for manufacturing master substrate used for manufacturing grooved molding substrate, method for manufacturing stamper for manufacturing grooved molding substrate, method for manufacturing grooved molding substrate, grooved molding substrate, memory medium, memory device, and computer
US5051340A (en) Master for optical element replication
US20050167867A1 (en) Method and apparatus for making a stamper for patterning CDs and DVDs
JPS6126952A (en) Production of information carrier
JP2002298449A (en) Optical disk master disk, stamper for optical disk substrate, manufacturing method of these disks, and magneto-optical recording medium
US20050042427A1 (en) Method for manufacturing stamper for information medium manufacture, stamper, and stamper intermediate with master disk
JP2000280255A (en) Production of master disk
JPH11350181A (en) Production of stamper
US7204188B2 (en) Method of manufacturing stamper for manufacturing information medium, stamper, and photoresist master
JP4165396B2 (en) Reproduction master for optical recording medium having irregularities, stamper, and manufacturing method of optical recording medium
JPH10241213A (en) Production of stamper for optical disk
US20050118534A1 (en) Method for manufacturing stamper for information medium manufacture, stamper, and photoresist master disk
US20050066825A1 (en) Method for manufacturing stamper for information medium manufacture, stamper, and photoresist original disk
JPH09115190A (en) Production of stamper for optical disk
JPH10241214A (en) Manufacture of stamper for optical disk
JP3186078B2 (en) Mastering method, stamper and optical recording medium
JPH06111387A (en) Production of plastic stamper
JPH04311833A (en) Production of optical recording medium
JPH01235044A (en) Optical disk substrate and its production
JP2000040267A (en) Production of master disk of stamper for optical disk
JP3952835B2 (en) Manufacturing method of stamper for producing optical recording medium
JP2000242984A (en) Optical recording medium and its production
JPH09274744A (en) Production of metal master disk